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Linearization and Differentials

Sometimes we can approximate complicated functions with simpler ones that give the ac-
curacy we want for specific applications and are easier to work with. The approximating
functions discussed in this section are called linearizations, and they are based on tangent
lines. Other approximating functions, such as polynomials, are discussed in Chapter 11.

3.8 
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We introduce new variables dx and dy, called differentials, and define them in a way
that makes Leibniz’s notation for the derivative a true ratio. We use dy to estimate
error in measurement and sensitivity of a function to change. Application of these ideas
then provides for a precise proof of the Chain Rule (Section 3.5).

Linearization

As you can see in Figure 3.46, the tangent to the curve lies close to the curve near
the point of tangency. For a brief interval to either side, the y-values along the tangent line
give good approximations to the y-values on the curve. We observe this phenomenon by
zooming in on the two graphs at the point of tangency or by looking at tables of values for
the difference between ƒ(x) and its tangent line near the x-coordinate of the point of tan-
gency. Locally, every differentiable curve behaves like a straight line.

y = x2

dy>dx
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4

0
3–1

2

0
20

y � x2 and its tangent y � 2x � 1 at (1, 1). Tangent and curve very close near (1, 1).

1.2

0.8
1.20.8

1.003

0.997
1.0030.997

Tangent and curve very close throughout
entire x-interval shown.

Tangent and curve closer still. Computer
screen cannot distinguish tangent from
curve on this x-interval.

y � x2

y � 2x � 1

(1, 1)

y � x2

y � 2x � 1

(1, 1)

y � x2

y � 2x � 1

(1, 1)

y � x2

y � 2x � 1

(1, 1)

FIGURE 3.46 The more we magnify the graph of a function near a point where the
function is differentiable, the flatter the graph becomes and the more it resembles its
tangent.

In general, the tangent to at a point where ƒ is differentiable (Figure
3.47), passes through the point (a, ƒ(a)), so its point-slope equation is

Thus, this tangent line is the graph of the linear function

For as long as this line remains close to the graph of ƒ, L(x) gives a good approximation to
ƒ(x).

Lsxd = ƒsad + ƒ¿sadsx - ad .

y = ƒsad + ƒ¿sadsx - ad .

x = a ,y = ƒsxd

x

y

0 a

Slope � f '(a)

y � f (x)

(a,  f (a))

FIGURE 3.47 The tangent to the
curve 
 Lsxd = ƒsad + ƒ¿sadsx - ad .

 y = ƒsxd at x = a is the line
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EXAMPLE 1 Finding a Linearization

Find the linearization of (Figure 3.48).ƒsxd = 21 + x at x = 0

3.8 Linearization and Differentials 223

DEFINITIONS Linearization, Standard Linear Approximation
If ƒ is differentiable at then the approximating function

is the linearization of ƒ at a. The approximation

of ƒ by L is the standard linear approximation of ƒ at a. The point is the
center of the approximation.

x = a

ƒsxd L Lsxd

Lsxd = ƒsad + ƒ¿sadsx - ad

x = a ,

x

y

0–1

2

1

1 2 3 4

y � �
5
4

x
4y � 1 � x

2

y � �1 � x

FIGURE 3.48 The graph of and its
linearizations at and Figure 3.49 shows a
magnified view of the small window about 1 on the y-axis.

x = 3.x = 0
y = 21 + x

Solution Since

we have and giving the linearization

See Figure 3.49.

Look at how accurate the approximation from Example 1 is
for values of x near 0.

As we move away from zero, we lose accuracy. For example, for the lineariza-
tion gives 2 as the approximation for which is not even accurate to one decimal place.

Do not be misled by the preceding calculations into thinking that whatever we do with
a linearization is better done with a calculator. In practice, we would never use a lineariza-
tion to find a particular square root. The utility of a linearization is its ability to replace a
complicated formula by a simpler one over an entire interval of values. If we have to work 
with for x close to 0 and can tolerate the small amount of error involved, we can21 + x

23,
x = 2,

21 + x L 1 + sx>2d

Lsxd = ƒsad + ƒ¿sadsx - ad = 1 +
1
2

 Ax - 0 B = 1 +

x
2

.

