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Surface Area and Surface Integrals

We know how to integrate a function over a flat region in a plane, but what if the function
is defined over a curved surface? To evaluate one of these so-called surface integrals, we
rewrite it as a double integral over a region in a coordinate plane beneath the surface
(Figure 16.38). Surface integrals are used to compute quantities such as the flow of liquid
across a membrane or the upward force on a falling parachute.

Surface Area

Figure 16.39 shows a surface S lying above its “shadow” region R in a plane beneath it.
The surface is defined by the equation If the surface is smooth ( is con-
tinuous and never vanishes on S ), we can define and calculate its area as a double integral
over R. We assume that this projection of the surface onto its shadow R is one-to-one. That
is, each point in R corresponds to exactly one point (x, y, z) satisfying 

The first step in defining the area of S is to partition the region R into small rectangles
of the kind we would use if we were defining an integral over R. Directly above each
lies a patch of surface that we may approximate by a parallelogram in the

tangent plane to S at a point in This parallelogram in the tangent plane
projects directly onto To be specific, we choose the point lying directly
above the back corner of as shown in Figure 16.39. If the tangent plane is parallel
to R, then will be congruent to Otherwise, it will be a parallelogram whose area
is somewhat larger than the area of 

Figure 16.40 gives a magnified view of and showing the gradient vector
at and a unit vector p that is normal to R. The figure also shows the angle

between and p. The other vectors in the picture, and lie along the edges of the
patch in the tangent plane. Thus, both and are normal to the tangent plane.

We now need to know from advanced vector geometry that is the area
of the projection of the parallelogram determined by and onto any plane whose
normal is p. (A proof is given in Appendix 8.) In our case, this translates into the statement

To simplify the notation in the derivation that follows, we are now denoting the area of the
small rectangular region by as well. Likewise, will also denote the area of the
portion of the tangent plane directly above this small region. 

Now, itself is the area (standard fact about cross products) so this last
equation becomes
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FIGURE 16.38 As we soon see, the
integral of a function g(x, y, z) over a
surface S in space can be calculated by
evaluating a related double integral over
the vertical projection or “shadow” of S
on a coordinate plane.

S

R

∆Pk

∆�k

f (x, y, z) � c

Tk(xk, yk, zk)

Ck

∆Ak

FIGURE 16.39 A surface S and its
vertical projection onto a plane beneath it.
You can think of R as the shadow of S on
the plane. The tangent plane 
approximates the surface patch 
above ¢Ak.
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provided We will have as long as is not parallel to the ground
plane and 

Since the patches approximate the surface patches that fit together to make
S, the sum

(1)

looks like an approximation of what we might like to call the surface area of S. It also looks
as if the approximation would improve if we refined the partition of R. In fact, the sums on
the right-hand side of Equation (1) are approximating sums for the double integral

(2)

We therefore define the area of S to be the value of this integral whenever it exists. For any
surface we have so

This combines with Equation (2) to give a practical formula for surface area.
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FIGURE 16.40 Magnified view from the
preceding figure. The vector (not
shown) is parallel to the vector because
both vectors are normal to the plane of
¢Pk .
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Formula for Surface Area
The area of the surface over a closed and bounded plane region R is

(3)

where p is a unit vector normal to R and §ƒ # p Z 0.

Surface area = 6
R

 
ƒ §ƒ ƒ

ƒ §ƒ # p ƒ

 dA,

ƒsx, y, zd = c

Thus, the area is the double integral over R of the magnitude of divided by the
magnitude of the scalar component of normal to R.

We reached Equation (3) under the assumption that throughout R and that
is continuous. Whenever the integral exists, however, we define its value to be the area

of the portion of the surface that lies over R. (Recall that the projection is as-
sumed to be one-to-one.)

