
11.9 Convergence of Taylor Series; Error Estimates 819

EXERCISES 11.9

Taylor Series by Substitution
Use substitution (as in Example 4) to find the Taylor series at of
the functions in Exercises 1–6.

1. 2. 3.

4. 5. 6. cos Ax3>2>22 Bcos 2x + 1sin apx
2
b

5 sin s -xde-x>2e-5x

x = 0

More Taylor Series
Find Taylor series at for the functions in Exercises 7–18.

7. 8. 9.

10. 11. 12. x2 cos sx2dx cos pxsin x - x +

x3

3!

x2

2
- 1 + cos xx2 sin xxex

x = 0
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13. (Hint: )

14. 15. 16.

17. 18.

Error Estimates
19. For approximately what values of x can you replace sin x by

with an error of magnitude no greater than
Give reasons for your answer.

20. If cos x is replaced by and what estimate
can be made of the error? Does tend to be too large,
or too small? Give reasons for your answer.

21. How close is the approximation when For
which of these values of x is 

22. The estimate is used when x is small. Esti-
mate the error when 

23. The approximation is used when x is
small. Use the Remainder Estimation Theorem to estimate the
error when 

24. (Continuation of Exercise 23.) When the series for is an
alternating series. Use the Alternating Series Estimation Theorem
to estimate the error that results from replacing by

when Compare your estimate
with the one you obtained in Exercise 23.

25. Estimate the error in the approximation 
when (Hint: Use not )

26. When show that may be replaced by 
with an error of magnitude no greater than 0.6% of h. Use

27. For what positive values of x can you replace by x with
an error of magnitude no greater than 1% of the value of x?

28. You plan to estimate by evaluating the Maclaurin series for
at Use the Alternating Series Estimation Theorem

to determine how many terms of the series you would have to add
to be sure the estimate is good to two decimal places.

29. a. Use the Taylor series for sin x and the Alternating Series Esti-
mation Theorem to show that

b. Graph together with the functions
and for Comment on

the relationships among the graphs.

30. a. Use the Taylor series for cos x and the Alternating Series Esti-
mation Theorem to show that

(This is the inequality in Section 2.2, Exercise 52.)

1
2

-

x2

24
6

1 - cos x

x2 6

1
2

, x Z 0.

-5 … x … 5.y = 1y = 1 - sx2>6d
ƒsxd = ssin xd>x

1 -

x2

6
6

sin x
x 6 1, x Z 0.

x = 1.tan-1 x
p>4

ln s1 + xd
e0.01

= 1.01 .

1 + heh0 … h … 0.01 ,

R3 .R4 ,ƒ x ƒ 6 0.5 .
sinh x = x + sx3>3!d

-0.1 6 x 6 0.1 + x + sx2>2d
ex

exx 6 0,

ƒ x ƒ 6 0.1 .

ex
= 1 + x + sx2>2d

ƒ x ƒ 6 0.01 .
21 + x = 1 + sx>2d

x 6 sin x?
ƒ x ƒ 6 10-3 ?sin x = x

1 - sx2>2d
ƒ x ƒ 6 0.5 ,1 - sx2>2d

5 * 10-4 ?
x - sx3>6d

2
s1 - xd3

1
s1 - xd2

x ln s1 + 2xdx2

1 - 2x
sin2 x

cos2 x = s1 + cos 2xd>2.cos2 x b. Graph together with
and for 

Comment on the relationships among the graphs.

Finding and Identifying Maclaurin Series
Recall that the Maclaurin series is just another name for the Taylor
series at Each of the series in Exercises 31–34 is the value of
the Maclaurin series of a function ƒ(x) at some point. What function
and what point? What is the sum of the series?

31.

32.

33.

34.

35. Multiply the Maclaurin series for and sin x together to find the
first five nonzero terms of the Maclaurin series for 

36. Multiply the Maclaurin series for and cos x together to find the
first five nonzero terms of the Maclaurin series for 

37. Use the identity to obtain the Maclaurin
series for Then differentiate this series to obtain the
Maclaurin series for 2 sin x cos x. Check that this is the series for
sin 2x.

38. (Continuation of Exercise 37.) Use the identity 
to obtain a power series for 

Theory and Examples
39. Taylor’s Theorem and the Mean Value Theorem Explain how

the Mean Value Theorem (Section 4.2, Theorem 4) is a special
case of Taylor’s Theorem.

