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Differentiation Rules

This section introduces a few rules that allow us to differentiate a great variety of func-
tions. By proving these rules here, we can differentiate functions without having to apply
the definition of the derivative each time.

Powers, Multiples, Sums, and Differences

The first rule of differentiation is that the derivative of every constant function is zero.

3.2

RULE 1 Derivative of a Constant Function
If ƒ has the constant value then

dƒ
dx

=

d
dx

 scd = 0.

ƒsxd = c ,

EXAMPLE 1

If ƒ has the constant value then

Similarly,

Proof of Rule 1 We apply the definition of derivative to the function whose
outputs have the constant value c (Figure 3.8). At every value of x, we find that

ƒ¿sxd = lim
h:0

 
ƒsx + hd - ƒsxd

h
= lim

h:0
 
c - c

h
= lim

h:0
0 = 0.

ƒsxd = c ,

d
dx

 a- p
2
b = 0 and d

dx
 a23b = 0.

df
dx

=

d
dx

 s8d = 0.

ƒsxd = 8,

x

y

0 x

c

h

y � c
(x � h, c)(x, c)

x � h

FIGURE 3.8 The rule is
another way to say that the values of
constant functions never change and that
the slope of a horizontal line is zero at
every point.

sd>dxdscd = 0
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The second rule tells how to differentiate if n is a positive integer.xn

160 Chapter 3: Differentiation

RULE 2 Power Rule for Positive Integers
If n is a positive integer, then

d
dx

 xn
= nxn - 1 .

To apply the Power Rule, we subtract 1 from the original exponent (n) and multiply
the result by n.

EXAMPLE 2 Interpreting Rule 2

ƒ x

1 2x

First Proof of Rule 2 The formula

can be verified by multiplying out the right-hand side. Then from the alternative form for
the definition of the derivative,

Second Proof of Rule 2 If then Since n is a positive
integer, we can expand by the Binomial Theorem to get

The third rule says that when a differentiable function is multiplied by a constant, its
derivative is multiplied by the same constant.

 = nxn - 1

 = lim
h:0

 cnxn - 1
+

nsn - 1d
2

 xn - 2h +
Á

+ nxhn - 2
+ hn - 1 d

 = lim
h:0

 
nxn - 1h +

nsn - 1d
2

 xn - 2h2
+

Á
+ nxhn - 1

+ hn

h

 = lim
h:0

 

cxn
+ nxn - 1h +

nsn - 1d
2

 xn - 2h2
+

Á
+ nxhn - 1

+ hn d - xn

h

 ƒ¿sxd = lim
h:0

 
ƒsx + hd - ƒsxd

h
= lim

h:0
 
sx + hdn

- xn

h

sx + hdn
ƒsx + hd = sx + hdn .ƒsxd = xn ,

 = nxn - 1

 = lim
z:x

szn - 1
+ zn - 2x +

Á
+ zxn - 2

+ xn - 1d

 ƒ¿sxd = lim
z:x

 
ƒszd - ƒsxd

z - x = lim
z:x

 
zn

- xn

z - x

zn
- xn

= sz - xdszn - 1
+ zn - 2 x +

Á
+ zxn - 2

+ xn - 1d

Á4x33x2ƒ¿

Áx4x3x2

HISTORICAL BIOGRAPHY

Richard Courant
(1888–1972)
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In particular, if n is a positive integer, then

EXAMPLE 3

(a) The derivative formula

says that if we rescale the graph of by multiplying each y-coordinate by 3,
then we multiply the slope at each point by 3 (Figure 3.9).

(b) A useful special case

The derivative of the negative of a differentiable function u is the negative of the func-
tion’s derivative. Rule 3 with gives

Proof of Rule 3

Limit property

u is differentiable.

The next rule says that the derivative of the sum of two differentiable functions is the
sum of their derivatives.

 = c 
du
dx

 = c lim
h:0

 
usx + hd - usxd

h

 
d
dx

 cu = lim
h:0

 
cusx + hd - cusxd

h

d
dx

 s -ud =

d
dx

 s -1 # ud = -1 # d
dx

 sud = -

du
dx

.

c = -1

y = x2

d
dx

 s3x2d = 3 # 2x = 6x

d
dx

 scxnd = cnxn - 1 .
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RULE 3 Constant Multiple Rule
If u is a differentiable function of x, and c is a constant, then

d
dx

 scud = c 
du
dx

.