ƒ¿s0d = 1>2,ƒs0d = 1

ƒ¿sxd =
1
2

 A1 + x B-1>2 ,

1.0

0–0.1 0.1 0.2

1.1

0.9

y � 1 �

y � �1 � x

2
x

FIGURE 3.49 Magnified view of the
window in Figure 3.48.
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work with instead. Of course, we then need to know how much error there is.
We have more to say on the estimation of error in Chapter 11.

A linear approximation normally loses accuracy away from its center. As Figure 3.48

suggests, the approximation will probably be too crude to be use-
ful near There, we need the linearization at 

EXAMPLE 2 Finding a Linearization at Another Point

Find the linearization of at 

Solution We evaluate the equation defining With

we have

At the linearization in Example 2 gives

which differs from the true value by less than one one-thousandth. The
linearization in Example 1 gives

a result that is off by more than 25%.

EXAMPLE 3 Finding a Linearization for the Cosine Function

Find the linearization of at (Figure 3.50).

Solution Since and 
we have

 = -x +
p
2

.

 = 0 + s -1d ax -
p
2
b

 Lsxd = ƒsad + ƒ¿sadsx - ad

-1,
-sin sp>2d =ƒ¿sp>2d =ƒ¿sxd = -sin x,ƒsp>2d = cossp>2d = 0,

x = p>2ƒsxd = cos x

21 + x = 21 + 3.2 L 1 +

3.2
2

= 1 + 1.6 = 2.6,

24.2 L 2.04939

21 + x = 21 + 3.2 L

5
4

+

3.2
4

= 1.250 + 0.800 = 2.050,

x = 3.2,

Lsxd = 2 +
1
4

 Ax - 3 B =

5
4

+

x
4

.

ƒs3d = 2, ƒ¿s3d =
1
2

 A1 + x B-1>2 `
x = 3

=
1
4

,

Lsxd at a = 3.

x = 3.ƒsxd = 21 + x

x = 3.x = 3.
21 + x L 1 + sx>2d

1 + sx>2d
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Approximation True value

1.095445

1.024695

1.002497 610-521.005 L 1 +

0.005
2

= 1.00250

610-321.05 L 1 +

0.05
2

= 1.025

610-221.2 L 1 +

0.2
2

= 1.10

ƒ True value � approximation ƒ

x

y

0 �
2 y � cos x

y � –x � �
2

FIGURE 3.50 The graph of 
and its linearization at Near

(Example 3).
x = p>2, cos x L -x + sp>2d

x = p>2.
ƒsxd = cos x

4100 AWL/Thomas_ch03p147-243  8/19/04  11:17 AM  Page 224

http://media.pearsoncmg.com/aw/aw_mml_shared_1/copyright.html
bounce03.html?4_1_l
bounce03.html?8_3_qt


An important linear approximation for roots and powers is

(Exercise 15). This approximation, good for values of x sufficiently close to zero, has
broad application. For example, when x is small,

Differentials

We sometimes use the Leibniz notation to represent the derivative of y with respect
to x. Contrary to its appearance, it is not a ratio. We now introduce two new variables dx
and dy with the property that if their ratio exists, it will be equal to the derivative.

dy>dx

 
121 - x2

= s1 - x2d-1>2
L 1 + a- 1

2
bs -x2d = 1 +

1
2

 x2

k = 1>3;  replace x by 5x4 . 23 1 + 5x4
= s1 + 5x4d1>3

L 1 +
1
3

 A5x4 B = 1 +

5
3

 x4

k = -1;  replace x by -x . 
1

1 - x
= s1 - xd-1

L 1 + s -1ds -xd = 1 + x

k = 1>2 21 + x L 1 +
1
2

 x

s1 + xdk
L 1 + kx sx near 0; any number kd
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replace x by -x2 .

k = -1>2;

DEFINITION Differential
Let be a differentiable function. The differential dx is an independent
variable. The differential dy is

dy = ƒ¿sxd dx .

y = ƒsxd

Unlike the independent variable dx, the variable dy is always a dependent variable. It
depends on both x and dx. If dx is given a specific value and x is a particular number in the
domain of the function ƒ, then the numerical value of dy is determined.

