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The Divergence Theorem and a Unified Theory

The divergence form of Green’s Theorem in the plane states that the net outward flux of a
vector field across a simple closed curve can be calculated by integrating the divergence of
the field over the region enclosed by the curve. The corresponding theorem in three
dimensions, called the Divergence Theorem, states that the net outward flux of a vector field
across a closed surface in space can be calculated by integrating the divergence of the field
over the region enclosed by the surface. In this section, we prove the Divergence Theorem
and show how it simplifies the calculation of flux. We also derive Gauss’s law for flux in an
electric field and the continuity equation of hydrodynamics. Finally, we unify the chapter’s
vector integral theorems into a single fundamental theorem.

Divergence in Three Dimensions

The divergence of a vector field is the scalar
function

(1)

The symbol “div F” is read as “divergence of F” or “div F.” The notation is read “del
dot F.”

Div F has the same physical interpretation in three dimensions that it does in two. If F
is the velocity field of a fluid flow, the value of div F at a point (x, y, z) is the rate at which
fluid is being piped in or drained away at (x, y, z). The divergence is the flux per unit volume
or flux density at the point.

EXAMPLE 1 Finding Divergence

Find the divergence of 

Solution The divergence of F is

§
# F =

0

0x s2xzd +

0

0y s -xyd +

0

0z s -zd = 2z - x - 1.

F = 2xzi - xyj - zk.

§
# F

div F = §
# F =

0M
0x +

0N
0y +

0P
0z .

F = Msx, y, zdi + Nsx, y, zdj + Psx, y, zdk
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Divergence Theorem

The Divergence Theorem says that under suitable conditions, the outward flux of a vector
field across a closed surface (oriented outward) equals the triple integral of the divergence
of the field over the region enclosed by the surface.

1212 Chapter 16: Integration in Vector Fields

THEOREM 7 Divergence Theorem
The flux of a vector field F across a closed oriented surface S in the direction of
the surface’s outward unit normal field n equals the integral of over the
region D enclosed by the surface:

(2)

Outward Divergence
flux integral

6
S

 F # n ds = 9
D

§
# F dV.

§
# F

EXAMPLE 2 Supporting the Divergence Theorem

Evaluate both sides of Equation (2) for the field over the sphere

Solution The outer unit normal to S, calculated from the gradient of 
is

Hence,

because on the surface. Therefore,

The divergence of F is

so

EXAMPLE 3 Finding Flux

Find the flux of outward through the surface of the cube cut from
the first octant by the planes and z = 1.x = 1, y = 1,

F = xyi + yzj + xzk

9
D

 
§

# F dV = 9
D

 
3 dV = 3 a4

3
 pa3b = 4pa3.

§
# F =

0

0x sxd +

0

0y s yd +

0

0z szd = 3,

6
S

 F # n ds = 6
S

 a ds = a6
S

 ds = as4pa2d = 4pa3.

x2
+ y2

+ z2
= a2

F # n ds =

x2
+ y2

+ z2

a  ds =

a2

a  ds = a ds

n =

2sxi + yj + zkd24sx2
+ y2

+ z2d
=

xi + yj + zk
a .

y2
+ z2

- a2,
ƒsx, y, zd = x2

+

x2
+ y2

+ z2
= a2.

F = xi + yj + zk
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Solution Instead of calculating the flux as a sum of six separate integrals, one for each
face of the cube, we can calculate the flux by integrating the divergence

over the cube’s interior:

Proof of the Divergence Theorem for Special Regions

To prove the Divergence Theorem, we assume that the components of F have continuous
first partial derivatives. We also assume that D is a convex region with no holes or bubbles,
such as a solid sphere, cube, or ellipsoid, and that S is a piecewise smooth surface. In
addition, we assume that any line perpendicular to the xy-plane at an interior point of the
region that is the projection of D on the xy-plane intersects the surface S in exactly two
points, producing surfaces

with We make similar assumptions about the projection of D onto the other
coordinate planes. See Figure 16.69.