RULE 4 Derivative Sum Rule
If u and y are differentiable functions of x, then their sum is differentiable
at every point where u and y are both differentiable. At such points,

d
dx

 su + yd =

du
dx

+

dy
dx

.

u + y

x

y

0 1

1
(1, 1)

2

2

3 (1, 3)
 

Slope

Slope
Slope � 2x

� 2(1) � 2

y � x2

y � 3x2

Slope � 3(2x)
� 6x
� 6(1) � 6

FIGURE 3.9 The graphs of and
Tripling the y-coordinates triples

the slope (Example 3).
y = 3x2 .

y = x2

Derivative definition
with ƒsxd = cusxd

Denoting Functions by u and Y
The functions we are working with
when we need a differentiation formula
are likely to be denoted by letters like ƒ
and g. When we apply the formula, we
do not want to find it using these same
letters in some other way. To guard
against this problem, we denote the
functions in differentiation rules by
letters like u and y that are not likely to
be already in use.
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EXAMPLE 4 Derivative of a Sum

Proof of Rule 4 We apply the definition of derivative to 

Combining the Sum Rule with the Constant Multiple Rule gives the Difference Rule,
which says that the derivative of a difference of differentiable functions is the difference of
their derivatives.

The Sum Rule also extends to sums of more than two functions, as long as there are
only finitely many functions in the sum. If are differentiable at x, then so is

and

EXAMPLE 5 Derivative of a Polynomial

Notice that we can differentiate any polynomial term by term, the way we differenti-
ated the polynomial in Example 5. All polynomials are differentiable everywhere.

Proof of the Sum Rule for Sums of More Than Two Functions We prove the statement

by mathematical induction (see Appendix 1). The statement is true for as was just
proved. This is Step 1 of the induction proof.

n = 2,

d
dx

 su1 + u2 +
Á

+ und =

du1

dx
+

du2

dx
+

Á
+

dun

dx

 = 3x2
+

8
3

 x - 5

 = 3x2
+

4
3

# 2x - 5 + 0

 
dy
dx

=

d
dx

 x3
+

d
dx

 a4
3

 x2b -

d
dx

 s5xd +

d
dx

 s1d

 y = x3
+

4
3

 x2
- 5x + 1

d
dx

 su1 + u2 +
Á

+ und =

du1

dx
+

du2

dx
+

Á
+

dun

dx
.

u1 + u2 +
Á

+ un ,
u1 , u2 , Á , un

d
dx

 su - yd =

d
dx

 [u + s -1dy] =

du
dx

+ s -1d 
dy
dx

=

du
dx

-

dy
dx

 = lim
h:0

 
usx + hd - usxd

h
+ lim

h:0
 
ysx + hd - ysxd

h
=

du
dx

+

dy
dx

.

 = lim
h:0

 cusx + hd - usxd
h

+

ysx + hd - ysxd
h

d
 
d
dx

 [usxd + ysxd] = lim
h:0

 
[usx + hd + ysx + hd] - [usxd + ysxd]

h

ƒsxd = usxd + ysxd :

 = 4x3
+ 12

 
dy
dx

=

d
dx

 sx4d +

d
dx

 s12xd

 y = x4
+ 12x
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Step 2 is to show that if the statement is true for any positive integer where
then it is also true for So suppose that

(1)

Then

Eq. (1)

With these steps verified, the mathematical induction principle now guarantees the
Sum Rule for every integer 

EXAMPLE 6 Finding Horizontal Tangents

Does the curve have any horizontal tangents? If so, where?

Solution The horizontal tangents, if any, occur where the slope is zero. We have,

Now solve the equation 

The curve has horizontal tangents at and The corre-
sponding points on the curve are (0, 2), (1, 1) and See Figure 3.10.