EXAMPLE 4 Finding the Differential dy

(a) Find dy if 

(b) Find the value of dy when and 

Solution

(a)

(b) Substituting and in the expression for dy, we have

The geometric meaning of differentials is shown in Figure 3.51. Let and set
The corresponding change in is

¢y = ƒsa + dxd - ƒsad .

y = ƒsxddx = ¢x .
x = a

dy = s5 # 14
+ 37d0.2 = 8.4.

dx = 0.2x = 1

dy = s5x4
+ 37d dx

dx = 0.2.x = 1

y = x5
+ 37x .
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The corresponding change in the tangent line L is

That is, the change in the linearization of ƒ is precisely the value of the differential dy
when and Therefore, dy represents the amount the tangent line rises or
falls when x changes by an amount 

If then the quotient of the differential dy by the differential dx is equal to the
derivative because

We sometimes write

in place of calling dƒ the differential of ƒ. For instance, if
then

Every differentiation formula like

has a corresponding differential form like

dsu + yd = du + dy or dssin ud = cos u du .

dsu + yd
dx

=

du
dx

+

dy
dx
 or dssin ud

dx
= cos u  

du
dx

df = ds3x2
- 6d = 6x dx .

ƒsxd = 3x2
- 6,dy = ƒ¿sxd dx ,

df = ƒ¿sxd dx

dy , dx =

ƒ¿sxd dx
dx

= ƒ¿sxd =

dy
dx

.

ƒ¿sxd
dx Z 0,

dx = ¢x.
dx = ¢x .x = a

 = ƒ¿(a) dx.

 = ƒ(a) + ƒ¿(a)[(a + dx) - a] - ƒ(a)

 ¢L = L(a + dx) - L(a)

226 Chapter 3: Differentiation

(++++++)++++++*

L(a � dx)
()*

L(a)

x

y

0 a

y � f (x)

�y � f (a � dx) � f (a)

�L � f '(a)dx

dx � �x

(a, f (a))

Tangent
line

a � dx

When dx is a small change in x,
the corresponding change in
the linearization is precisely dy.

FIGURE 3.51 Geometrically, the differential dy is the change
in the linearization of ƒ when changes by an amount

dx = ¢x .
x = a¢L

4100 AWL/Thomas_ch03p147-243  8/19/04  11:17 AM  Page 226

http://media.pearsoncmg.com/aw/aw_mml_shared_1/copyright.html


EXAMPLE 5 Finding Differentials of Functions

(a)

(b)

Estimating with Differentials

Suppose we know the value of a differentiable function ƒ(x) at a point a and want to pre-
dict how much this value will change if we move to a nearby point If dx is small,
then we can see from Figure 3.51 that is approximately equal to the differential dy.
Since

the differential approximation gives

where Thus the approximation can be used to calculate 
when ƒ(a) is known and dx is small.

EXAMPLE 6 Estimating with Differentials

The radius r of a circle increases from to 10.1 m (Figure 3.52). Use dA to esti-
mate the increase in the circle’s area A. Estimate the area of the enlarged circle and com-
pare your estimate to the true area.

Solution Since the estimated increase is

Thus,

The area of a circle of radius 10.1 m is approximately 
The true area is

The error in our estimate is which is the difference 

Error in Differential Approximation

Let ƒ(x) be differentiable at and suppose that is an increment of x. We
have two ways to describe the change in ƒ as x changes from a to 

How well does dƒ approximate ¢ƒ?

 The differential estimate: dƒ = ƒ¿sad ¢x .

The true change:  ¢ƒ = ƒsa + ¢xd - ƒsad

a + ¢x :
dx = ¢xx = a

¢A - dA .0.01p m2,

 = 102.01p m2.

 As10.1d = ps10.1d2

102p m2.

 = ps10d2
+ 2p = 102p .

 As10 + 0.1d L As10d + 2p

dA = A¿sad dr = 2pa dr = 2ps10ds0.1d = 2p m2.

A = pr2 ,

a = 10 m

ƒsa + dxd¢y L dydx = ¢x .

