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Areas and Lengths in Polar Coordinates

This section shows how to calculate areas of plane regions, lengths of curves, and areas of
surfaces of revolution in polar coordinates.

Area in the Plane

The region OTS in Figure 10.48 is bounded by the rays and and the curve
We approximate the region with n nonoverlapping fan-shaped circular sectors

based on a partition P of angle TOS. The typical sector has radius and central
angle of radian measure Its area is times the area of a circle of radius or

The area of region OTS is approximately
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If ƒ is continuous, we expect the approximations to improve as the norm of the partition
and we are led to the following formula for the region’s area:
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Area of the Fan-Shaped Region Between the Origin and the Curve

This is the integral of the area differential (Figure 10.49)
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FIGURE 10.48 To derive a formula for
the area of region OTS, we approximate the
region with fan-shaped circular sectors.

EXAMPLE 1 Finding Area

Find the area of the region in the plane enclosed by the cardioid 

Solution We graph the cardioid (Figure 10.50) and determine that the radius OP
sweeps out the region exactly once as runs from 0 to The area is therefore

EXAMPLE 2 Finding Area

Find the area inside the smaller loop of the limaçon

Solution After sketching the curve (Figure 10.51), we see that the smaller loop is
traced out by the point as increases from to Since the curve
is symmetric about the x-axis (the equation is unaltered when we replace by ), we may
calculate the area of the shaded half of the inner loop by integrating from to

The area we seek will be twice the resulting integral:
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FIGURE 10.50 The cardioid in
Example 1.
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FIGURE 10.49 The area differential dA
for the curve n = ƒ(u).
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Since

we have

To find the area of a region like the one in Figure 10.52, which lies between two polar
curves and from to we subtract the integral of

from the integral of This leads to the following formula.s1>2dr2
2 du .s1>2dr1
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u = b ,u = ar2 = r2sudr1 = r1sud
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FIGURE 10.51 The limaçon in Example 2.
Limaçon (pronounced LEE-ma-sahn) is an
old French word for snail.
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FIGURE 10.52 The area of the shaded
region is calculated by subtracting the area
of the region between and the origin
from the area of the region between and
the origin.
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FIGURE 10.53 The region and limits of
integration in Example 3.

EXAMPLE 3 Finding Area Between Polar Curves

Find the area of the region that lies inside the circle and outside the cardioid

Solution We sketch the region to determine its boundaries and find the limits of inte-
gration (Figure 10.53). The outer curve is the inner curve is and 
runs from to The area, from Equation (1), is
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Length of a Polar Curve

We can obtain a polar coordinate formula for the length of a curve 
by parametrizing the curve as

(2)

The parametric length formula, Equation (1) from Section 6.3, then gives the length as

This equation becomes

when Equations (2) are substituted for x and y (Exercise 33).
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EXAMPLE 4 Finding the Length of a Cardioid

Find the length of the cardioid 

Solution We sketch the cardioid to determine the limits of integration (Figure 10.54).
The point traces the curve once, counterclockwise as runs from 0 to so these
are the values we take for and 
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Length of a Polar Curve
If has a continuous first derivative for and if the point

traces the curve exactly once as runs from to then the
length of the curve is
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FIGURE 10.54 Calculating the length 
of a cardioid (Example 4).
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Area of a Surface of Revolution

To derive polar coordinate formulas for the area of a surface of revolution, we parametrize
the curve with Equations (2) and apply the surface area equations
for parametrized curves in Section 6.5.
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EXAMPLE 5 Finding Surface Area

Find the area of the surface generated by revolving the right-hand loop of the lemniscate
about the y-axis.

Solution We sketch the loop to determine the limits of integration (Figure 10.55a). The
point traces the curve once, counterclockwise as runs from to so
these are the values we take for and 

We evaluate the area integrand in Equation (5) in stages. First,

(6)

Next, so

 ar 
dr
du
b2

= sin2 2u .

 r 
dr
du

= -sin 2u

 2r 
dr
du

= -2 sin 2u

r2
= cos 2u ,

2pr cos u Br2
+ adr

du
b2

= 2p cos u Br4
+ ar 

dr
du
b2

.

b .a

p>4,-p>4uPsr, ud

r2
= cos 2u

sin 
u

2
Ú 0 for 0 … u … 2p

Area of a Surface of Revolution of a Polar Curve
If has a continuous first derivative for and if the point

traces the curve exactly once as runs from to then the
areas of the surfaces generated by revolving the curve about the x- and y-axes are
given by the following formulas:

1. Revolution about the x-axis 

(4)

2. Revolution about the y-axis 
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FIGURE 10.55 The right-hand half of a
lemniscate (a) is revolved about the y-axis
to generate a surface (b), whose area is
calculated in Example 5.
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Finally, so the square root on the right-hand side of Equation (6)
simplifies to

All together, we have

Equation (5)
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