Products and Quotients

While the derivative of the sum of two functions is the sum of their derivatives, the deriva-
tive of the product of two functions is not the product of their derivatives. For instance,

The derivative of a product of two functions is the sum of two products, as we now explain.

d
dx

 sx # xd =

d
dx

 sx2d = 2x, while d
dx

 sxd # d
dx

 sxd = 1 # 1 = 1.

s -1, 1d .
-1.x = 0, 1 ,y = x4

- 2x2
+ 2

 x = 0, 1, -1.

 4xsx2
- 1d = 0

 4x3
- 4x = 0

dy
dx

= 0 for x :

dy
dx

=

d
dx

 sx4
- 2x2

+ 2d = 4x3
- 4x .

dy>dx

y = x4
- 2x2

+ 2

n Ú 2.

 =

du1

dx
+

du2

dx
+

Á
+

duk

dx
+

duk + 1

dx
.

 =

d
dx

 su1 + u2 +
Á

+ ukd +

duk + 1

dx

d
dx

 (u1 + u2 +
Á

+ uk + uk + 1)

d
dx

 su1 + u2 +
Á

+ ukd =

du1

dx
+

du2

dx
+

Á
+

duk

dx
. 

n = k + 1.k Ú n0 = 2,
n = k ,
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(++++)++++*

Call the function
defined by this sum u.

()*

Call this
function y.

Rule 4 for 
d
dx

 su + yd

x

y

0 1–1

(1, 1)(–1, 1)
1

(0, 2)

y � x4 � 2x2 � 2

FIGURE 3.10 The curve
and its horizontal

tangents (Example 6).
y = x4

- 2x2
+ 2

RULE 5 Derivative Product Rule
If u and y are differentiable at x, then so is their product uy, and

d
dx

 suyd = u 
dy
dx

+ y 
du
dx

.
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The derivative of the product uy is u times the derivative of y plus y times the deriva-
tive of u. In prime notation, In function notation,

EXAMPLE 7 Using the Product Rule

Find the derivative of

Solution We apply the Product Rule with and 

Proof of Rule 5

To change this fraction into an equivalent one that contains difference quotients for the de-
rivatives of u and y, we subtract and add in the numerator:

As h approaches zero, approaches u(x) because u, being differentiable at x, is con-
tinuous at x. The two fractions approach the values of at x and at x. In short,

In the following example, we have only numerical values with which to work.

EXAMPLE 8 Derivative from Numerical Values

Let be the product of the functions u and y. Find if

Solution From the Product Rule, in the form

y¿ = suyd¿ = uy¿ + yu¿ ,

us2d = 3, u¿s2d = -4, ys2d = 1, and y¿s2d = 2.

y¿s2dy = uy

d
dx

 suyd = u 
dy
dx

+ y 
du
dx

.

du>dxdy>dx
usx + hd

 = lim
h:0

usx + hd # lim
h:0

 
ysx + hd - ysxd

h
+ ysxd # lim

h:0
 
usx + hd - usxd

h
.

 = lim
h:0

 cusx + hd 
ysx + hd - ysxd

h
+ ysxd 

usx + hd - usxd
h

d
 
d
dx

 suyd = lim
h:0

 
usx + hdysx + hd - usx + hdysxd + usx + hdysxd - usxdysxd

h

usx + hdysxd

d
dx

 suyd = lim
h:0

 
usx + hdysx + hd - usxdysxd

h

 = 1 -
2
x3 .

 = 2 -
1
x3 - 1 -

1
x3

 
d
dx

 c1x  ax2
+

1
x b d =

1
x  a2x -

1
x2 b + ax2

+
1
x b a- 1

x2 b
y = x2

+ s1>xd :u = 1>x
y =

1
x  ax2

+
1
x  b .

d
dx

 [ƒsxdg sxd] = ƒsxdg¿sxd + g sxdƒ¿sxd .

suyd¿ = uy¿ + yu¿ .

164 Chapter 3: Differentiation

Example 3, Section 2.7.

d
dx

 a1x b = -

1

x2
 by

d
dx

 suyd = u 
dy
dx

+ y 
du
dx

, and

Picturing the Product Rule
If u(x) and y(x) are positive and
increase when x increases, and if h 7 0,

0

y(x � h)

y(x)

�y

u(x)y(x)

u(x) �y �u �y

y(x) �u

u(x � h)u(x)
�u

then the total shaded area in the picture
is

Dividing both sides of this equation by
h gives

As 

leaving

d
dx

 suyd = u 
dy
dx

+ y 
du
dx

.