The components of the unit normal vector are the cosines of
the angles and that n makes with i, j, and k (Figure 16.70). This is true because all
the vectors involved are unit vectors. We have

Thus,

and

In component form, the Divergence Theorem states that

6
S

 sM cos a + N cos b + P cos gd ds = 9
D

a0M
0x +

0N
0y +

0P
0z b  dx dy dz.

F # n = M cos a + N cos b + P cos g.

n = scos adi + scos b dj + scos gdk

 n3 = n # k = ƒ n ƒ ƒ k ƒ cos g = cos g

 n2 = n # j = ƒ n ƒ ƒ j ƒ cos b = cos b

 n1 = n # i = ƒ n ƒ ƒ i ƒ  cos a = cos a

ga, b,
n = n1i + n2j + n3k

ƒ1 … ƒ2.

 S2: z = ƒ2sx, yd, sx, yd in Rxy,

 S1: z = ƒ1sx, yd, sx, yd in Rxy

Rxy

 = L
1

0
 L

1

0
 L

1

0
 sx + y + zd dx dy dz =

3
2

.

 Flux = 6
Cube

surface

 F # n ds = 9
Cube

interior

 
§

# F dV

§
# F =

0

0x sxyd +
0

0y s yzd +
0

0z sxzd = y + z + x
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The Divergence
Theorem

Routine integration

y

z

x

D

Rxy

S2

S1

RyzRxz

FIGURE 16.69 We first prove the
Divergence Theorem for the kind of three-
dimensional region shown here. We then
extend the theorem to other regions.

y

z

x

n

k

j
i

n3

n2n1

�

�

�

(n1, n2, n3)

FIGURE 16.70 The scalar components of
the unit normal vector n are the cosines of
the angles and that it makes with i,
j, and k.

ga, b,
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We prove the theorem by proving the three following equalities:

(3)

(4)

(5)

Proof of Equation (5) We prove Equation (5) by converting the surface integral on the
left to a double integral over the projection of D on the xy-plane (Figure 16.71). The
surface S consists of an upper part whose equation is and a lower part 
whose equation is On the outer normal n has a positive k-component
and

See Figure 16.72. On the outer normal n has a negative k-component and

Therefore,

This proves Equation (5).

The proofs for Equations (3) and (4) follow the same pattern; or just permute
in order, and get those results from Equation (5).

Divergence Theorem for Other Regions

The Divergence Theorem can be extended to regions that can be partitioned into a finite
number of simple regions of the type just discussed and to regions that can be defined as
limits of simpler regions in certain ways. For example, suppose that D is the region
between two concentric spheres and that F has continuously differentiable components
throughout D and on the bounding surfaces. Split D by an equatorial plane and apply the

x, y, z; M, N, P; a, b, g,

 = 6
Rxy

 cL
ƒ2sx,yd

ƒ1sx,yd
 
0P
0z  dz d  dx dy = 9

D

 
0P
0z  dz dx dy.

 = 6
Rxy

 [Psx, y, ƒ2sx, ydd - Psx, y, ƒ1sx, ydd] dx dy

 = 6
Rxy

 Psx, y, ƒ2sx, ydd dx dy - 6
Rxy

 Psx, y, ƒ1sx, ydd dx dy

 6
S

 P cos g ds = 6
S2

P cos g ds + 6
S1

 P cos g ds

cos g ds = -dx dy.

S1,

cos g ds = dx dy because ds =

dA
ƒ cos g ƒ

=

dx dy
cos g.

S2,z = ƒ1sx, yd.
S1z = ƒ2sx, ydS2

Rxy

6
S

 P cos g ds = 9 

D

0P
0z  dx dy dz

6
S

 N cos b ds = 9 

D

0N
0y  dx dy dz

6
S

 M cos a ds = 9 

D

0M
0x  dx dy dz

1214 Chapter 16: Integration in Vector Fields

y

z

x

O n

d�

d�

n
D z � f2(x, y)

S2

S1

z � f1(x, y)

dA � dx dy

Rxy

FIGURE 16.71 The three-dimensional
region D enclosed by the surfaces and 
shown here projects vertically onto a two-
dimensional region in the xy-plane.Rxy

S2S1

dx
dy

n

k

n

k

Here � is acute, so
d� � dx dy/cos �.

