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Chapter 16 Practice Exercises

Evaluating Line Integrals
1. The accompanying figure shows two polygonal paths in space

joining the origin to the point (1, 1, 1). Integrate 
over each path.

2. The accompanying figure shows three polygonal paths joining the
origin to the point (1, 1, 1). Integrate 
over each path.

3. Integrate over the circle

rstd = sa cos tdj + sa sin tdk,  0 … t … 2p.
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4. Integrate over the involute curve

Evaluate the integrals in Exercises 5 and 6.

5.

6.

7. Integrate around the
circle cut from the sphere by the plane

clockwise as viewed from above.

8. Integrate around the circle cut
from the sphere by the plane 

Evaluate the integrals in Exercises 9 and 10.

9.

C is the square cut from the first quadrant by the lines 
and 

10.

C is the circle 

Evaluating Surface Integrals
11. Area of an elliptical region Find the area of the elliptical

region cut from the plane by the cylinder

12. Area of a parabolic cap Find the area of the cap cut from the
paraboloid by the plane 

13. Area of a spherical cap Find the area of the cap cut from the
top of the sphere by the plane z = 22>2.x2
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rstd = scos t + t sin tdi + ssin t - t cos tdj,  0 … t … 23.

ƒsx, y, zd = 2x2
+ y2
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14. a. Hemisphere cut by cylinder Find the area of the surface
cut from the hemisphere by the
cylinder 

b. Find the area of the portion of the cylinder that lies inside the
hemisphere. (Hint: Project onto the xz-plane. Or evaluate the
integral where h is the altitude of the cylinder and ds
is the element of arc length on the circle in the
xy-plane.)

15. Area of a triangle Find the area of the triangle in which the
plane intersects the
first octant. Check your answer with an appropriate vector calcula-
tion.

16. Parabolic cylinder cut by planes Integrate

a. b.

over the surface cut from the parabolic cylinder by
the planes and 

17. Circular cylinder cut by planes Integrate 
over the portion of the cylinder that

lies in the first octant between the planes and and
above the plane 

18. Area of Wyoming The state of Wyoming is bounded by the
meridians and west longitude and by the circles
41° and 45° north latitude. Assuming that Earth is a sphere of ra-
dius find the area of Wyoming.

Parametrized Surfaces
Find the parametrizations for the surfaces in Exercises 19–24. (There
are many ways to do these, so your answers may not be the same as
those in the back of the book.)

19. Spherical band The portion of the sphere 
between the planes and 

20. Parabolic cap The portion of the paraboloid 
above the plane z = -2

-sx2
+ y2d>2z =
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x2

+ y2
+ z2

= 36

R = 3959 mi,

104°3¿111°3¿

z = 3.
x = 1x = 0

y2
+ z2

= 25x4ysy2
+ z2d

gsx, y, zd =
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21. Cone The cone 

22. Plane above square The portion of the plane 
that lies above the square in the first

quadrant

23. Portion of paraboloid The portion of the paraboloid 
that lies above the xy-plane

24. Portion of hemisphere The portion of the hemisphere 
in the first octant

25. Surface area Find the area of the surface

26. Surface integral Integrate over the
surface in Exercise 25.

27. Area of a helicoid Find the surface area of the helicoid

in the accompanying figure.

28. Surface integral Evaluate the integral 
where S is the helicoid in Exercise 27.

Conservative Fields
Which of the fields in Exercises 29–32 are conservative, and which
are not?

29.

30.

31.

32.

Find potential functions for the fields in Exercises 33 and 34.

33.

34.

Work and Circulation
In Exercises 35 and 36, find the work done by each field along the
paths from (0, 0, 0) to (1, 1, 1) in Exercise 1.

F = sz cos xzdi + eyj + sx cos xzdk
F = 2i + s2y + zdj + sy + 1dk

F = si + zj + ykd>sx + yzd
F = xeyi + yezj + zexk

F = sxi + yj + zkd>sx2
+ y2

+ z2d3>2
F = xi + yj + zk

4S 2x2
+ y2

+ 1 ds,
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rsr, ud = (r cos u)i + (r sin u)j + uk,  0 … u … 2p,  0 … r … 1,

ƒsx, y, zd = xy - z2

0 … y … 1.0 … u … 1,  
rsu, yd = su + ydi + su - ydj + yk, 

z2
= 10, y Ú 0,

x2
+ y2

+

y … 2,2sx2
+ z2d, 

y =

0 … x … 2, 0 … y … 212
4x + 2y + 4z =

z = 1 + 2x2
+ y2, z … 3
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35. 36.

37. Finding work in two ways Find the work done by

over the plane curve from the point
(1, 0) to the point in two ways:

a. By using the parametrization of the curve to evaluate the
work integral

b. By evaluating a potential function for F.

38. Flow along different paths Find the flow of the field 

a. Once around the ellipse C in which the plane 
intersects the cylinder clockwise as viewed
from the positive y-axis

b. Along the curved boundary of the helicoid in Exercise 27
from (1, 0, 0) to 

In Exercises 39 and 40, use the surface integral in Stokes’ Theorem to
find the circulation of the field F around the curve C in the indicated
direction.

