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Conic Sections in Polar Coordinates

Polar coordinates are important in astronomy and astronautical engineering because the
ellipses, parabolas, and hyperbolas along which satellites, moons, planets, and comets
approximately move can all be described with a single relatively simple coordinate equa-
tion. We develop that equation here.

Lines

Suppose the perpendicular from the origin to line L meets L at the point with
(Figure 10.56). Then, if is any other point on L, the points and O are

the vertices of a right triangle, from which we can read the relation

r0 = r cos su - u0d .

P, P0 ,Psr, udr0 Ú 0
P0sr0, u0d ,

10.8

The Standard Polar Equation for Lines
If the point is the foot of the perpendicular from the origin to the line
L, and then an equation for L is

(1)r cos su - u0d = r0 .

r0 Ú 0,
P0sr0, u0d
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FIGURE 10.56 We can obtain a polar
equation for line L by reading the relation

from the right triangle
OP0 P .
r0 = r cos su - u0d

EXAMPLE 1 Converting a Line’s Polar Equation to Cartesian Form

Use the identity to find a Cartesian equation for
the line in Figure 10.57.

Solution

Circles

To find a polar equation for the circle of radius a centered at we let be a
point on the circle and apply the Law of Cosines to triangle (Figure 10.58). This
gives

a2
= r0

2
+ r2

- 2r0 r cos su - u0d .

OP0 P
Psr, udP0sr0, u0d ,
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FIGURE 10.58 We can get a polar
equation for this circle by applying the
Law of Cosines to triangle OP0 P .
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FIGURE 10.57 The standard polar
equation of this line converts to the
Cartesian equation 
(Example 1).

x + 23 y = 4
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If the circle passes through the origin, then and this equation simplifies to

If the circle’s center lies on the positive x-axis, and we get the further simplifica-
tion

(see Figure 10.59a).
If the center lies on the positive y-axis, and the

equation becomes

(see Figure 10.59b).

r = 2a sin u

r = 2a cos su - u0d
u = p>2, cos su - p>2d = sin u ,

r = 2a cos u

u0 = 0

 r = 2a cos su - u0d .

 r2
= 2ar cos su - u0d

 a2
= a2

+ r2
- 2ar cos su - u0d

r0 = a
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FIGURE 10.59 Polar equation of a circle of radius a through the
origin with center on (a) the positive x-axis, and (b) the positive
y-axis.
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FIGURE 10.60 Polar equation of a circle of radius a through the
origin with center on (a) the negative x-axis, and (b) the negative
y-axis.

Equations for circles through the origin centered on the negative x- and y-axes can be
obtained by replacing r with in the above equations (Figure 10.60).-r
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EXAMPLE 2 Circles Through the Origin

Center Polar
Radius (polar coordinates) equation

3 (3, 0)

2

1 2

1

Ellipses, Parabolas, and Hyperbolas

To find polar equations for ellipses, parabolas, and hyperbolas, we place one focus at the
origin and the corresponding directrix to the right of the origin along the vertical line

(Figure 10.61). This makes

and

The conic’s focus–directrix equation then becomes

which can be solved for r to obtain

r = esk - r cos ud ,

PF = e # PD

PD = k - FB = k - r cos u .

PF = r

x = k

r = -2 sin us -1, p>2d
r = -cos us -1>2, 0d>
r = 4 sin us2, p>2d
r = 6 cos u
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This equation represents an ellipse if a parabola if and a hyperbola if
That is, ellipses, parabolas, and hyperbolas all have the same basic equation ex-

pressed in terms of eccentricity and location of the directrix.

EXAMPLE 3 Polar Equations of Some Conics

 e = 2 : hyperbola  r =

2k
1 + 2 cos u

 e = 1 : parabola  r =

k
1 + cos u

 e =
1
2

 : ellipse  r =

k
2 + cos u

e 7 1.
e = 1,0 6 e 6 1,

Conic section

P

F B

r

r cos �

Focus at
origin

D

x
k

x � k

Directrix

FIGURE 10.61 If a conic section is put in
the position with its focus placed at the
origin and a directrix perpendicular to the
initial ray and right of the origin, we can
find its polar equation from the conic’s
focus–directrix equation. Polar Equation for a Conic with Eccentricity e

(2)

where is the vertical directrix.x = k 7 0

r =

ke
1 + e cos u

,
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You may see variations of Equation (2) from time to time, depending on the location
of the directrix. If the directrix is the line to the left of the origin (the origin is still
a focus), we replace Equation (2) by

The denominator now has a instead of a If the directrix is either of the lines
or the equations have sines in them instead of cosines, as shown in

Figure 10.62.
y = -k ,y = k

s + d .s - d

r =

ke
1 - e cos u

.

x = -k

10.8 Conic Sections in Polar Coordinates 735

EXAMPLE 4 Polar Equation of a Hyperbola

Find an equation for the hyperbola with eccentricity 3 2 and directrix 

Solution We use Equation (2) with and 

EXAMPLE 5 Finding a Directrix

Find the directrix of the parabola

r =

25
10 + 10 cos u

.

r =

2s3>2d
1 + s3>2dcos u

 or r =

6
2 + 3 cos u

.

e = 3>2:k = 2

x = 2.>

Focus at origin

Directrix x � k

r � ke
1 � e cos �

x
Focus at origin

Directrix x � –k

r � ke
1 � e cos �

x

Directrix y � k

r � ke
1 � e sin �

y

Focus at
origin

Directrix y � –k

r � ke
1 � e sin �

y
Focus at origin
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FIGURE 10.62 Equations for conic sections with
eccentricity but different locations of the
directrix. The graphs here show a parabola, so e = 1.

e 7 0,
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Notice that when Equation (3) becomes which represents a circle.
Equation (3) is the starting point for calculating planetary orbits.

EXAMPLE 6 The Planet Pluto’s Orbit

Find a polar equation for an ellipse with semimajor axis 39.44 AU (astronomical units)
and eccentricity 0.25. This is the approximate size of Pluto’s orbit around the sun.

Solution We use Equation (3) with and to find

At its point of closest approach (perihelion) where , Pluto is

from the sun. At its most distant point (aphelion) where , Pluto is

from the sun (Figure 10.64).

r =

147.9
4 - 1

= 49.3 AU

u = p

r =

147.9
4 + 1

= 29.58 AU

u = 0

r =

39.44s1 - s0.25d2d
1 + 0.25 cos u

=

147.9
4 + cos u

 .

e = 0.25a = 39.44

r = a ,e = 0,

Solution We divide the numerator and denominator by 10 to put the equation in stan-
dard form:

This is the equation

with and The equation of the directrix is  

From the ellipse diagram in Figure 10.63, we see that k is related to the eccentricity e
and the semimajor axis a by the equation

From this, we find that Replacing ke in Equation (2) by gives
the standard polar equation for an ellipse.

as1 - e2dke = as1 - e2d .

k =

a
e - ea .

x = 5>2.e = 1.k = 5>2
r =

ke
1 + e cos u

r =

5>2
1 + cos u

 .
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FIGURE 10.63 In an ellipse with
semimajor axis a, the focus–directrix
distance is so
ke = as1 - e2d .

k = sa>ed - ea ,

Aphelion
position
(49.3 AU
from sun)

Perihelion
position
(29.58 AU
from sun)

Pluto

Sun

�

a � 39.44

FIGURE 10.64 The orbit of Pluto
(Example 6).

Polar Equation for the Ellipse with Eccentricity e and Semimajor Axis a

(3)r =

as1 - e2d
1 + e cos u
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