
INTEGRATION IN

VECTOR FIELDS

OVERVIEW This chapter treats integration in vector fields. It is the mathematics that
engineers and physicists use to describe fluid flow, design underwater transmission cables,
explain the flow of heat in stars, and put satellites in orbit. In particular, we define line
integrals, which are used to find the work done by a force field in moving an object along a
path through the field. We also define surface integrals so we can find the rate that a fluid
flows across a surface. Along the way we develop key concepts and results, such as con-
servative force fields and Green’s Theorem, to simplify our calculations of these new inte-
grals by connecting them to the single, double, and triple integrals we have already studied.
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Line Integrals

In Chapter 5 we defined the definite integral of a function over a finite closed interval [a, b]
on the x-axis. We used definite integrals to find the mass of a thin straight rod, or the work
done by a variable force directed along the x-axis. Now we would like to calculate the
masses of thin rods or wires lying along a curve in the plane or space, or to find the work
done by a variable force acting along such a curve. For these calculations we need a more
general notion of a “line” integral than integrating over a line segment on the x-axis. Instead
we need to integrate over a curve C in the plane or in space. These more general integrals
are called line integrals, although “curve” integrals might be more descriptive. We make
our definitions for space curves, remembering that curves in the xy-plane are just a special
case with z-coordinate identically zero.

Suppose that ƒ(x, y, z) is a real-valued function we wish to integrate over the curve
lying within the domain of ƒ. The values of ƒ

along the curve are given by the composite function ƒ(g(t), h(t), k(t)). We are going to inte-
grate this composite with respect to arc length from to To begin, we first
partition the curve into a finite number n of subarcs (Figure 16.1). The typical subarc has
length In each subarc we choose a point and form the sum

If ƒ is continuous and the functions g, h, and k have continuous first derivatives, then these
sums approach a limit as n increases and the lengths approach zero. We call this limit
the line integral of ƒ over the curve from a to b. If the curve is denoted by a single letter,
C for example, the notation for the integral is

(1)LC
 ƒsx, y, zd ds “The integral of ƒ over C”

¢sk

Sn = a
n

k = 1
ƒsxk, yk, zkd ¢sk .

sxk, yk, zkd¢sk.

t = b.t = a

rstd = gstdi + hstdj + kstdk, a … t … b,

16.1

z

y

x

r(t)

t � b

t � a

(xk, yk, zk)

�sk

FIGURE 16.1 The curve r(t) partitioned
into small arcs from to The
length of a typical subarc is ¢sk.

t = b.t = a
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If ƒ has the constant value 1, then the integral of ƒ over C gives the length of C.

EXAMPLE 1 Evaluating a Line Integral

Integrate over the line segment C joining the origin to the point
(1, 1, 1) (Figure 16.2).

Solution We choose the simplest parametrization we can think of:

The components have continuous first derivatives and 

is never 0, so the parametrization is smooth. The integral of ƒ
over C is

 = 23L
1

0
 s2t - 3t2d dt = 23 C t 2

- t3 D01 = 0.

 = L
1

0
 st - 3t 2

+ td23 dt

 LC
 ƒsx, y, zd ds = L

1

0
 ƒst, t, td A23 B  dt

212
+ 12

+ 12
= 23

ƒ i + j + k ƒ =ƒ vstd ƒ =

rstd = t i + tj + tk,  0 … t … 1.

ƒsx, y, zd = x - 3y2
+ z

If r(t) is smooth for ( is continuous and never 0), we can use the
equation

to express ds in Equation (1) as A theorem from advanced calculus says
that we can then evaluate the integral of ƒ over C as

Notice that the integral on the right side of this last equation is just an ordinary (single)
definite integral, as defined in Chapter 5, where we are integrating with respect to the
parameter t. The formula evaluates the line integral on the left side correctly no matter
what parametrization is used, as long as the parametrization is smooth.

LC
 ƒsx, y, zd ds = L

b

a
 ƒsgstd, hstd, kstdd ƒ vstd ƒ  dt.

ds = ƒ vstd ƒ  dt.

sstd = L
b

a
 ƒ vstd ƒ  dt

v = dr>dta … t … b
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Equation (3) of Section 13.3
with t0 = a

How to Evaluate a Line Integral
To integrate a continuous function ƒ(x, y, z) over a curve C:

1. Find a smooth parametrization of C,

2. Evaluate the integral as

(2)LC
 ƒsx, y, zd ds = L

b

a
 ƒsgstd, hstd, kstdd ƒ vstd ƒ  dt.

rstd = gstdi + hstdj + kstdk,  a … t … b

z

x

C

(1, 1, 0)

(1, 1, 1)

y

FIGURE 16.2 The integration path in
Example 1. Equation (2)
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Additivity

Line integrals have the useful property that if a curve C is made by joining a finite number
of curves end to end, then the integral of a function over C is the sum of the
integrals over the curves that make it up:

(3)

EXAMPLE 2 Line Integral for Two Joined Paths

Figure 16.3 shows another path from the origin to (1, 1, 1), the union of line segments 
and Integrate over 

Solution We choose the simplest parametrizations for and we can think of,
checking the lengths of the velocity vectors as we go along:

With these parametrizations we find that

Notice three things about the integrations in Examples 1 and 2. First, as soon as the
components of the appropriate curve were substituted into the formula for ƒ, the integra-
tion became a standard integration with respect to t. Second, the integral of ƒ over 
was obtained by integrating ƒ over each section of the path and adding the results. Third,
the integrals of ƒ over C and had different values. For most functions, the value of
the integral along a path joining two points changes if you change the path between them.
For some functions, however, the value remains the same, as we will see in Section 16.3.