In the exercises (see Equation 11), we show how Equation (3) simplifies if the surface
is defined by 

EXAMPLE 1 Finding Surface Area

Find the area of the surface cut from the bottom of the paraboloid by the
plane 

Solution We sketch the surface S and the region R below it in the xy-plane (Figure
16.41). The surface S is part of the level surface and R is
the disk in the xy-plane. To get a unit vector normal to the plane of R, we can
take p = k.

x2
+ y2

… 4
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- z = 0,

z = 4.
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- z = 0
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At any point (x, y, z) on the surface, we have

In the region Therefore,

EXAMPLE 2 Finding Surface Area

Find the area of the cap cut from the hemisphere by the cylin-
der (Figure 16.42).

Solution The cap S is part of the level surface It pro-
jects one-to-one onto the disk in the xy-plane. The unit vector is
normal to the plane of R.

At any point on the surface,

Therefore,

(4)

What do we do about the z?
Since z is the z-coordinate of a point on the sphere, we can express it in terms of x and

y as

z = 22 - x2
- y2.
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FIGURE 16.41 The area of this parabolic
surface is calculated in Example 1.

Equation (3)
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FIGURE 16.42 The cap cut from the
hemisphere by the cylinder projects
vertically onto the disk 
in the xy-plane (Example 2).
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We continue the work of Equation (4) with this substitution:

Surface Integrals

We now show how to integrate a function over a surface, using the ideas just developed for
calculating surface area.

Suppose, for example, that we have an electrical charge distributed over a surface
like the one shown in Figure 16.43 and that the function g(x, y, z) gives the

charge per unit area (charge density) at each point on S. Then we may calculate the total
charge on S as an integral in the following way.

We partition the shadow region R on the ground plane beneath the surface into
small rectangles of the kind we would use if we were defining the surface area of S.
Then directly above each lies a patch of surface that we approximate with a
parallelogram-shaped portion of tangent plane, (See Figure 16.43.)

Up to this point the construction proceeds as in the definition of surface area, but
now we take an additional step: We evaluate g at and approximate the total
charge on the surface path by the product The rationale is that
when the partition of R is sufficiently fine, the value of g throughout is nearly
constant and is nearly the same as The total charge over S is then approxi-
mated by the sum

If ƒ, the function defining the surface S, and its first partial derivatives are continuous,
and if g is continuous over S, then the sums on the right-hand side of the last equation ap-
proach the limit

(5)

as the partition of R is refined in the usual way. This limit is called the integral of g over
the surface S and is calculated as a double integral over R. The value of the integral is the
total charge on the surface S.

As you might expect, the formula in Equation (5) defines the integral of any function
g over the surface S as long as the integral exists.
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Polar coordinates
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∆Ak

FIGURE 16.43 If we know how an
electrical charge g(x, y, z) is distributed
over a surface, we can find the total charge
with a suitably modified surface integral.
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The integral in Equation (6) takes on different meanings in different applications. If g
has the constant value 1, the integral gives the area of S. If g gives the mass density of a
thin shell of material modeled by S, the integral gives the mass of the shell.

We can abbreviate the integral in Equation (6) by writing for s ƒ §ƒ ƒ > ƒ §ƒ # p ƒ d dA.ds

1186 Chapter 16: Integration in Vector Fields

DEFINITION Surface Integral
If R is the shadow region of a surface S defined by the equation 
and g is a continuous function defined at the points of S, then the integral of g
over S is the integral

(6)

where p is a unit vector normal to R and The integral itself is called a
surface integral.

§ƒ # p Z 0.
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ƒ §ƒ ƒ
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 dA,

ƒsx, y, zd = c,

The Surface Area Differential and the Differential Form for Surface Integrals

(7)

Surface area Differential formula
differential for surface integrals

ds =

ƒ §ƒ ƒ

ƒ §ƒ # p ƒ

 dA  6
S

 g ds

Surface integrals behave like other double integrals, the integral of the sum of two
functions being the sum of their integrals and so on. The domain Additivity Property takes
the form

The idea is that if S is partitioned by smooth curves into a finite number of nonoverlapping
smooth patches (i.e., if S is piecewise smooth), then the integral over S is the sum of the
integrals over the patches. Thus, the integral of a function over the surface of a cube is the
sum of the integrals over the faces of the cube. We integrate over a turtle shell of welded
plates by integrating one plate at a time and adding the results.

