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Implicit Differentiation

Most of the functions we have dealt with so far have been described by an equation of the
form that expresses y explicitly in terms of the variable x. We have learned rules
for differentiating functions defined in this way. In Section 3.5 we also learned how to find
the derivative when a curve is defined parametrically by equations and

A third situation occurs when we encounter equations like

(See Figures 3.36, 3.37, and 3.38.) These equations define an implicit relation between the
variables x and y. In some cases we may be able to solve such an equation for y as an ex-
plicit function (or even several functions) of x. When we cannot put an equation

in the form to differentiate it in the usual way, we may still be able
to find by implicit differentiation. This consists of differentiating both sides of the
equation with respect to x and then solving the resulting equation for This section de-
scribes the technique and uses it to extend the Power Rule for differentiation to include ra-
tional exponents. In the examples and exercises of this section it is always assumed that the
given equation determines y implicitly as a differentiable function of x.

Implicitly Defined Functions

We begin with an example.
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EXAMPLE 1 Differentiating Implicitly

Find if 

Solution The equation defines two differentiable functions of x that we can actu-
ally find, namely and (Figure 3.37). We know how to calculate the
derivative of each of these for 

But suppose that we knew only that the equation defined y as one or more differ-
entiable functions of x for without knowing exactly what these functions were.
Could we still find ?

The answer is yes. To find , we simply differentiate both sides of the equation
with respect to x, treating as a differentiable function of x:

This one formula gives the derivatives we calculated for both explicit solutions 
and 

EXAMPLE 2 Slope of a Circle at a Point

Find the slope of circle at the point 

Solution The circle is not the graph of a single function of x. Rather it is the combined
graphs of two differentiable functions, and (Figure
3.36). The point lies on the graph of so we can find the slope by calculating
explicitly:

But we can also solve the problem more easily by differentiating the given equation of the
circle implicitly with respect to x:
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FIGURE 3.37 The equation 
or as it is usually written, defines
two differentiable functions of x on the
interval Example 1 shows how to
find the derivatives of these functions
without solving the equation for y.y2
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FIGURE 3.38 The curve
is not the graph

of any one function of x. The curve can,
however, be divided into separate arcs that
are the graphs of functions of x. This
particular curve, called a folium, dates to
Descartes in 1638.
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Notice that unlike the slope formula for which applies only to points below the
x-axis, the formula applies everywhere the circle has a slope. Notice also
that the derivative involves both variables x and y, not just the independent variable x.

To calculate the derivatives of other implicitly defined functions, we proceed as in Ex-
amples 1 and 2: We treat y as a differentiable implicit function of x and apply the usual
rules to differentiate both sides of the defining equation.

EXAMPLE 3 Differentiating Implicitly

Find if (Figure 3.39).

Solution

Treat xy as a product.

Collect terms with 

and factor out .

Solve for by dividing.

Notice that the formula for applies everywhere that the implicitly defined curve has
a slope. Notice again that the derivative involves both variables x and y, not just the inde-
pendent variable x.
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FIGURE 3.39 The graph of
in Example 3. The

example shows how to find slopes on this
implicitly defined curve.

y2
= x2

+ sin xy

Differentiate both sides with
respect to x Á

treating y as a function of
x and using the Chain Rule.
Á

Implicit Differentiation
1. Differentiate both sides of the equation with respect to x, treating y as a differ-

entiable function of x.

2. Collect the terms with on one side of the equation.

3. Solve for .dy>dx

dy>dx

Lenses, Tangents, and Normal Lines

In the law that describes how light changes direction as it enters a lens, the important an-
gles are the angles the light makes with the line perpendicular to the surface of the lens at
the point of entry (angles A and B in Figure 3.40). This line is called the normal to the sur-
face at the point of entry. In a profile view of a lens like the one in Figure 3.40, the normal
is the line perpendicular to the tangent to the profile curve at the point of entry.

A

Normal line

Light ray
Tangent

Point of entry
P

B

Curve of lens
surface

FIGURE 3.40 The profile of a lens,
showing the bending (refraction) of a ray
of light as it passes through the lens
surface.
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EXAMPLE 4 Tangent and Normal to the Folium of Descartes

Show that the point (2, 4) lies on the curve Then find the tangent and
normal to the curve there (Figure 3.41).

Solution The point (2, 4) lies on the curve because its coordinates satisfy the equation
given for the curve: 

To find the slope of the curve at (2, 4), we first use implicit differentiation to find a
formula for :

Solve for .