Here � is obtuse, 
so d� � –dx dy/cos �.

�

�

FIGURE 16.72 An enlarged view of 
the area patches in Figure 16.71. The
relations are derived
in Section 16.5.

ds = ;dx dy>cos g
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Divergence Theorem to each half separately. The bottom half, is shown in Figure 16.73.
The surface that bounds consists of an outer hemisphere, a plane washer-shaped base,
and an inner hemisphere. The Divergence Theorem says that

(6)

The unit normal that points outward from points away from the origin along the
outer surface, equals k along the flat base, and points toward the origin along the inner sur-
face. Next apply the Divergence Theorem to and its surface (Figure 16.74):

(7)

As we follow over pointing outward from we see that equals along the
washer-shaped base in the xy-plane, points away from the origin on the outer sphere, and
points toward the origin on the inner sphere. When we add Equations (6) and (7), the inte-
grals over the flat base cancel because of the opposite signs of and We thus arrive at
the result

with D the region between the spheres, S the boundary of D consisting of two spheres, and
n the unit normal to S directed outward from D.

EXAMPLE 4 Finding Outward Flux

Find the net outward flux of the field

across the boundary of the region .

Solution The flux can be calculated by integrating over D. We have

and

Similarly,

Hence,

div F =

3
r3 -

3
r5 sx2

+ y2
+ z2d =

3
r3 -

3r2

r5 = 0

0N
0y =

1
r3 -

3y2

r5 and 0P
0z =

1
r3 -

3z2

r5 .

0M
0x =

0

0x sxr-3d = r-3
- 3xr-4 

0r

0x =
1
r3 -

3x2

r5 .

0r

0x =
1
2

 sx2
+ y2

+ z2d-1>2s2xd =

x
r

§
# F

D: 0 6 a2
… x2

+ y2
+ z2

… b2

F =

xi + yj + zk

r3 ,  r = 2x2
+ y2

+ z2

6
S

 F # n ds = 9
D

 § # F dV,

n2 .n1

-kn2D2 ,S2 ,n2

6
S2

 F # n2 ds2 = 9
D2

 § # F dV2 .

S2D2,

D1n1

6
S1

 F # n1 ds1 = 9
D1

 § # F dV1 .

D1S1

D1,
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z

x

y

k

O

n1D1

FIGURE 16.73 The lower half of the
solid region between two concentric
spheres.

z

x

y

D2

n2

–k

FIGURE 16.74 The upper half of the
solid region between two concentric
spheres.
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and

So the integral of over D is zero and the net outward flux across the boundary of
D is zero. There is more to learn from this example, though. The flux leaving D across the
inner sphere is the negative of the flux leaving D across the outer sphere (because
the sum of these fluxes is zero). Hence, the flux of F across in the direction away from
the origin equals the flux of F across in the direction away from the origin. Thus, the
flux of F across a sphere centered at the origin is independent of the radius of the sphere.
What is this flux?

To find it, we evaluate the flux integral directly. The outward unit normal on the
sphere of radius a is

Hence, on the sphere,

and

The outward flux of F across any sphere centered at the origin is   

Gauss’s Law: One of the Four Great Laws
of Electromagnetic Theory

There is still more to be learned from Example 4. In electromagnetic theory, the electric
field created by a point charge q located at the origin is

where is a physical constant, r is the position vector of the point (x, y, z), and
In the notation of Example 4,

The calculations in Example 4 show that the outward flux of E across any sphere
centered at the origin is but this result is not confined to spheres. The outward flux
of E across any closed surface S that encloses the origin (and to which the Divergence
Theorem applies) is also To see why, we have only to imagine a large sphere 
centered at the origin and enclosing the surface S. Since