EXAMPLE 3 Integrating Over a Surface

Integrate over the surface of the cube cut from the first octant by the
planes and (Figure 16.44).

Solution We integrate xyz over each of the six sides and add the results. Since on
the sides that lie in the coordinate planes, the integral over the surface of the cube reduces to

6
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 xyz ds = 6
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 xyz ds + 6
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 xyz ds + 6
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 xyz ds.

xyz = 0
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Á
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Sn

 g ds.
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1

1
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x
Side B

Side C
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FIGURE 16.44 The cube in Example 3.
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Side A is the surface over the square region 
in the xy-plane. For this surface and region,

and

Symmetry tells us that the integrals of xyz over sides B and C are also 1 4. Hence,

Orientation

We call a smooth surface S orientable or two-sided if it is possible to define a field n of
unit normal vectors on S that varies continuously with position. Any patch or subportion of
an orientable surface is orientable. Spheres and other smooth closed surfaces in space
(smooth surfaces that enclose solids) are orientable. By convention, we choose n on a
closed surface to point outward.

Once n has been chosen, we say that we have oriented the surface, and we call the
surface together with its normal field an oriented surface. The vector n at any point is
called the positive direction at that point (Figure 16.45).

The Möbius band in Figure 16.46 is not orientable. No matter where you start to
construct a continuous-unit normal field (shown as the shaft of a thumbtack in the figure),
moving the vector continuously around the surface in the manner shown will return it to
the starting point with a direction opposite to the one it had when it started out. The vector
at that point cannot point both ways and yet it must if the field is to be continuous. We
conclude that no such field exists.

Surface Integral for Flux

Suppose that F is a continuous vector field defined over an oriented surface S and that n
is the chosen unit normal field on the surface. We call the integral of over S the flux
of F across S in the positive direction. Thus, the flux is the integral over S of the scalar
component of F in the direction of n.

F # n

6
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1
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1
4

+
1
4

=

3
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.

>
6
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 xy dx dy = L
1

0
 L

1

0
 xy dx dy = L

1

0
 
y
2

 dy =
1
4

.

 xyz = xys1d = xy

 ds =

ƒ §ƒ ƒ

ƒ §ƒ # p ƒ

 dA =
1
1

 dx dy = dx dy

 p = k, §ƒ = k, ƒ §ƒ ƒ = 1,  ƒ §ƒ # p ƒ = ƒ k # k ƒ = 1

0 … y … 1,
Rxy: 0 … x … 1, ƒsx, y, zd = z = 1
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n Positive
direction

FIGURE 16.45 Smooth closed surfaces
in space are orientable. The outward unit
normal vector defines the positive
direction at each point.

d c

a b
Start

Finish
d b

ca

FIGURE 16.46 To make a Möbius band,
take a rectangular strip of paper abcd, give
the end bc a single twist, and paste the
ends of the strip together to match a with c
and b with d. The Möbius band is a
nonorientable or one-sided surface.

DEFINITION Flux
The flux of a three-dimensional vector field F across an oriented surface S in the
direction of n is

(8)Flux = 6
S

 F # n ds.
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The definition is analogous to the flux of a two-dimensional field F across a plane
curve C. In the plane (Section 16.2), the flux is

the integral of the scalar component of F normal to the curve.
If F is the velocity field of a three-dimensional fluid flow, the flux of F across S is the

net rate at which fluid is crossing S in the chosen positive direction. We discuss such flows
in more detail in Section 16.7.

