
16.7 Stokes’ Theorem 1201

Stokes’ Theorem

As we saw in Section 16.4, the circulation density or curl component of a two-dimensional
field at a point (x, y) is described by the scalar quantity 
In three dimensions, the circulation around a point P in a plane is described with a vector.
This vector is normal to the plane of the circulation (Figure 16.59) and points in the
direction that gives it a right-hand relation to the circulation line. The length of the vector
gives the rate of the fluid’s rotation, which usually varies as the circulation plane is tilted
about P. It turns out that the vector of greatest circulation in a flow with velocity field

is the curl vector

(1)

We get this information from Stokes’ Theorem, the generalization of the circulation-curl
form of Green’s Theorem to space.

Notice that is consistent with our definition in
Section 16.4 when The formula for curl F in Equation (1) is
often written using the symbolic operator

(2)§ = i 
0

0x + j 
0

0y + k 
0

0z .

F = Msx, ydi + Nsx, ydj.
scurl Fd # k = s0N>0x - 0M>0yd

curl F = a0P
0y -

0N
0z b i + a0M

0z -

0P
0x b j + a0N

0x -

0M
0y bk.

F = Mi + Nj + Pk

s0N>0x - 0M>0yd.F = Mi + Nj

16.7

P

Curl F

FIGURE 16.59 The circulation vector at
a point P in a plane in a three-dimensional
fluid flow. Notice its right-hand relation to
the circulation line.
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(The symbol is pronounced “del.”) The curl of F is 

 = curl F.

 = a0P
0y -

0N
0z b i + a0M

0z -
0P
0x bj + a0N

0x -
0M
0y bk

 § * F = 4 i j k

0

0x
0

0y
0

0z

M N P

4
§ * F :§
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(3)curl F = § * F

EXAMPLE 1 Finding Curl F

Find the curl of

Solution

As we will see, the operator has a number of other applications. For instance, when
applied to a scalar function ƒ(x, y, z), it gives the gradient of ƒ:

This may now be read as “del ƒ” as well as “grad ƒ.”

Stokes’ Theorem

Stokes’ Theorem says that, under conditions normally met in practice, the circulation of a
vector field around the boundary of an oriented surface in space in the direction counter-
clockwise with respect to the surface’s unit normal vector field n (Figure 16.60) equals the
integral of the normal component of the curl of the field over the surface.

§ƒ =

0ƒ
0x  i +

0ƒ
0y  j +

0ƒ
0z  k.

§

 = -4i - 2xj + k

 = s0 - 4di - s2x - 0dj + s0 + 1dk

 + a 0

0x s4zd -

0

0y sx2
- ydbk

 = a 0

0y sx2d -

0

0z s4zdb i - a 0

0x sx2d -

0

0z sx2
- ydb j

 = 4 i j k

0

0x
0

0y
0

0z

x2
- y 4z x2

4
 curl F = § * F

F = sx2
- ydi + 4zj + x2k.

Equation (3)

nS

C

FIGURE 16.60 The orientation of the
bounding curve C gives it a right-handed
relation to the normal field n.
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Notice from Equation (4) that if two different oriented surfaces and have the
same boundary C, their curl integrals are equal:

Both curl integrals equal the counterclockwise circulation integral on the left side of
Equation (4) as long as the unit normal vectors and correctly orient the surfaces.

Naturally, we need some mathematical restrictions on F, C, and S to ensure the existence
of the integrals in Stokes’ equation. The usual restrictions are that all functions, vector fields,
and their derivatives be continuous.

If C is a curve in the xy-plane, oriented counterclockwise, and R is the region in the
xy-plane bounded by C, then and

Under these conditions, Stokes’ equation becomes

which is the circulation-curl form of the equation in Green’s Theorem. Conversely, by
reversing these steps we can rewrite the circulation-curl form of Green’s Theorem for
two-dimensional fields in del notation as

(5)

See Figure 16.61.

EXAMPLE 2 Verifying Stokes’ Equation for a Hemisphere

Evaluate Equation (4) for the hemisphere its bounding circle
and the field F = yi - xj.C: x2

+ y2
= 9, z = 0,

S: x2
+ y2

+ z2
= 9, z Ú 0,

F
C 

 F # dr = 6
R

 § * F # k dA.

