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Derivatives of Trigonometric Functions

Many of the phenomena we want information about are approximately periodic (electro-
magnetic fields, heart rhythms, tides, weather). The derivatives of sines and cosines play a
key role in describing periodic changes. This section shows how to differentiate the six ba-
sic trigonometric functions.

Derivative of the Sine Function

To calculate the derivative of for x measured in radians, we combine the lim-
its in Example 5a and Theorem 7 in Section 2.4 with the angle sum identity for the sine:

sin sx + hd = sin x cos h + cos x sin h .

ƒsxd = sin x ,

3.4
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If then

Derivative definition

Sine angle sum identity

 = cos x .
 = sin x # 0 + cos x # 1

 = sin x # lim
h:0

 
cos h - 1

h
+ cos x # lim

h:0
 
sin h

h

 = lim
h:0

 asin x # cos h - 1
h

b + lim
h:0

 acos x # sin h
h
b

 = lim
h:0

 
sin x scos h - 1d + cos x sin h

h

 = lim
h:0

 
ssin x cos h + cos x sin hd - sin x

h

 = lim
h:0

 
sin sx + hd - sin x

h

 ƒ¿sxd = lim
h:0

 
ƒsx + hd - ƒsxd

h

ƒsxd = sin x ,
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Example 5(a) and
Theorem 7, Section 2.4

The derivative of the sine function is the cosine function:

d
dx

 ssin xd = cos x .

EXAMPLE 1 Derivatives Involving the Sine

(a)

Difference Rule

(b)

Product Rule

(c)

Quotient Rule

Derivative of the Cosine Function

With the help of the angle sum formula for the cosine,

cos sx + hd = cos x cos h - sin x sin h ,

 =

x cos x - sin x
x2 .

 
dy
dx

=

x # d
dx

 Asin x B - sin x # 1

x2

y =

sin x
x :

 = x2 cos x + 2x sin x .

 
dy
dx

= x2 
d
dx

 Asin x B + 2x sin x

y = x2 sin x :
 = 2x - cos x .

 
dy
dx

= 2x -

d
dx

 Asin x B
y = x2

- sin x :
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we have

Derivative definition

 = -sin x .

 = cos x # 0 - sin x # 1

 = cos x # lim
h:0

 
cos h - 1

h
- sin x # lim

h:0
 
sin h

h

 = lim
h:0

 cos x # cos h - 1
h

- lim
h:0

 sin x # sin h
h

 = lim
h:0

 
cos xscos h - 1d - sin x sin h

h

 = lim
h:0

 
scos x cos h - sin x sin hd - cos x

h

 
d
dx

 scos xd = lim
h:0

 
cos sx + hd - cos x

h
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Cosine angle sum
identity

Example 5(a) and
Theorem 7, Section 2.4

The derivative of the cosine function is the negative of the sine function:

d
dx

 scos xd = -sin x

1

x

y

0–	 	
–1

1

x

y'

0–	 	
–1

y � cos x

y' � –sin x

FIGURE 3.23 The curve as
the graph of the slopes of the tangents to
the curve y = cos x .

y¿ = -sin x

Figure 3.23 shows a way to visualize this result.

EXAMPLE 2 Derivatives Involving the Cosine

(a)

Sum Rule

(b)

Product Rule

(c)

Quotient Rule

 =
1

1 - sin x
.

sin2 x + cos2 x = 1 =

1 - sin x
s1 - sin xd2

 =

s1 - sin xds -sin xd - cos xs0 - cos xd
s1 - sin xd2

 
dy
dx

=

A1 - sin x B  d
dx

 Acos x B - cos x 
d
dx

 A1 - sin x B
s1 - sin xd2

y =

cos x
1 - sin x

:

 = cos2 x - sin2 x .

 = sin xs -sin xd + cos xscos xd

 
dy
dx

= sin x 
d
dx

 Acos x B + cos x 
d
dx

 Asin x B
y = sin x cos x :

 = 5 - sin x.

 
dy
dx

=

d
dx

 s5xd +

d
dx

 Acos x B
y = 5x + cos x :
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Simple Harmonic Motion

The motion of a body bobbing freely up and down on the end of a spring or bungee cord is
an example of simple harmonic motion. The next example describes a case in which there
are no opposing forces such as friction or buoyancy to slow the motion down.