§
# E = §

#
q

4pP0
 F =

q
4pP0

§
# F = 0

Saq>P0.

q>P0,

E =

q
4pP0

 F.

r = ƒ r ƒ = 2x2
+ y2

+ z2.
P0

Esx, y, zd =
1

4pP0
 

q

ƒ r ƒ
2 a r

ƒ r ƒ

b =

q
4pP0

 
r

ƒ r ƒ
3 =

q
4pP0

 
xi + yj + zk

r3 ,

4p.

6
Sa

 F # n ds =
1
a26

Sa

 ds =
1
a2 s4pa2d = 4p.

F # n =

xi + yj + zk

a3
#
xi + yj + zk

a =

x2
+ y2

+ z2

a4 =

a2

a4 =
1
a2

n =

xi + yj + zk2x2
+ y2

+ z2
=

xi + yj + zk
a .

Sb

Sa

SbSa

§
# F

9
D

 § # F dV = 0.
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when the integral of over the region D between S and is zero. Hence, by
the Divergence Theorem,

and the flux of E across S in the direction away from the origin must be the same as the
flux of E across in the direction away from the origin, which is This statement,
called Gauss’s Law, also applies to charge distributions that are more general than the one
assumed here, as you will see in nearly any physics text.

Continuity Equation of Hydrodynamics

Let D be a region in space bounded by a closed oriented surface S. If v(x, y, z) is the velocity
field of a fluid flowing smoothly through is the fluid’s density at (x, y, z)
at time t, and then the continuity equation of hydrodynamics states that

If the functions involved have continuous first partial derivatives, the equation evolves
naturally from the Divergence Theorem, as we now see.

First, the integral

is the rate at which mass leaves D across S (leaves because n is the outer normal). To see
why, consider a patch of area on the surface (Figure 16.75). In a short time interval 
the volume of fluid that flows across the patch is approximately equal to the volume of
a cylinder with base area and height where v is a velocity vector rooted at a
point of the patch:

The mass of this volume of fluid is about

so the rate at which mass is flowing out of D across the patch is about

This leads to the approximation

a¢m

¢t
L adv # n ¢s

¢m
¢t

L dv # n ¢s.

¢m L dv # n ¢s ¢t,

¢V L v # n ¢s ¢t.

sv¢td # n,¢s

¢V
¢t,¢s

6
S

 F # n ds

§
# F +

0d
0t = 0.

F = dv,
D, d = dst, x, y, zd

Gauss’s law: 6
S

 E # n ds =

q
P0

q>P0.Sa

6
Boundary

of D

 E # n ds = 0,

Sa§
# Er 7 0 ,
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n

S

h � (v ∆ t) . n
v ∆ t

��

FIGURE 16.75 The fluid that flows
upward through the patch in a short
time fills a “cylinder” whose volume is
approximately 
v # n ¢s ¢t.

base * height =

¢t
¢s
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as an estimate of the average rate at which mass flows across S. Finally, letting 
and gives the instantaneous rate at which mass leaves D across S as

which for our particular flow is

Now let B be a solid sphere centered at a point Q in the flow. The average value of
over B is

It is a consequence of the continuity of the divergence that actually takes on this
value at some point P in B. Thus,

(8)

The fraction on the right describes decrease in mass per unit volume.
Now let the radius of B approach zero while the center Q stays fixed. The left side of

Equation (8) converges to the right side to The equality of these two
limits is the continuity equation

The continuity equation “explains” The divergence of F at a point is the rate at
which the density of the fluid is decreasing there.

The Divergence Theorem

now says that the net decrease in density of the fluid in region D is accounted for by the
mass transported across the surface S. So, the theorem is a statement about conservation of
mass (Exercise 31).

