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1 18 Taylor and Maclaurin Series

This section shows how functions that are infinitely differentiable generate power series
called Taylor series. In many cases, these series can provide useful polynomial approxima-
tions of the generating functions.

Series Representations

We know from Theorem 19 that within its interval of convergence the sum of a power
series is a continuous function with derivatives of all orders. But what about the other way
around? If a function f(x) has derivatives of all orders on an interval /, can it be expressed
as a power series on /? And if it can, what will its coefficients be?

We can answer the last question readily if we assume that f(x) is the sum of a power
series

fx) zoan(x —a)

=ay+alx —a)+akx—a)P+ -+ ax —a) +---

with a positive radius of convergence. By repeated term-by-term differentiation within the
interval of convergence / we obtain

F'(x) = a1 + 2a5(x — a) + 3az(x — a)® + - + nay(x — a)"" '+ -
f/(x) = 1-2a, + 2+3a3(x — a) + 3-4as(x — a)* + -
F"(x) = 1+2+3a3 + 2-3-4ay(x — a) + 3-4-5as(x — a)* + -+,
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with the nth derivative, for all n, being
7"(x) = nla, + a sum of terms with (x — ) as a factor.
Since these equations all hold at x = a, we have
f'(a) = a,
@)= 1:2a,
f"(a) = 1:2+3a,
and, in general,
f(”)(a) = nla,.

These formulas reveal a pattern in the coefficients of any power series Ezozo a(x — a)"
that converges to the values of f on I (“represents f on /7). If there is such a series (still an
open question), then there is only one such series and its nth coefficient is

f"(a)

n!

a, =

If f has a series representation, then the series must be

f"(a)
21

(x —a)

f&x) = fla) + fa)(x — a) +

L M@
n!

(x —a)" +--. (1)

But if we start with an arbitrary function f that is infinitely differentiable on an interval /
centered at x = a and use it to generate the series in Equation (1), will the series then con-
verge to f(x) at each x in the interior of /? The answer is maybe—for some functions it will
but for other functions it will not, as we will see.

Taylor and Maclaurin Series

Brook Taylor
(1685-1731)

Colin Maclaurin
(1698-1746)

DEFINITIONS Taylor Series, Maclaurin Series

Let f be a function with derivatives of all orders throughout some interval con-
taining a as an interior point. Then the Taylor series generated by f atx = a is

ST 0 = g+ e -+ L0 oy
(n)
+ ot fnfa)(x —a)" +
The Maclaurin series generated by f is
(k) " (n)
Ef()k_ 1o, +m+fn§0)x,1 )

the Taylor series generated by f atx = 0.

The Maclaurin series generated by f is often just called the Taylor series of f.
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EXAMPLE 1  Finding a Taylor Series

Find the Taylor series generated by f(x) = 1/x at a = 2. Where, if anywhere, does the
series converge to 1/x?

Solution ~ We need to find f(2), f'(2), f"(2),.... Taking derivatives we get

f(x) = x7L, f2)=2"= %
fix) = =72, ﬂﬂz‘é’
() =217, f”z(!Z) -2 =5
F7) = =3, f,;(yz) -

f(n)(x) - (_1)nn!x_("+1)’ f(n)(z) B (—1)"

nl  ogntl
The Taylor series is
, f(2) ") ]
f2)+ f[(2)(x —2) + o1 (x =2+ + pr (x—2)"+ -

1 =2 -2y L =2y

_E_ 22 + 23 _...+(_1) 2n+l + ...
This is a geometric series with first term 1/2 and ratio » = —(x — 2)/2. It converges ab-
solutely for |x — 2| < 2 and its sum is

1/2 1 1

1+ (x-2)/2 2+ (@x-2) *

In this example the Taylor series generated by f(x) = 1/x at ¢ = 2 converges to 1/x for
[x — 2| <20r0 <x < 4. |

Taylor Polynomials
The linearization of a differentiable function f at a point a is the polynomial of degree one
given by

Pi(x) = fla) + f(a)x — a).

In Section 3.8 we used this linearization to approximate f(x) at values of x near a. If f has
derivatives of higher order at a, then it has higher-order polynomial approximations as
well, one for each available derivative. These polynomials are called the Taylor polyno-
mials of f.
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FIGURE 11.12 The graph of f(x) = e*
and its Taylor polynomials
Pi(x)=1+x

Px)=1+x+ (x2/2!)

Py(x) =1 + x + (x2/2!) + (x%/3").
Notice the very close agreement near the
center x = 0 (Example 2).