Mass and Moment Calculations

We treat coil springs and wires like masses distributed along smooth curves in space. The
distribution is described by a continuous density function (mass per unit length).
The spring’s or wire’s mass, center of mass, and moments are then calculated with the for-
mulas in Table 16.1. The formulas also apply to thin rods.

dsx, y, zd

C1 ´ C2

C1 ´ C2

 = 22 ct 2

2
- t 3 d

0

1

+ ct 2

2
- 2t d

0

1

= -

22
2

-

3
2

.

 = L
1

0
 st - 3t 2

+ 0d22 dt + L
1

0
 s1 - 3 + tds1d dt

 = L
1

0
 ƒst, t, 0d22 dt + L

1

0
 ƒs1, 1, tds1d dt

 LC1´C2

 ƒsx, y, zd ds = LC1

 ƒsx, y, zd ds + LC2

 ƒsx, y, zd ds

 C2: rstd = i + j + tk, 0 … t … 1; ƒ v ƒ = 202
+ 02

+ 12
= 1.

 C1: rstd = ti + tj, 0 … t … 1; ƒ v ƒ = 212
+ 12

= 22

C2C1

C1 ´ C2.ƒsx, y, zd = x - 3y2
+ zC2.

C1

LC
 ƒ ds = LC1

 ƒ ds + LC2

 ƒ ds +
Á

+ LCn

 ƒ ds.

C1, C2, Á , Cn
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FIGURE 16.3 The path of integration in
Example 2.

Equation (3)

Equation (2)
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EXAMPLE 3 Finding Mass, Center of Mass, Moment of Inertia, Radius of Gyration

A coil spring lies along the helix

The spring’s density is a constant, Find the spring’s mass and center of mass, and its
moment of inertia and radius of gyration about the z-axis.

Solution We sketch the spring (Figure 16.4). Because of the symmetries involved, the
center of mass lies at the point on the z-axis.

For the remaining calculations, we first find 

We then evaluate the formulas from Table 16.1 using Equation (2):

 Rz = 2Iz >M = 22p117>s2p117d = 1.

 = L
2p

0
217 dt = 2p217

 Iz = 3
Helix 

 sx 2
+ y 2dd ds = L

2p

0
scos2 4t + sin2 4tds1d217 dt

 M = 3
Helix 

 d ds = L
2p

0
s1d217 dt = 2p217

 = 2s -4 sin 4td2
+ s4 cos 4td2

+ 1 = 217 .

 ƒ vstd ƒ = B adx
dt
b2

+ ady
dt
b2

+ adz
dt
b2

ƒ vstd ƒ:
s0, 0, pd

d = 1.

rstd = scos 4tdi + ssin 4tdj + tk, 0 … t … 2p.
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TABLE 16.1 Mass and moment formulas for coil springs, thin rods, and wires lying
along a smooth curve C in space

density)

First moments about the coordinate planes:

Coordinates of the center of mass:

Moments of inertia about axes and other lines:

Radius of gyration about a line L: RL = 2IL >M
 rsx, y, zd = distance from the point sx, y, zd to line L

 Iz = LC
 sx 2

+ y 2d d ds, IL = LC
 r 2 d ds

 Ix = LC
 s y 2

+ z 2d d ds, Iy = LC
 sx 2

+ z 2d d ds

x = Myz >M, y = Mxz >M, z = Mxy >M

Myz = LC
 x d ds, Mxz = LC

 y d ds, Mxy = LC
 z d ds

Mass: M = LC
 dsx, y, zd ds  sd = d(x, y, z) =

y

z

x

(1, 0, 0)

c.m. (0, 0, �)

(1, 0, 2�)

2�

FIGURE 16.4 The helical spring in
Example 3.
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Notice that the radius of gyration about the z-axis is the radius of the cylinder around
which the helix winds.

EXAMPLE 4 Finding an Arch’s Center of Mass

A slender metal arch, denser at the bottom than top, lies along the semicircle
in the yz-plane (Figure 16.5). Find the center of the arch’s mass if the

density at the point (x, y, z) on the arch is 

Solution We know that and because the arch lies in the yz-plane with its
mass distributed symmetrically about the z-axis. To find we parametrize the circle as

For this parametrization,

The formulas in Table 16.1 then give

With to the nearest hundredth, the center of mass is (0, 0, 0.57).z

 z =

Mxy

M
=

8 - p
2

# 1
2p - 2

=

8 - p
4p - 4

L 0.57.

 = L
p

0
s2 sin t - sin2 td dt =

8 - p
2

 Mxy = LC
 zd ds = LC

 zs2 - zd ds = L
p

0
ssin tds2 - sin td dt

 M = LC
 d ds = LC

 s2 - zd ds = L
p

0
s2 - sin tds1d dt = 2p - 2

ƒ vstd ƒ = B adx
dt
b2

+ ady
dt
b2

+ adz
dt
b2

= 2s0d2
+ s -sin td2

+ scos td2
= 1.

rstd = scos tdj + ssin tdk,  0 … t … p.

z ,
y = 0x = 0

dsx, y, zd = 2 - z.
y2

+ z2
= 1, z Ú 0,
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z

y
x

1

1

c.m.

y2 � z2 � 1, z � 0
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FIGURE 16.5 Example 4 shows how to
find the center of mass of a circular arch of
variable density.
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