¢u # ¢y

h
: 0 # dy

dx
= 0,

h : 0+ ,

-  ¢u 
¢y

h
.

=  usx + hd 
¢y

h
+ ysx + hd 

¢u
h

usx + hdysx + hd - usxdysxd
h

¢u -  ¢u¢y .
=  usx + hd ¢y + ysx + hd
usx + hdysx + hd - usxdysxd
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we have

EXAMPLE 9 Differentiating a Product in Two Ways

Find the derivative of 

Solution

(a) From the Product Rule with and we find

(b) This particular product can be differentiated as well (perhaps better) by multiplying
out the original expression for y and differentiating the resulting polynomial:

This is in agreement with our first calculation.

Just as the derivative of the product of two differentiable functions is not the product of
their derivatives, the derivative of the quotient of two functions is not the quotient of their
derivatives. What happens instead is the Quotient Rule.

 
dy
dx

= 5x4
+ 3x2

+ 6x .

 y = sx2
+ 1dsx3

+ 3d = x5
+ x3

+ 3x2
+ 3

 = 5x4
+ 3x2

+ 6x .

 = 3x4
+ 3x2

+ 2x4
+ 6x

 
d
dx

 C Ax2
+ 1 B Ax3

+ 3 B D = sx2
+ 1ds3x2d + sx3

+ 3ds2xd

y = x3
+ 3,u = x2

+ 1

y = sx2
+ 1dsx3

+ 3d .

 = s3ds2d + s1ds -4d = 6 - 4 = 2.

 y¿s2d = us2dy¿s2d + ys2du¿s2d
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RULE 6 Derivative Quotient Rule
If u and y are differentiable at x and if then the quotient is differ-
entiable at x, and

d
dx

 auy b =

y 
du
dx

- u 
dy
dx

y2 .

u>yysxd Z 0,

In function notation,

EXAMPLE 10 Using the Quotient Rule

Find the derivative of

y =

t2
- 1

t2
+ 1

.

d
dx

 c ƒsxd
g sxd

d =

g sxdƒ¿sxd - ƒsxdg¿sxd
g2sxd

.
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Solution
We apply the Quotient Rule with and 

Proof of Rule 6

To change the last fraction into an equivalent one that contains the difference quotients for
the derivatives of u and y, we subtract and add y(x)u(x) in the numerator. We then get

Taking the limit in the numerator and denominator now gives the Quotient Rule.

Negative Integer Powers of x

The Power Rule for negative integers is the same as the rule for positive integers.

 = lim
h:0

 
ysxd 

usx + hd - usxd
h

- usxd 
ysx + hd - ysxd

h
ysx + hdysxd

 .

 
d
dx

 auy b = lim
h:0

 
ysxdusx + hd - ysxdusxd + ysxdusxd - usxdysx + hd

hysx + hdysxd

 = lim
h:0

 
ysxdusx + hd - usxdysx + hd

hysx + hdysxd

 
d
dx

 auy b = lim
h:0

 

usx + hd
ysx + hd

-

usxd
ysxd

h

 =

4t
st2

+ 1d2 .

 =

2t3
+ 2t - 2t3

+ 2t
st2

+ 1d2

d
dt

 auy b =

ysdu>dtd - usdy>dtd

y2
 
dy
dt

=

st2
+ 1d # 2t - st2

- 1d # 2t

st2
+ 1d2

y = t2
+ 1:u = t2

- 1
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RULE 7 Power Rule for Negative Integers
If n is a negative integer and then

d
dx

 sxnd = nxn - 1 .

x Z 0,

EXAMPLE 11

(a) Agrees with Example 3, Section 2.7

(b)
d
dx

 a 4
x3 b = 4 

d
dx

 sx-3d = 4s -3dx-4
= -

12
x4

d
dx

 a1x b =

d
dx

 sx-1d = s -1dx-2
= -

1
x2
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Proof of Rule 7 The proof uses the Quotient Rule. If n is a negative integer, then
where m is a positive integer. Hence, and

Quotient Rule with and 

Since 

Since 

EXAMPLE 12 Tangent to a Curve

Find an equation for the tangent to the curve

at the point (1, 3) (Figure 3.11).