40. Linearizations at inflection points Show that if the graph of a
twice-differentiable function ƒ(x) has an inflection point at

then the linearization of ƒ at is also the quadratic
approximation of ƒ at This explains why tangent lines fit
so well at inflection points.

41. The (second) second derivative test Use the equation

to establish the following test.
Let ƒ have continuous first and second derivatives and sup-

pose that Then

a. ƒ has a local maximum at a if throughout an interval
whose interior contains a;

b. ƒ has a local minimum at a if throughout an interval
whose interior contains a.

ƒ– Ú 0

ƒ– … 0

ƒ¿sad = 0.

ƒsxd = ƒsad + ƒ¿sadsx - ad +

ƒ–sc2d
2

 sx - ad2

x = a .
x = ax = a ,

cos2 x .cos 2x + sin2 x
cos2 x =

sin2 x .
sin2 x = s1 - cos 2xd>2

ex cos x .
ex

ex sin x .
ex

p -

p2

2
+

p3

3
-

Á
+ s -1dk - 1 

pk

k
+

Á

p

3
-

p3

33 # 3
+

p5

35 # 5
-

Á
+

s -1dkp2k + 1

32k + 1s2k + 1d
+

Á

1 -

p2

42 # 2!
+

p4

44 # 4!
-

Á
+

s -1dkspd2k

42k # s2k!d
+

Á

s0.1d -

s0.1d3

3!
+

s0.1d5

5!
-

Á
+

s -1dks0.1d2k + 1

s2k + 1d!
+

Á

x = 0.

-9 … x … 9.y = 1>2y = s1>2d - sx2>24d
ƒsxd = s1 - cos xd>x2
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11.9 Convergence of Taylor Series; Error Estimates 821

42. A cubic approximation Use Taylor’s formula with and
to find the standard cubic approximation of 

at Give an upper bound for the magnitude of
the error in the approximation when 

43. a. Use Taylor’s formula with to find the quadratic approxi-
mation of at (k a constant).

b. If for approximately what values of x in the interval
[0, 1] will the error in the quadratic approximation be less
than 1 100?

44. Improving approximations to 

a. Let P be an approximation of accurate to n decimals. Show
that gives an approximation correct to 3n decimals.
(Hint: Let )

b. Try it with a calculator.

45. The Taylor series generated by is
A function defined by a power series 

with a radius of convergence has a Taylor series that con-
verges to the function at every point of Show this by
showing that the Taylor series generated by is
the series itself.

An immediate consequence of this is that series like

and

obtained by multiplying Taylor series by powers of x, as well as
series obtained by integration and differentiation of convergent
power series, are themselves the Taylor series generated by the
functions they represent.

46. Taylor series for even functions and odd functions (Continua-
tion of Section 11.7, Exercise 45.) Suppose that 
converges for all x in an open interval Show that

a. If ƒ is even, then i.e., the Taylor
series for ƒ at contains only even powers of x.

b. If ƒ is odd, then i.e., the Taylor
series for ƒ at contains only odd powers of x.

47. Taylor polynomials of periodic functions

a. Show that every continuous periodic function 
is bounded in magnitude by showing that

there exists a positive constant M such that for
all x.

b. Show that the graph of every Taylor polynomial of positive
degree generated by must eventually move away
from the graph of cos x as increases. You can see this in
Figure 11.13. The Taylor polynomials of sin x behave in a
similar way (Figure 11.15).

ƒ x ƒ

ƒsxd = cos x

ƒ ƒsxd ƒ … M

- q 6 x 6 q ,
ƒsxd,

x = 0
a0 = a2 = a4 =

Á
= 0,

x = 0
a1 = a3 = a5 =

Á
= 0,

s -c, cd .
ƒsxd = gq

n=0 an xn

x2ex
= x2

+ x3
+

x4

2!
+

x5

3!
+

Á ,

x sin x = x2
-

x4

3!
+

x6

5!
-

x8

7!
+

Á

gq

n=0 an xn
ƒsxd = gq

n=0 an xn
s -c, cd .

c 7 0
gq

n=0 an xngq

n=0 an xn
ƒsxd = gq

n=0 an xn

P = p + x .
P + sin P

p

P

>
k = 3,

x = 0ƒsxd = s1 + xdk
n = 2

ƒ x ƒ … 0.1 .
x = 0.1>s1 - xd

ƒsxd =n = 3
a = 0 48. a. Graph the curves and 

together with the line 

b. Use a Taylor series to explain what you see. What is

Euler’s Identity
49. Use Equation (6) to write the following powers of e in the form

a. b. c.