We then evaluate the derivative at 

The tangent at (2, 4) is the line through (2, 4) with slope :

The normal to the curve at (2, 4) is the line perpendicular to the tangent there, the line
through (2, 4) with slope 

The quadratic formula enables us to solve a second-degree equation like
for y in terms of x. There is a formula for the three roots of a cubic

equation that is like the quadratic formula but much more complicated. If this formula is
used to solve the equation for y in terms of x, then three functions deter-
mined by the equation are

y = ƒsxd =
3C-

x3

2
+ Bx6

4
- 27x3

+
3C-

x3

2
- Bx6

4
- 27x3

x3
+ y3

= 9xy

y2
- 2xy + 3x2

= 0

 y = -

5
4

 x +

13
2

.

 y = 4 -

5
4

 sx - 2d

-5>4:

 y =
4
5 x +

12
5 .

 y = 4 +
4
5 Ax - 2 B

4>5

dy
dx
`
s2, 4d

=

3y - x2

y2
- 3x

`
s2, 4d

=

3s4d - 22

42
- 3s2d

=

8
10

=
4
5 .

sx, yd = s2, 4d :

dy>dx 
dy
dx

=

3y - x2

y2
- 3x

 .

 3sy2
- 3xd 

dy
dx

= 9y - 3x2

 s3y2
- 9xd 

dy
dx

+ 3x2
- 9y = 0

 3x2
+ 3y2 

dy
dx

- 9 ax 
dy
dx

+ y 
dx
dx
b = 0

 
d
dx

 Ax3 B +

d
dx

 Ay3 B -

d
dx

 A9xy B =

d
dx

 A0 B
 x3

+ y3
- 9xy = 0

dy>dx

23
+ 43

- 9s2ds4d = 8 + 64 - 72 = 0.

x3
+ y3

- 9xy = 0.

208 Chapter 3: Differentiation

x

y

0 2

4

 Tan
gen

t

N
orm

alx3 � y3 � 9xy � 0

FIGURE 3.41 Example 4 shows how to
find equations for the tangent and normal
to the folium of Descartes at (2, 4).

Differentiate both sides
with respect to x.

Treat xy as a product and y
as a function of x.

4100 AWL/Thomas_ch03p147-243  8/19/04  11:17 AM  Page 208

http://media.pearsoncmg.com/aw/aw_mml_shared_1/copyright.html
bounce03.html?3_5_l
bounce03.html?8_9


and

Using implicit differentiation in Example 4 was much simpler than calculating di-
rectly from any of the above formulas. Finding slopes on curves defined by higher-degree
equations usually requires implicit differentiation.

Derivatives of Higher Order

Implicit differentiation can also be used to find higher derivatives. Here is an example.

EXAMPLE 5 Finding a Second Derivative Implicitly

Find if

Solution To start, we differentiate both sides of the equation with respect to x in order to
find 

Treat y as a function of x.

Solve for 

We now apply the Quotient Rule to find 

Finally, we substitute to express in terms of x and y.

Rational Powers of Differentiable Functions

We know that the rule

holds when n is an integer. Using implicit differentiation we can show that it holds when n
is any rational number.
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THEOREM 4 Power Rule for Rational Powers
If is a rational number, then is differentiable at every interior point of the
domain of and

d
dx

 xp>q
=

p
q x sp>qd - 1 .

x sp>qd - 1 ,
xp>qp>q
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EXAMPLE 6 Using the Rational Power Rule

(a)

(b)

(c)

Proof of Theorem 4 Let p and q be integers with and suppose that  
Then

Since p and q are integers (for which we already have the Power Rule), and assuming that
y is a differentiable function of x, we can differentiate both sides of the equation with re-
spect to x and get

If we can divide both sides of the equation by to solve for , obtaining

A law of exponents

which proves the rule.

We will drop the assumption of differentiability used in the proof of Theorem 4 in
Chapter 7, where we prove the Power Rule for any nonzero real exponent. (See Section
7.3.)

By combining the result of Theorem 4 with the Chain Rule, we get an extension of the
Power Chain Rule to rational powers of u: If is a rational number and u is a differen-
tiable function of x, then is a differentiable function of x and

provided that This restriction is necessary because 0 might be in the
domain of but not in the domain of as we see in the next example.u s p>qd - 1 ,up>qu Z 0 if s p>qd 6 1.
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EXAMPLE 7 Using the Rational Power and Chain Rules

function defined on 
$++%++&

(a) Power Chain Rule with

(b)
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1
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(+++)+++*

derivative defined only on s -1, 1d
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