If S is part of a level surface then n may be taken to be one of the two
fields

(9)

depending on which one gives the preferred direction. The corresponding flux is

(8)

(10)

EXAMPLE 4 Finding Flux

Find the flux of outward through the surface S cut from the cylinder
by the planes and 

Solution The outward normal field on S (Figure 16.47) may be calculated from the
gradient of to be

With we also have

We can drop the absolute value bars because on S.
The value of on the surface is

Therefore, the flux of F outward through S is

6
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 szd a1z  dAb = 6
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 = y 2z + z 3
= zs y 2
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1
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ƒ §g ƒ
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=
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221
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b  
ƒ §g ƒ
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 dA

 Flux = 6
S

 F # n ds
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§g
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,

gsx, y, zd = c,

3
C 

 F # n ds,
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Equations (9) and (7)

y2
+ z2

= 1 on S

(1, 1, 0)
x

y

z

n

1

(1, –1, 0)

Rxy

y2 � z2 � 1

FIGURE 16.47 Calculating the flux of a
vector field outward through this surface.
The area of the shadow region is 2
(Example 4).

Rxy
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Moments and Masses of Thin Shells

Thin shells of material like bowls, metal drums, and domes are modeled with surfaces.
Their moments and masses are calculated with the formulas in Table 16.3.

16.5 Surface Area and Surface Integrals 1189

TABLE 16.3 Mass and moment formulas for very thin shells

Mass:

First moments about the coordinate planes:

Coordinates of center of mass:

Moments of inertia about coordinate axes:

Radius of gyration about a line L: RL = 2IL >M
rsx, y, zd = distance from point sx, y, zd to line L

Iz = 6
S

 sx2
+ y 2d d ds,  IL = 6

S

 r 2d ds,  

Ix = 6
S

 s y2
+ z2d d ds,  Iy = 6

S

 sx 2
+ z 2d d ds,  

x = Myz >M,  y = Mxz >M,  z = Mxy >M

Myz = 6
S

 x d ds,  Mxz = 6
S

 y d ds,  Mxy = 6
S

 z d ds

M = 6
S

 dsx, y, zd ds sdsx, y, zd = density at sx, y, zd,

EXAMPLE 5 Finding Center of Mass

Find the center of mass of a thin hemispherical shell of radius a and constant density 

Solution We model the shell with the hemisphere

(Figure 16.48). The symmetry of the surface about the z-axis tells us that It re-
mains only to find from the formula 

The mass of the shell is

To evaluate the integral for we take and calculate

 ds =

ƒ §ƒ ƒ

ƒ §ƒ # p ƒ

 dA =

a
z  dA.

 ƒ §ƒ # p ƒ = ƒ §ƒ # k ƒ = ƒ 2z ƒ = 2z

 ƒ §ƒ ƒ = ƒ 2xi + 2yj + 2zk ƒ = 22x2
+ y2

+ z2
= 2a

p = kMxy,

M = 6
S

 d ds = d6
S

 ds = sddsarea of Sd = 2pa2d.

z = Mxy >M.z
x = y = 0.

ƒsx, y, zd = x2
+ y2

+ z2
= a2,  z Ú 0

d.

z

x

y

c.m. S

R
a

a

x2 � y2 � z2 � a2

x2 � y2 � a2

0, 0,





a
2

FIGURE 16.48 The center of mass of a
thin hemispherical shell of constant density
lies on the axis of symmetry halfway from
the base to the top (Example 5).

mass per unit area)
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Then

The shell’s center of mass is the point (0, 0, a 2).>
 z =

Mxy

M
=

pa3d

2pa2d
=

a
2

.

 Mxy = 6
S

 zd ds = d6
R

 z 
a
z  dA = da6

R

 dA = daspa2d = dpa3

1190 Chapter 16: Integration in Vector Fields

4100 AWL/Thomas_ch16p1143-1228  8/27/04  7:26 AM  Page 1190

http://media.pearsoncmg.com/aw/aw_mml_shared_1/copyright.html

	copyright: 
	yti2_3: 
	yti2_4: 
	yti2_5: 
	yti2_6: 