Video
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DEFINITION Taylor Polynomial of Order n

Let f be a function with derivatives of order k for k = 1, 2,..., N in some inter-
val containing « as an interior point. Then for any integer » from 0 through N, the
Taylor polynomial of order n generated by f at x = a is the polynomial

P = 1@ + f@ - @) + 5 =
(k) ()
+ ! k(!a) (x —a)f+ -+ / n(!a) (x —a)".

We speak of a Taylor polynomial of order n rather than degree n because f"(a) may
be zero. The first two Taylor polynomials of f(x) = cosx at x = 0, for example, are
Po(x) = 1 and Pi(x) = 1. The first-order Taylor polynomial has degree zero, not one.

Just as the linearization of f at x = a provides the best linear approximation of f in
the neighborhood of a, the higher-order Taylor polynomials provide the best polynomial
approximations of their respective degrees. (See Exercise 32.)

EXAMPLE 2
Find the Taylor series and the Taylor polynomials generated by f(x) = e*atx = 0.

Finding Taylor Polynomials for e*

Solution Since
fx) = €, f'(x) = €, cees fP(x) = e, e
we have
) =€ =1, f(0)=1, 70 =1,
The Taylor series generated by f at x = 0 is
f(O) + f"(0)x + fﬂz(!O) X2+t f('“(o)xn

n!

Il
+
=
4
‘R
o
+
+
+

k

ok
=2

This is also the Maclaurin series for e*. In Section 11.9 we will see that the series con-
verges to e at every x.
The Taylor polynomial of order n at x = 0 is
n

2
_ XL X
P,,(x)—1+x+2+ +n!.

See Figure 11.12. ™

EXAMPLE 3

Find the Taylor series and Taylor polynomials generated by f(x) = cosxatx = 0.

Finding Taylor Polynomials for cos x
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Solution The cosine and its derivatives are
flx) = COS X, f'ix) = —sinx,

f'(x) = —CoS X, f(3)(x) = sin x,

Fo0) = (=1 cosx,  f@H0) = (=1 inx,
At x = 0, the cosines are 1 and the sines are 0, so
F20) = (=1, fe0) = o.
The Taylor series generated by f at 0 is
f”(0) 24 f"(0) [ f(”)(O)

£(0) + (0} + 5 -
=1+Ox—?+0x +m+ +(_1)n(22’;'
B 00 (_l)kx2k
=]

This is also the Maclaurin series for cos x. In Section 11.9, we will see that the series con-
verges to cos x at every x.
Because f(z"“)(O) = 0, the Taylor polynomials of orders 2n and 2n + 1 are identical:

2n
(2 )"

Figure 11.13 shows how well these polynomials approximate f(x) = cosx near x = 0.
Only the right-hand portions of the graphs are given because the graphs are symmetric
about the y-axis. [

2 4
Poy(x) = Pyyilx) =1 — % + )‘CT, (=)'

P

Po

—_

) o
IaN=s

RN

(=]

—_

FIGURE 11.13 The polynomials

n (_l)kx2k

P2n(x) = ];) (Zk)'

converge to cos x as n — 00 . We can deduce the behavior of cos x
arbitrarily far away solely from knowing the values of the cosine
and its derivatives at x = 0 (Example 3).
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EXAMPLE 4 A Function f Whose Taylor Series Converges at Every x but Con-
verges to f(x) Only at x = 0

It can be shown (though not easily) that

0,
f(x) = {el/xz,

(Figure 11.14) has derivatives of all orders at x = 0 and that f"(0) = 0 for all n. This
means that the Taylor series generated by f at x = 0 is

, £"(0) O
£(0) + f1(0)x + e X

x=20
x#0

=0+ 0 x+0x>+ - +0x" 4
=0+0+ - +0+-.

The series converges for every x (its sum is 0) but converges to f(x) only at x = 0. ]
X 0 x=0
- 7T e x £ 0
| | | | | | | | x
-4 -3 2 -1 0 1 2 3 4

FIGURE 11.14 The graph of the continuous extension of
y=eV " is so flat at the origin that all of its derivatives there
are zero (Example 4).

Two questions still remain.

1. For what values of x can we normally expect a Taylor series to converge to its generat-
ing function?

2. How accurately do a function’s Taylor polynomials approximate the function on a
given interval?

The answers are provided by a theorem of Taylor in the next section.

Copyright © 2005 Pearson Education, Inc., publishing as Pearson Addison-Wesley


http://media.pearsoncmg.com/aw/aw_mml_shared_1/copyright.html

	copyright: 
	bio3_3: 
	bio3_4: 
	anim3_6: 
	vid4_4: 
	anim5_3: 
	anim5_5: 
	anim6_1: 