50. Use Equation (6) to show that

51. Establish the equations in Exercise 50 by combining the formal
Taylor series for and 

52. Show that

a. b.

53. By multiplying the Taylor series for and sin x, find the terms
through of the Taylor series for This series is the imag-
inary part of the series for

Use this fact to check your answer. For what values of x should
the series for converge?

54. When a and b are real, we define with the equation

Differentiate the right-hand side of this equation to show that

Thus the familiar rule holds for k complex as
well as real.

55. Use the definition of to show that for any real numbers 
and 

a. b.

56. Two complex numbers and are equal if and only if
and Use this fact to evaluate

from

where is a complex constant of integration.C = C1 + iC2

Le sa + ibdx dx =

a - ib

a2
+ b2 e sa + ibdx

+ C ,

Le ax cos bx dx and Le ax sin bx dx

b = d .a = c
c + ida + ib

e-iu
= 1>eiu .eiu1eiu2

= eisu1 +u2d,

u2 ,
u, u1 ,eiu

sd>dxde kx
= ke kx

d
dx

 e sa + ibdx
= sa + ibde sa + ibdx .

e sa + ibdx
= eax # eibx

= eaxscos bx + i sin bxd .

e sa + ibdx

ex sin x

ex # eix
= e s1 + idx .

ex sin x .x5
ex

sinh iu = i sin u .cosh iu = cos u ,

e-iu .eiu

cos u =

eiu
+ e-iu

2
 and sin u =

eiu
- e-iu

2i
.

e-ip>2eip>4e-ip

a + bi .

lim
x:0

 
x - tan-1 x

x3  ?

y = 1>3.
y = sx - tan-1 xd>x3y = s1>3d - sx2d>5

T

T
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COMPUTER EXPLORATIONS
Linear, Quadratic, and Cubic Approximations
Taylor’s formula with and gives the linearization of a
function at With and we obtain the standard
quadratic and cubic approximations. In these exercises we explore the
errors associated with these approximations. We seek answers to two
questions:

a. For what values of x can the function be replaced by each
approximation with an error less than 

b. What is the maximum error we could expect if we replace the
function by each approximation over the specified interval?

Using a CAS, perform the following steps to aid in answering
questions (a) and (b) for the functions and intervals in Exercises
57–62.

Step 1: Plot the function over the specified interval.

Step 2: Find the Taylor polynomials and at

Step 3: Calculate the derivative associated
with the remainder term for each Taylor polynomial. Plot the de-
rivative as a function of c over the specified interval and estimate
its maximum absolute value, M.

ƒsn + 1dscdsn + 1dst

x = 0.
P3sxdP1sxd, P2sxd ,

10-2 ?

n = 3n = 2x = 0.
a = 0n = 1

Step 4: Calculate the remainder for each polynomial. Us-
ing the estimate M from Step 3 in place of plot 
over the specified interval. Then estimate the values of x that
answer question (a).

Step 5: Compare your estimated error with the actual error
by plotting over the specified in-

terval. This will help answer question (b).

Step 6: Graph the function and its three Taylor approximations
together. Discuss the graphs in relation to the information discov-
ered in Steps 4 and 5.

57.

58.

59.

60.

61.

62. ƒsxd = ex>3 sin 2x, ƒ x ƒ … 2

ƒsxd = e-x cos 2x, ƒ x ƒ … 1

ƒsxd = scos xdssin 2xd, ƒ x ƒ … 2

ƒsxd =

x

x2
+ 1

, ƒ x ƒ … 2

ƒsxd = s1 + xd3>2, -

1
2

… x … 2

ƒsxd =

121 + x
, ƒ x ƒ …

3
4

EnsxdEnsxd = ƒ ƒsxd - Pnsxd ƒ

Rnsxdƒsn + 1dscd ,
Rnsxd
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