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Taylor and Maclaurin Series

This section shows how functions that are infinitely differentiable generate power series
called Taylor series. In many cases, these series can provide useful polynomial approxima-
tions of the generating functions.

Series Representations

We know from Theorem 19 that within its interval of convergence the sum of a power
series is a continuous function with derivatives of all orders. But what about the other way
around? If a function ƒ(x) has derivatives of all orders on an interval I, can it be expressed
as a power series on I? And if it can, what will its coefficients be?

We can answer the last question readily if we assume that ƒ(x) is the sum of a power
series

with a positive radius of convergence. By repeated term-by-term differentiation within the
interval of convergence I we obtain

 ƒ‡sxd = 1 # 2 # 3a3 + 2 # 3 # 4a4sx - ad + 3 # 4 # 5a5sx - ad2
+

Á ,

 ƒ–sxd = 1 # 2a2 + 2 # 3a3sx - ad + 3 # 4a4sx - ad2
+

Á

 ƒ¿sxd = a1 + 2a2sx - ad + 3a3sx - ad2
+

Á
+ nansx - adn - 1

+
Á

 = a0 + a1sx - ad + a2sx - ad2
+

Á
+ ansx - adn

+
Á

 ƒsxd = a
q

n = 0
ansx - adn

11.8
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806 Chapter 11: Infinite Sequences and Series

with the nth derivative, for all n, being

Since these equations all hold at we have

and, in general,

These formulas reveal a pattern in the coefficients of any power series 
that converges to the values of ƒ on I (“represents ƒ on I”). If there is such a series (still an
open question), then there is only one such series and its nth coefficient is

If ƒ has a series representation, then the series must be

(1)

But if we start with an arbitrary function ƒ that is infinitely differentiable on an interval I
centered at and use it to generate the series in Equation (1), will the series then con-
verge to ƒ(x) at each x in the interior of I? The answer is maybe—for some functions it will
but for other functions it will not, as we will see.

Taylor and Maclaurin Series

x = a

 +
Á

+

ƒsndsad
n!

 sx - adn
+

Á .

 ƒsxd = ƒsad + ƒ¿sadsx - ad +

ƒ–sad
2!

 sx - ad2

an =

ƒsndsad
n!

.

gq

n=0 ansx - adn

ƒsndsad = n!an .

ƒ¿sad = a1,

ƒ–sad = 1 # 2a2,

ƒ‡sad = 1 # 2 # 3a3,

x = a ,

f sndsxd = n!an + a sum of terms with sx - ad as a factor .

DEFINITIONS Taylor Series, Maclaurin Series
Let ƒ be a function with derivatives of all orders throughout some interval con-
taining a as an interior point. Then the Taylor series generated by ƒ at is

The Maclaurin series generated by ƒ is

the Taylor series generated by ƒ at x = 0.

a
q

k = 0
 
ƒskds0d

k!
 xk

= ƒs0d + ƒ¿s0dx +

ƒ–s0d
2!

 x2
+

Á
+

ƒsnds0d
n!

 xn
+

Á ,

 +
Á

+

ƒsndsad
n!

 sx - adn
+

Á .

 a
q

k = 0
 
ƒskdsad

k!
 sx - adk

= ƒsad + ƒ¿sadsx - ad +

ƒ–sad
2!

 sx - ad2

x = a

HISTORICAL BIOGRAPHIES

Brook Taylor
(1685–1731)

Colin Maclaurin
(1698–1746)

The Maclaurin series generated by ƒ is often just called the Taylor series of ƒ.
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11.8 Taylor and Maclaurin Series 807

EXAMPLE 1 Finding a Taylor Series

Find the Taylor series generated by at Where, if anywhere, does the
series converge to 1 x?

Solution We need to find Taking derivatives we get

The Taylor series is

This is a geometric series with first term 1 2 and ratio It converges ab-
solutely for and its sum is

In this example the Taylor series generated by at converges to 1 x for
or 

Taylor Polynomials

The linearization of a differentiable function ƒ at a point a is the polynomial of degree one
given by

In Section 3.8 we used this linearization to approximate ƒ(x) at values of x near a. If ƒ has
derivatives of higher order at a, then it has higher-order polynomial approximations as
well, one for each available derivative. These polynomials are called the Taylor polyno-
mials of ƒ.

P1sxd = ƒsad + ƒ¿sadsx - ad .

0 6 x 6 4.ƒ x - 2 ƒ 6 2
>a = 2ƒsxd = 1>x

1>2
1 + sx - 2d>2 =

1
2 + sx - 2d

=
1
x .

ƒ x - 2 ƒ 6 2
r = -sx - 2d>2.>

 =
1
2

-

sx - 2d
22 +

sx - 2d2

23 -
Á

+ s -1dn 
sx - 2dn

2n + 1 +
Á .

 ƒs2d + ƒ¿s2dsx - 2d +

ƒ–s2d
2!

 sx - 2d2
+

Á
+

ƒsnds2d
n!

 sx - 2dn
+

Á

 ƒsndsxd = s -1dnn!x-sn + 1d,   
ƒsnds2d

n!
=

s -1dn

2n + 1 .

 o   o

 ƒ‡sxd = -3!x-4,   
ƒ‡s2d

3!
= -

1
24 ,

 ƒ–sxd = 2!x-3,   
ƒ–s2d

2!
= 2-3

=
1
23 ,

 ƒ¿sxd = -x-2,   ƒ¿s2d = -
1
22 ,

 ƒsxd = x-1,   ƒs2d = 2-1
=

1
2

,

ƒs2d, ƒ¿s2d, ƒ–s2d, Á .