F
C 

 F # dr = 6
R

 a0N
0x -

0M
0y b  dx dy,

s§ * Fd # n = s§ * Fd # k = a0N
0x -

0M
0y b .

ds = dx dy

n2n1

6
S1

 § * F # n1 ds = 6
S2

 § * F # n2 ds.

S2S1
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THEOREM 5 Stokes’ Theorem
The circulation of a vector field around the boundary C of
an oriented surface S in the direction counterclockwise with respect to the sur-
face’s unit normal vector n equals the integral of over S.

(4)

Counterclockwise Curl integral
circulation

F
C 

 F # dr = 6
S

 § * F # n ds

§ * F # n

F = Mi + Nj + Pk

Circulation

Curl

Curl

k

n

S

R

Circulation

Green:

Stokes:

FIGURE 16.61 Comparison of Green’s
Theorem and Stokes’ Theorem.
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Solution We calculate the counterclockwise circulation around C (as viewed from
above) using the parametrization 

For the curl integral of F, we have

and

The circulation around the circle equals the integral of the curl over the hemisphere, as it
should.

EXAMPLE 3 Finding Circulation

Find the circulation of the field around the curve C in which 

the plane meets the cone counterclockwise as viewed from above
(Figure 16.62).

Solution Stokes’Theorem enables us to find the circulation by integrating over the surface
of the cone. Traversing C in the counterclockwise direction viewed from above corresponds
to taking the inner normal n to the cone, the normal with a positive z-component.

We parametrize the cone as

We then have

 =
122

 Q-scos udi - ssin udj + kR

 n =

rr * ru
ƒ rr * ru ƒ

=

-sr cos udi - sr sin udj + rk

r22

rsr, ud = sr cos udi + sr sin udj + rk,  0 … r … 2,  0 … u … 2p.

z = 2x2
+ y2 ,z = 2

F = sx2
- ydi + 4zj + x2k

6
S

 § * F # n ds = 6
x2

+y2
…9 

-2 dA = -18p.

 § * F # n ds = -
2z
3

 
3
z  dA = -2 dA

 ds =

3
z  dA

 n =

xi + yj + zk2x2
+ y2

+ z2
=

xi + yj + zk
3

 = s0 - 0di + s0 - 0dj + s -1 - 1dk = -2k

 § * F = a0P
0y -

0N
0z b i + a0M

0z -
0P
0x bj + a0N

0x -
0M
0y bk

 F
C 

 F # dr = L
2p

0
-9 du = -18p.

 F # dr = -9 sin2 u du - 9 cos2 u du = -9 du

 F = yi - xj = s3 sin udi - s3 cos udj

 dr = s -3 sin u dudi + s3 cos u dudj

rsud = s3 cos udi + s3 sin udj, 0 … u … 2p:
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Outer unit normal

Section 16.5, Example 5,
with a = 3

y

z

x

n

S: r(t) � (r cos �)i � (r sin �) j � rk

C: x2 � y2 � 4,  z � 2

FIGURE 16.62 The curve C and cone S
in Example 3.

Section 16.6,
Example 4
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Accordingly,

and the circulation is

Paddle Wheel Interpretation of 

Suppose that v(x, y, z) is the velocity of a moving fluid whose density at (x, y, z) is
and let Then

is the circulation of the fluid around the closed curve C. By Stokes’Theorem, the circulation
is equal to the flux of through a surface S spanning C:

Suppose we fix a point Q in the domain of F and a direction u at Q. Let C be a circle of
radius with center at Q, whose plane is normal to u. If is continuous at Q, the
average value of the u-component of over the circular disk S bounded by C
approaches the u-component of at Q as 

If we replace the surface integral in this last equation by the circulation, we get

(6)

The left-hand side of Equation (6) has its maximum value when u is the direction of
When is small, the limit on the right-hand side of Equation (6) is approximately

1
pr2F

C 

 F # dr,

r§ * F.

s§ * F # udQ = lim
p:0

 
1
pr2F

C 

 F # dr.

s§ * F # udQ = lim
p:0

 
1
pr26

S

 § * F # u ds.

r: 0:§ * F
§ * F

§ * Fr ,

F
C 

 F # dr = 6
S

 § * F # n ds.