Unifying the Integral Theorems

If we think of a two-dimensional field as a three-dimensional
field whose k-component is zero, then and the normal form
of Green’s Theorem can be written as

F
C 

 F # n ds = 6
R

 a0M
0x +

0N
0y b  dx dy = 6

R

 § # F dA.

§
# F = s0M>0xd + s0N>0yd

F = Msx, ydi + Nsx, ydj

6
S

 F # n ds = 9
D

 § # F dV

§
# F:

§
# F = -

0d
0t .

s -0d>0tdQ.s§
# FdQ,

 =

rate at which mass leaves B across its surface  S
volume of B

 s§
# FdP =

1
volume of B

 9
B

 § # F dV =

6
S

 F # n ds

volume of B

§
# F

1
volume of B

 9
B

 § # F dV.

§
# F

dm
dt

= 6
S

 F # n ds.

dm
dt

= 6
S

 dv # n ds,

¢t : 0
¢s: 0
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Similarly, so the tangential form of Green’s Theorem
can be written as

With the equations of Green’s Theorem now in del notation, we can see their relationships
to the equations in Stokes’ Theorem and the Divergence Theorem.

F
C 

 F # dr = 6
R

 a0N
0x -

0M
0y b  dx dy = 6

R

 § * F # k dA.

§ * F # k = s0N>0xd - s0M>0yd,
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Green’s Theorem and Its Generalization to Three Dimensions

Normal form of Green’s Theorem:

Divergence Theorem:

Tangential form of Green’s Theorem:

Stokes’Theorem: F
C 

 F # dr = 6
S

 § * F # n ds

F
C 

 F # dr = 6
R

 § * F # k dA

6
S

 F # n ds = 9
D

 § # F dV

F
C 

 F # n ds = 6
R

 § # F dA

Notice how Stokes’Theorem generalizes the tangential (curl) form of Green’s Theorem
from a flat surface in the plane to a surface in three-dimensional space. In each case, the
integral of the normal component of curl F over the interior of the surface equals the circu-
lation of F around the boundary.

Likewise, the Divergence Theorem generalizes the normal (flux) form of Green’s
Theorem from a two-dimensional region in the plane to a three-dimensional region in
space. In each case, the integral of over the interior of the region equals the total
flux of the field across the boundary.

There is still more to be learned here. All these results can be thought of as forms of a
single fundamental theorem. Think back to the Fundamental Theorem of Calculus in
Section 5.3. It says that if ƒ(x) is differentiable on (a, b) and continuous on [a, b], then

If we let throughout [a, b], then If we define the unit vector
field n normal to the boundary of [a, b] to be i at b and at a (Figure 16.76), then

The Fundamental Theorem now says that

Fsbd # n + Fsad # n = 3
[a,b] 

 § # F dx.

 = total outward flux of F across the boundary of [a, b].

 = Fsbd # n + Fsad # n

 ƒsbd - ƒsad = ƒsbdi # sid + ƒsadi # s - id

- i
sdƒ>dxd = §

# F.F = ƒsxdi

L
b

a
 
dƒ
dx

 dx = ƒsbd - ƒsad.

§
# F

x
a b

n � –i n � i

FIGURE 16.76 The outward unit normals
at the boundary of [a, b] in one-dimensional
space.
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The Fundamental Theorem of Calculus, the normal form of Green’s Theorem, and the Di-
vergence Theorem all say that the integral of the differential operator operating on a
field F over a region equals the sum of the normal field components over the boundary of
the region. (Here we are interpreting the line integral in Green’s Theorem and the surface
integral in the Divergence Theorem as “sums” over the boundary.)

Stokes’ Theorem and the tangential form of Green’s Theorem say that, when things
are properly oriented, the integral of the normal component of the curl operating on a field
equals the sum of the tangential field components on the boundary of the surface.

The beauty of these interpretations is the observance of a single unifying principle,
which we might state as follows.

§
#

1220 Chapter 16: Integration in Vector Fields

The integral of a differential operator acting on a field over a region equals the
sum of the field components appropriate to the operator over the boundary of the
region.
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