ƒsa + dxd L ƒsad + dy

ƒsa + dxd = ƒsad + ¢y ,

¢y
a + dx .

d a x
x + 1

b =

sx + 1d dx - x dsx + 1d
sx + 1d2 =

x dx + dx - x dx
sx + 1d2 =

dx
sx + 1d2

dstan 2xd = sec2s2xd ds2xd = 2 sec2 2x dx

3.8 Linearization and Differentials 227

�A ≈ dA � 2�a dr

a � 10

dr � 0.1

FIGURE 3.52 When dr is
small compared with a, as it is
when and the
differential gives
a way to estimate the area of the
circle with radius 
(Example 6).

r = a + dr

dA = 2pa dr
a = 10,dr = 0.1
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We measure the approximation error by subtracting dƒ from 

As the difference quotient

approaches (remember the definition of ), so the quantity in parentheses be-
comes a very small number (which is why we called it ). In fact, as When

is small, the approximation error is smaller still.

Although we do not know exactly how small the error is and will not be able to make much
progress on this front until Chapter 11, there is something worth noting here, namely the
form taken by the equation.

¢ƒ = ƒ¿(a)¢x + P ¢x

P ¢x¢x
¢x : 0.P : 0P

ƒ¿sadƒ¿sad

ƒsa + ¢xd - ƒsad
¢x

¢x : 0,

 = P
#
¢x .

 = aƒ(a + ¢x) - ƒ(a)

¢x
- ƒ¿(a)b #

¢x

 = ƒ(a + ¢x) - ƒ(a) - ƒ¿(a)¢x

 = ¢ƒ - ƒ¿sad¢x

 Approximation error = ¢ƒ - dƒ

¢f :

228 Chapter 3: Differentiation

(++++)++++*

�ƒ

(+++++++)+++++++*

Call this part P

()*

true
change

(+)+*

estimated
change

()*

error

Change in near 

If is differentiable at and x changes from a to the
change in ƒ is given by an equation of the form

(1)

in which as ¢x : 0.P : 0

¢y = ƒ¿sad ¢x + P ¢x

¢y
a + ¢x ,x = ay = ƒsxd

x � ay � ƒsxd

In Example 6 we found that

so the approximation error is and 

Equation (1) enables us to bring the proof of the Chain Rule to a successful conclu-
sion.

Proof of the Chain Rule
Our goal is to show that if ƒ(u) is a differentiable function of u and is a dif-

ferentiable function of x, then the composite is a differentiable function of x.y = ƒsg sxdd
u = g sxd

0.01p>0.1 = 0.1p m.
P = 0.01p>¢r =¢A - dA = P ¢r = 0.01p

¢A = p(10.1)2
- p(10)2

= (102.01 - 100)p = (2p + 0.01p) m2

()*

error
()*

dA
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More precisely, if g is differentiable at and ƒ is differentiable at then the compos-
ite is differentiable at and

Let be an increment in x and let and be the corresponding increments in u
and y. Applying Equation (1) we have,

where Similarly,

where as Notice also that Combining the equations
for and gives

so

Since and go to zero as goes to zero, three of the four terms on the right vanish in
the limit, leaving

This concludes the proof.

Sensitivity to Change

The equation tells how sensitive the output of ƒ is to a change in input at dif-
ferent values of x. The larger the value of at x, the greater the effect of a given change dx.
As we move from a to a nearby point we can describe the change in ƒ in three ways:

True Estimated

Absolute change

Relative change

Percentage change

EXAMPLE 7 Finding the Depth of a Well

You want to calculate the depth of a well from the equation by timing how long it
takes a heavy stone you drop to splash into the water below. How sensitive will your calcu-
lations be to a 0.1-sec error in measuring the time?

Solution The size of ds in the equation

ds = 32t dt

s = 16t2

df

ƒsad
* 100

¢f

ƒsad
* 100

df

ƒsad
¢f

ƒsad

df = ƒ¿sad dx¢f = ƒsa + dxd - ƒsad

a + dx ,
ƒ¿

df = ƒ¿sxd dx

dy
dx
`
x=x0

= lim
¢x:0

 
¢y

¢x
= ƒ¿su0dg¿sx0d = ƒ¿sgsx0dd # g¿sx0d .