§ * F

F
C 

 F # dr

F = dv .dsx, y, zd

§ * F

 = L
2p

0
 L

2

0
 

122
 a4 cos u + r sin 2u + 1b Ar22 dr du B = 4p.

 F
C 

 F # dr = 6
S

 § * F # n ds

 =
122

 a4 cos u + r sin 2u + 1b
 § * F # n =

122
 a4 cos u + 2r cos u sin u + 1b

 = -4i - 2r cos uj + k.

 § * F = -4i - 2xj + k

 ds = r22 dr du
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Section 16.6, Example 4

Example 1

x = r cos u

Stokes’ Theorem, Equation (4)
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which is the circulation around C divided by the area of the disk (circulation density).
Suppose that a small paddle wheel of radius is introduced into the fluid at Q, with its axle
directed along u. The circulation of the fluid around C will affect the rate of spin of the paddle
wheel. The wheel will spin fastest when the circulation integral is maximized; therefore it will
spin fastest when the axle of the paddle wheel points in the direction of (Figure 16.63).

EXAMPLE 4 Relating to Circulation Density

A fluid of constant density rotates around the z-axis with velocity 
where is a positive constant called the angular velocity of the rotation (Figure 16.64). If

find and relate it to the circulation density.

Solution With 

By Stokes’Theorem, the circulation of F around a circle C of radius bounding a disk S in
a plane normal to say the xy-plane, is

Thus,

consistent with Equation (6) when  

EXAMPLE 5 Applying Stokes’ Theorem

Use Stokes’ Theorem to evaluate if and C is the bound-
ary of the portion of the plane in the first octant, traversed counterclock-
wise as viewed from above (Figure 16.65).

Solution The plane is the level surface of the function 
The unit normal vector

is consistent with the counterclockwise motion around C. To apply Stokes’Theorem, we find

On the plane, z equals so

§ * F = sx - 3s2 - 2x - yddj + yk = s7x + 3y - 6dj + yk

2 - 2x - y,

curl F = § * F = 4 i j k

0

0x
0

0y
0

0z

xz xy 3xz

4 = sx - 3zdj + yk.

n =

§ƒ

ƒ §ƒ ƒ

=

s2i + j + kd
ƒ 2i + j + k ƒ

=
126

 a2i + j + kb
y + z.

ƒsx, y, zd = 2x +ƒsx, y, zd = 2

2x + y + z = 2
F = xzi + xyj + 3xzk1C F # dr,

u = k.

s§ * Fd # k = 2v =
1
pr2F

C 

 F # dr,

F
C 

 F # dr = 6
S

 § * F # n ds = 6
S

 2vk # k dx dy = s2vdspr2d.

§ * F ,
r

 = s0 - 0di + s0 - 0dj + sv - s -vddk = 2vk.

 § * F = a0P
0y -

0N
0z b i + a0M

0z -
0P
0x bj + a0N

0x -
0M
0y bk

F = v = -vyi + vxj,

§ * FF = v,
v

v = vs -yi + xjd,

§ * F

§ * F

r
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Q

Curl F

FIGURE 16.63 The paddle wheel
interpretation of curl F.

x

y

r

O

z

P(x, y, z)

�

P(x, y, 0)

v � �(–yi � xj)

FIGURE 16.64 A steady rotational flow
parallel to the xy-plane, with constant
angular velocity in the positive
(counterclockwise) direction (Example 4).

v
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and

The surface area element is

The circulation is

Proof of Stokes’ Theorem for Polyhedral Surfaces

Let S be a polyhedral surface consisting of a finite number of plane regions. (See Figure 16.66
for an example.) We apply Green’s Theorem to each separate panel of S. There are two types
of panels:

1. Those that are surrounded on all sides by other panels

2. Those that have one or more edges that are not adjacent to other panels.

The boundary of S consists of those edges of the type 2 panels that are not adjacent to
other panels. In Figure 16.66, the triangles EAB, BCE, and CDE represent a part of S, with
ABCD part of the boundary Applying Green’s Theorem to the three triangles in turn
and adding the results, we get

(7)

The three line integrals on the left-hand side of Equation (7) combine into a single line
integral taken around the periphery ABCDE because the integrals along interior segments
cancel in pairs. For example, the integral along segment BE in triangle ABE is opposite in
sign to the integral along the same segment in triangle EBC. The same holds for segment
CE. Hence, Equation (7) reduces to

When we apply Green’s Theorem to all the panels and add the results, we get

F
¢ 

F # dr = 6
S

 § * F # n ds.