> a = 2.ƒsxd = 1>x
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We speak of a Taylor polynomial of order n rather than degree n because may
be zero. The first two Taylor polynomials of at for example, are

and The first-order Taylor polynomial has degree zero, not one.
Just as the linearization of ƒ at provides the best linear approximation of ƒ in

the neighborhood of a, the higher-order Taylor polynomials provide the best polynomial
approximations of their respective degrees. (See Exercise 32.)

EXAMPLE 2 Finding Taylor Polynomials for 

Find the Taylor series and the Taylor polynomials generated by at 

Solution Since

we have

The Taylor series generated by ƒ at is

This is also the Maclaurin series for In Section 11.9 we will see that the series con-
verges to at every x.

The Taylor polynomial of order n at is

See Figure 11.12.

EXAMPLE 3 Finding Taylor Polynomials for cos x

Find the Taylor series and Taylor polynomials generated by at x = 0.ƒsxd = cos x

Pnsxd = 1 + x +

x2

2
+

Á
+

xn

n!
 .

x = 0
ex

ex .

 = a
q

k = 0
 
xk

k!
.

 = 1 + x +

x2

2
+

Á
+

xn

n!
+

Á

 ƒs0d + ƒ¿s0dx +

ƒ–s0d
2!

 x2
+

Á
+

ƒsnds0d
n!

 xn
+

Á

x = 0

ƒs0d = e0
= 1, ƒ¿s0d = 1, Á , ƒsnds0d = 1, . Á

ƒsxd = ex, ƒ¿sxd = ex, Á , ƒsndsxd = ex, Á ,

x = 0.ƒsxd = ex

ex

x = a
P1sxd = 1.P0sxd = 1

x = 0,ƒsxd = cos x
ƒsndsad
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DEFINITION Taylor Polynomial of Order n
Let ƒ be a function with derivatives of order k for in some inter-
val containing a as an interior point. Then for any integer n from 0 through N, the
Taylor polynomial of order n generated by ƒ at is the polynomial

 +

ƒskdsad
k!

 sx - adk
+

Á
+

ƒsndsad
n!

 sx - adn .

 Pnsxd = ƒsad + ƒ¿sadsx - ad +

ƒ–sad
2!

 sx - ad2
+

Á

x = a

k = 1, 2, Á , N
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FIGURE 11.12 The graph of 
and its Taylor polynomials

Notice the very close agreement near the
center (Example 2).x = 0

 P3sxd = 1 + x + sx2>2!d + sx3>3!d .

 P2sxd = 1 + x + sx2>2!d
 P1sxd = 1 + x

ƒsxd = ex
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11.8 Taylor and Maclaurin Serie 809

Solution The cosine and its derivatives are

At the cosines are 1 and the sines are 0, so

The Taylor series generated by ƒ at 0 is

This is also the Maclaurin series for cos x. In Section 11.9, we will see that the series con-
verges to cos x at every x.

Because the Taylor polynomials of orders 2n and are identical:

Figure 11.13 shows how well these polynomials approximate near 
Only the right-hand portions of the graphs are given because the graphs are symmetric
about the y-axis.

x = 0.ƒsxd = cos x

P2nsxd = P2n + 1sxd = 1 -

x2

2!
+

x4

4!
-

Á
+ s -1dn 

x2n

s2nd!
.

2n + 1ƒs2n + 1ds0d = 0,

= a
q

k = 0
 
s -1dkx2k

s2kd!
.

= 1 + 0 # x -

x2

2!
+ 0 # x3

+

x4

4!
+

Á
+ s -1dn 

x2n

s2nd!
+

Á

 ƒs0d + ƒ¿s0dx +

ƒ–s0d
2!

 x2
+

ƒ‡s0d
3!

 x3
+

Á
+

ƒsnds0d
n!

 xn
+

Á

ƒs2nds0d = s -1dn, ƒs2n + 1ds0d = 0.

x = 0,

sin x . ƒs2n + 1dsxd = s -1dn + 1 cos x, ƒs2ndsxd = s -1dn 

o  o

sin x, ƒs3dsxd = -cos x, ƒ–sxd = -sin x, ƒ¿sxd = cos x, ƒsxd = 

0 1

1
y � cos x

2

–1
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P0
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FIGURE 11.13 The polynomials

converge to cos x as We can deduce the behavior of cos x
arbitrarily far away solely from knowing the values of the cosine
and its derivatives at (Example 3).x = 0

n : q .

P2nsxd = a
n

k = 0
 
s -1dkx2k

s2kd!
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EXAMPLE 4 A Function ƒ Whose Taylor Series Converges at Every x but Con-
verges to ƒ(x) Only at 

It can be shown (though not easily) that

(Figure 11.14) has derivatives of all orders at and that for all n. This
means that the Taylor series generated by ƒ at is

The series converges for every x (its sum is 0) but converges to ƒ(x) only at   x = 0.

 = 0 + 0 +
Á

+ 0 +
Á .

 = 0 + 0 # x + 0 # x2
+

Á
+ 0 # xn

+
Á

 ƒs0d + ƒ¿s0dx +

ƒ–s0d
2!

 x2
+

Á
+

ƒsnds0d
n!

 xn
+

Á

x = 0
ƒsnds0d = 0x = 0

ƒsxd = e0, x = 0

e-1>x2

, x Z 0

x = 0
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0 1 2 3 4

1

–1–2–3–4

y �
 e–1/x2

,  x � 0

0 ,       x � 0

x

y

FIGURE 11.14 The graph of the continuous extension of
is so flat at the origin that all of its derivatives there

are zero (Example 4).
y = e-1>x2

Two questions still remain.

1. For what values of x can we normally expect a Taylor series to converge to its generat-
ing function?

2. How accurately do a function’s Taylor polynomials approximate the function on a
given interval?

The answers are provided by a theorem of Taylor in the next section.
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