¢xP2P1

¢y

¢x
= ƒ¿su0dg¿sx0d + P2 g¿sx0d + ƒ¿su0dP1 + P2P1 .

¢y = sƒ¿su0d + P2dsg¿sx0d + P1d¢x ,

¢y¢u
¢u : 0 as ¢x : 0.¢u : 0.P2 : 0

¢y = ƒ¿su0d¢u + P2 ¢u = sƒ¿su0d + P2d¢u ,

P1 : 0 as ¢x : 0.

¢u = g¿sx0d¢x + P1 ¢x = sg¿sx0d + P1d¢x ,

¢y¢u¢x

dy
dx
`
x=x0

= ƒ¿s gsx0dd # g¿sx0d .

x0

g sx0d ,x0
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depends on how big t is. If the change caused by is about

Three seconds later at the change caused by the same dt is

The estimated depth of the well differs from its true depth by a greater distance the longer
the time it takes the stone to splash into the water below, for a given error in measuring the
time.

EXAMPLE 8 Unclogging Arteries

In the late 1830s, French physiologist Jean Poiseuille (“pwa-ZOY”) discovered the for-
mula we use today to predict how much the radius of a partially clogged artery has to be
expanded to restore normal flow. His formula,

says that the volume V of fluid flowing through a small pipe or tube in a unit of time at a
fixed pressure is a constant times the fourth power of the tube’s radius r. How will a 10%
increase in r affect V?

Solution The differentials of r and V are related by the equation

The relative change in V is

The relative change in V is 4 times the relative change in r, so a 10% increase in r will pro-
duce a 40% increase in the flow.

EXAMPLE 9 Converting Mass to Energy

Newton’s second law,

is stated with the assumption that mass is constant, but we know this is not strictly true be-
cause the mass of a body increases with velocity. In Einstein’s corrected formula, mass has
the value

where the “rest mass” represents the mass of a body that is not moving and c is the
speed of light, which is about 300,000 km sec. Use the approximation

(2)

to estimate the increase in mass resulting from the added velocity y.¢m

121 - x2
L 1 +

1
2

 x2

>m0

m =

m021 - y2>c2
,

F =

d
dt

 smyd = m 
dy
dt

= ma ,

dV
V

=

4kr3 dr
kr4 = 4 

dr
r .

dV =

dV
dr

 dr = 4kr3 dr .

V = kr4 ,

ds = 32s5ds0.1d = 16 ft .

t = 5 sec,

ds = 32s2ds0.1d = 6.4 ft .

dt = 0.1t = 2 sec,

230 Chapter 3: Differentiation

Blockage

Opaque
dye

Angiography

An opaque dye is injected into a partially
blocked artery to make the inside visible under
X-rays.  This reveals the location and severity of
the blockage.

Inflatable
balloon on
    catheter

Angioplasty

A balloon-tipped catheter is inflated inside the
artery to widen it at the blockage site.
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Solution When y is very small compared with is close to zero and it is safe to
use the approximation

Eq. (2) with 

to obtain

or

(3)

Equation (3) expresses the increase in mass that results from the added velocity y.

Energy Interpretation
In Newtonian physics, is the kinetic energy (KE) of the body, and if we rewrite
Equation (3) in the form

we see that

or

So the change in kinetic energy in going from velocity 0 to velocity y is approxi-
mately equal to the change in mass times the square of the speed of light. Using

we see that a small change in mass can create a large change in
energy.
c L 3 * 108 m>sec,

s¢mdc2 ,
¢sKEd

s¢mdc2
L ¢sKEd .

sm - m0dc2
L

1
2

 m0 y2
=

1
2

 m0 y2
-

1
2

 m0s0d2
= ¢sKEd ,

sm - m0dc2
L

1
2

 m0 y2 ,

s1>2dm0 y2

m L m0 +
1
2

 m0 y2 a 1
c2 b .

m =

m021 - y2>c2
L m0 c1 +

1
2

 ay2

c2 b d = m0 +
1
2

 m0 y2 a 1
c2 b ,

x =

y
c

121 - y2>c2
L 1 +

1
2

 ay2

c2 b

c, y2>c2
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