 F
ABCDE

F # dr = 6
ABCDE 

 § * F # n ds.

£ F
EAB

+ F
BCE

+ F
CDE

≥F # dr = £6
EAB 

 + 6
BCE 

+ 6
CDE 

 ≥§ * F # n ds.

¢.

¢

 = L
1

0
 L

2 - 2x

0
 s7x + 4y - 6d dy dx = -1.

 = L
1

0
 L

2 - 2x

0
 

126
 a7x + 4y - 6b26 dy dx

 F
C 

 F # dr = 6
S

 § * F # n ds

ds =

ƒ §ƒ ƒ

ƒ §ƒ # k ƒ

 dA =

26
1

 dx dy.

§ * F # n =
126

 a7x + 3y - 6 + yb =
126

 a7x + 4y - 6b .
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R(1, 0, 0)

(0, 2, 0)

(0, 0, 2)

C

n

2x � y � z � 2

y � 2 � 2x

FIGURE 16.65 The planar surface in
Example 5.

Stokes’ Theorem, Equation (4)

A

B C

D

E

FIGURE 16.66 Part of a polyhedral
surface.
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This is Stokes’ Theorem for a polyhedral surface S. You can find proofs for more general
surfaces in advanced calculus texts.

Stokes’ Theorem for Surfaces with Holes

Stokes’ Theorem can be extended to an oriented surface S that has one or more holes
(Figure 16.67), in a way analogous to the extension of Green’s Theorem: The surface
integral over S of the normal component of equals the sum of the line integrals
around all the boundary curves of the tangential component of F, where the curves are to
be traced in the direction induced by the orientation of S.

An Important Identity

The following identity arises frequently in mathematics and the physical sciences.

§ * F

1208 Chapter 16: Integration in Vector Fields

S

n

FIGURE 16.67 Stokes’ Theorem also
holds for oriented surfaces with holes.

(8)curl grad ƒ = 0 or § * §f = 0

This identity holds for any function ƒ(x, y, z) whose second partial derivatives are
continuous. The proof goes like this:

If the second partial derivatives are continuous, the mixed second derivatives in parenthe-
ses are equal (Theorem 2, Section 14.3) and the vector is zero.

Conservative Fields and Stokes’ Theorem

In Section 16.3, we found that a field F is conservative in an open region D in space is
equivalent to the integral of F around every closed loop in D being zero. This, in turn, is
equivalent in simply connected open regions to saying that § * F = 0.

§ * §ƒ = 5 i j k

0

0x
0

0y
0

0z

0ƒ
0x

0ƒ
0y

0ƒ
0z

5 = sƒzy - ƒyzdi - sƒzx - ƒxzdj + sƒyx - ƒxydk.

THEOREM 6 Curl Related to the Closed-Loop Property
If at every point of a simply connected open region D in space, then
on any piecewise-smooth closed path C in D,

F
C 

 F # dr = 0.

§ * F = 0

F = 0

Sketch of a Proof Theorem 6 is usually proved in two steps. The first step is for simple
closed curves. A theorem from topology, a branch of advanced mathematics, states that
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every differentiable simple closed curve C in a simply connected open region D is the
boundary of a smooth two-sided surface S that also lies in D. Hence, by Stokes’ Theorem,

The second step is for curves that cross themselves, like the one in Figure 16.68. The
idea is to break these into simple loops spanned by orientable surfaces, apply Stokes’
Theorem one loop at a time, and add the results.

The following diagram summarizes the results for conservative fields defined on
connected, simply connected open regions.

F
C 

 F # dr = 6
S

 § * F # n ds = 0.
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FIGURE 16.68 In a simply connected
open region in space, differentiable curves
that cross themselves can be divided into
loops to which Stokes’ Theorem applies.

Theorem 1,
Section 16.3

Theorem 6
Domain's simple
connectivity and
Stokes' theorem

over any closed
path in D

F � �f on D
F conservative
on D

� � F � 0 throughout DEC 
F • dr � 0

Vector identity (Eq. 8)
(continuous second
partial derivatives)

Theorem 2,
Section 13.3

�

�

�

�

���
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