Solution The slope of the curve is

The slope at is

The line through (1, 3) with slope is

Point-slope equation

The choice of which rules to use in solving a differentiation problem can make a dif-
ference in how much work you have to do. Here is an example.

EXAMPLE 13 Choosing Which Rule to Use

Rather than using the Quotient Rule to find the derivative of

expand the numerator and divide by 

y =

sx - 1dsx2
- 2xd

x4 =

x3
- 3x2

+ 2x
x4 = x-1

- 3x-2
+ 2x-3 .

x4 :

y =

sx - 1dsx2
- 2xd

x4 ,

 y = -x + 4.

 y = -x + 1 + 3

 y - 3 = s -1dsx - 1d

m = -1

dy
dx
`
x = 1

= c1 -
2
x2 d

x = 1
= 1 - 2 = -1.

x = 1

dy
dx

=

d
dx

 sxd + 2 
d
dx

 a1x b = 1 + 2 a- 1
x2 b = 1 -

2
x2 .

y = x +
2
x

-m = n = nxn - 1 .

 = -mx-m - 1

m 7 0, 
d
dx

 sxmd = mxm - 1 =

0 - mxm - 1

x2m

y = xmu = 1 =

xm # d
dx

 A1 B - 1 # d
dx

 Axm B
sxmd2

 
d
dx

 sxnd =

d
dx

 a 1
xm b

xn
= x-m

= 1>xm ,n = -m ,
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x

y

0

1

1 2

2

3

3

4

(1, 3)

y � –x � 4

y � x � 2
x

FIGURE 3.11 The tangent to the curve
at (1, 3) in Example 12.

The curve has a third-quadrant portion
not shown here. We see how to graph
functions like this one in Chapter 4.

y = x + s2>xd
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Then use the Sum and Power Rules:

Second- and Higher-Order Derivatives

If is a differentiable function, then its derivative is also a function. If is
also differentiable, then we can differentiate to get a new function of x denoted by 
So The function is called the second derivative of ƒ because it is the deriv-
ative of the first derivative. Notationally,

The symbol means the operation of differentiation is performed twice.
If then and we have

Thus 

If is differentiable, its derivative, is the third derivative
of y with respect to x. The names continue as you imagine, with

denoting the nth derivative of y with respect to x for any positive integer n.
We can interpret the second derivative as the rate of change of the slope of the tangent

to the graph of at each point. You will see in the next chapter that the second de-
rivative reveals whether the graph bends upward or downward from the tangent line as we
move off the point of tangency. In the next section, we interpret both the second and third
derivatives in terms of motion along a straight line.

EXAMPLE 14 Finding Higher Derivatives

The first four derivatives of are

First derivative:

Second derivative:

Third derivative:

Fourth derivative:

The function has derivatives of all orders, the fifth and later derivatives all being zero.

y s4d
= 0.

y‡ = 6

y– = 6x - 6

y¿ = 3x2
- 6x

y = x3
- 3x2

+ 2

y = ƒsxd

y snd
=

d
dx

 y sn - 1d
=

dny

dxn = Dny

y‡ = dy–>dx = d3y>dx3y–

D2 Ax6 B = 30x4 .

y– =

dy¿

dx
=

d
dx

 A6x5 B = 30x4 .

y¿ = 6x5y = x6 ,
D2

ƒ–sxd =

d2y

dx2 =

d
dx

 ady
dx
b =

dy¿

dx
= y– = D2sƒdsxd = Dx

2 ƒsxd .

ƒ–ƒ– = sƒ¿d¿ .
ƒ– .ƒ¿

ƒ¿ƒ¿sxdy = ƒsxd

 = -
1
x2 +

6
x3 -

6
x4 .

 
dy
dx

= -x-2
- 3s -2dx-3

+ 2s -3dx-4
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How to Read the Symbols for
Derivatives

“y prime”
“y double prime”

“d squared y dx squared”

“y triple prime”
“y super n”

“d to the n of y by dx to the n”

“D to the n”Dn

dny

dxn

y snd
y‡

d2y

dx2

y–

y¿
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