EXAMPLE 3 Motion on a Spring

A body hanging from a spring (Figure 3.24) is stretched 5 units beyond its rest position
and released at time to bob up and down. Its position at any later time t is

What are its velocity and acceleration at time t ?

Solution We have

Position:

Velocity:

Acceleration:

Notice how much we can learn from these equations:

1. As time passes, the weight moves down and up between and on the
s-axis. The amplitude of the motion is 5. The period of the motion is 

2. The velocity attains its greatest magnitude, 5, when as the graphs
show in Figure 3.25. Hence, the speed of the weight, is greatest when

that is, when (the rest position). The speed of the weight is zero when
Thisoccurswhen at the endpoints of the interval of motion.

3. The acceleration value is always the exact opposite of the position value. When the
weight is above the rest position, gravity is pulling it back down; when the weight is
below the rest position, the spring is pulling it back up.

4. The acceleration, is zero only at the rest position, where and
the force of gravity and the force from the spring offset each other. When the weight is
anywhere else, the two forces are unequal and acceleration is nonzero. The accelera-
tion is greatest in magnitude at the points farthest from the rest position, where

EXAMPLE 4 Jerk

The jerk of the simple harmonic motion in Example 3 is

It has its greatest magnitude when not at the extremes of the displacement but
at the rest position, where the acceleration changes direction and sign.

Derivatives of the Other Basic Trigonometric Functions

Because sin x and cos x are differentiable functions of x, the related functions

tan x =

sin x
cos x , cot x =

cos x
sin x

 , sec x =
1

cos x , and csc x =
1

sin x

sin t = ;1,

j =

da
dt

=

d
dt

 s -5 cos td = 5 sin t .

cos t = ;1.

cos t = 0a = -5 cos t ,

s = 5 cos t = ;5,sin t = 0.
s = 0cos t = 0,

ƒ y ƒ = 5 ƒ  sin t ƒ ,
cos t = 0,y = -5 sin t

2p .
s = 5s = -5

a =

dy
dt

=

d
dt

 s -5 sin td = -5 cos t .

y =

ds
dt

=

d
dt

 s5 cos td = -5 sin t

s = 5 cos t

s = 5 cos t .

t = 0
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s

0

–5

5

Rest
position

Position at
t � 0

FIGURE 3.24 A body hanging from
a vertical spring and then displaced
oscillates above and below its rest position.
Its motion is described by trigonometric
functions (Example 3).

t
0

s, y

y � –5 sin t s � 5 cos t
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FIGURE 3.25 The graphs of the position
and velocity of the body in Example 3.
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are differentiable at every value of x at which they are defined. Their derivatives, calcu-
lated from the Quotient Rule, are given by the following formulas. Notice the negative
signs in the derivative formulas for the cofunctions.
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Derivatives of the Other Trigonometric Functions

 
d
dx

 scsc xd = -csc x cot x

 
d
dx

 scot xd = -csc2 x

 
d
dx

 ssec xd = sec x tan x

 
d
dx

 stan xd = sec2 x

To show a typical calculation, we derive the derivative of the tangent function. The
other derivations are left to Exercise 50.

EXAMPLE 5

Find d(tan x) dx.

Solution

Quotient Rule

EXAMPLE 6

Find 

Solution

Product Rule

 = sec3 x + sec x tan2 x

 = sec xssec2 xd + tan xssec x tan xd

 = sec x 
d
dx

 A tan x B + tan x 
d
dx

 Asec x B
 y– =

d
dx

 ssec x tan xd

 y¿ = sec x tan x

 y = sec x

y– if y = sec x .

 =
1

cos2 x
= sec2 x

 =

cos2 x + sin2 x
cos2 x

 =

cos x cos x - sin x s -sin xd
cos2 x

 
d
dx

 A tan x B =

d
dx

 a sin x
cos x b =

cos x 
d
dx

 Asin x B - sin x 
d
dx

 Acos x B
cos2 x

>
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The differentiability of the trigonometric functions throughout their domains gives
another proof of their continuity at every point in their domains (Theorem 1, Section 3.1).
So we can calculate limits of algebraic combinations and composites of trigonometric
functions by direct substitution.

EXAMPLE 7 Finding a Trigonometric Limit

lim
x:0

 
22 + sec x

cos sp - tan xd
=

22 + sec 0
cos sp - tan 0d

=

22 + 1
cos sp - 0d

=

23
-1

= -23
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