39. Circulation around an ellipse

C: The ellipse in which the plane meets the
cylinder counterclockwise as viewed from above

40. Circulation around a circle

C: The circle in which the plane meets the sphere
counterclockwise as viewed from above

Mass and Moments
41. Wire with different densities Find the mass of a thin wire

lying along the curve 
if the density at t is (a) and (b)

42. Wire with variable density Find the center of mass of a thin wire
lying along the curve 
if the density at t is 

43. Wire with variable density Find the center of mass and the
moments of inertia and radii of gyration about the coordinate axes
of a thin wire lying along the curve

if the density at t is 

44. Center of mass of an arch A slender metal arch lies along the
semicircle in the xy-plane. The density at the point
(x, y) on the arch is Find the center of mass.

45. Wire with constant density A wire of constant density 
lies along the curve 

Find and Rz.z, Iz,ln 2.t …

0 …rstd = set cos tdi + set sin tdj + et k,
d = 1

dsx, yd = 2a - y.
y = 2a2

- x2

d = 1>st + 1d .

rstd = ti +

222
3

 t3>2j +

t2

2
 k,  0 … t … 2,

d = 325 + t .
rstd = ti + 2tj + s2>3dt3>2k, 0 … t … 2 ,

d = 1.d = 3t0 … t … 1,
rstd = 22ti + 22tj + s4 - t2dk,

x2
+ y2

+ z2
= 4,

z = -y

s4y2
- zdk

F = sx2
+ ydi + sx + ydj +

x2
+ y2

= 1,
2x + 6y - 3z = 6

F = y2i - yj + 3z2k

s1, 0, 2pd.

x2
+ z2

= 25,
x + y + z = 1

§sx2zeyd
F =

se2p, 0d
rstd = set cos tdi + set sin tdj

F =

xi + yj

sx2
+ y2d3>2

F = 2xyi + x2j + kF = 2xyi + j + x2k 46. Helical wire with constant density Find the mass and center of
mass of a wire of constant density that lies along the helix

47. Inertia, radius of gyration, center of mass of a shell Find
and the center of mass of a thin shell of density

cut from the upper portion of the sphere
by the plane 

48. Moment of inertia of a cube Find the moment of inertia
about the z-axis of the surface of the cube cut from the first
octant by the planes and if the density is

Flux Across a Plane Curve or Surface
Use Green’s Theorem to find the counterclockwise circulation and
outward flux for the fields and curves in Exercises 49 and 50.

49. Square

C: The square bounded by 

50. Triangle

C: The triangle made by the lines and 

51. Zero line integral Show that

for any closed curve C to which Green’s Theorem applies.

52. a. Outward flux and area Show that the outward flux of the
position vector field across any closed curve to
which Green’s Theorem applies is twice the area of the region
enclosed by the curve.

b. Let n be the outward unit normal vector to a closed curve
to which Green’s Theorem applies. Show that it is not
possible for to be orthogonal to n at every
point of C.

In Exercises 53–56, find the outward flux of F across the boundary
of D.

53. Cube

D: The cube cut from the first octant by the planes 

54. Spherical cap

D: The entire surface of the upper cap cut from the solid sphere
by the plane 

55. Spherical cap

D: The upper region cut from the solid sphere 
by the paraboloid 

56. Cone and cylinder

D: The region in the first octant bounded by the cone

the cylinder and the coordinate
planes
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= 1,z = 2x2
+ y2,
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+
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… 25
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z = 1
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F
C 

 ln x sin y dy -

cos y
x  dx = 0

x = 1y = 0, y = x ,

F = sy - 6x2di + sx + y2dj
x = 0, x = 1, y = 0, y = 1

F = s2xy + xdi + sxy - ydj
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z = 1x = 1, y = 1,
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dsx, y, zd = z
Iz, Rz,

rstd = s2 sin tdi + s2 cos tdj + 3tk, 0 … t … 2p.
d
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57. Hemisphere, cylinder, and plane Let S be the surface that is
bounded on the left by the hemisphere 
in the middle by the cylinder and on
the right by the plane Find the flux of 
outward across S.

58. Cylinder and planes Find the outward flux of the field
across the surface of the solid in the first

octant that is bounded by the cylinder and the
planes and z = 0.y = 2z, x = 0 ,

x2
+ 4y2

= 16
F = 3xz2i + yj - z3k

F = yi + zj + xky = a.
x2

+ z2
= a2, 0 … y … a,

x2
+ y2

+ z2
= a2, y … 0,

59. Cylindrical can Use the Divergence Theorem to find the flux
of outward through the surface of the
region enclosed by the cylinder and the planes

and 

60. Hemisphere Find the flux of upward across the
hemisphere (a) with the Divergence
Theorem and (b) by evaluating the flux integral directly.

x2
+ y2

+ z2
= a2, z Ú 0

F = s3z + 1dk
z = -1.z = 1

x2
+ y2

= 1
F = xy2i + x2yj + yk
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