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The Chain Rule and Parametric Equations

We know how to differentiate and but how do we
differentiate a composite like The differentiation formu-
las we have studied so far do not tell us how to calculate So how do we find the de-
rivative of The answer is, with the Chain Rule, which says that the derivative
of the composite of two differentiable functions is the product of their derivatives evalu-
ated at appropriate points. The Chain Rule is one of the most important and widely used
rules of differentiation. This section describes the rule and how to use it. We then apply the
rule to describe curves in the plane and their tangent lines in another way.

F = ƒ � g?
F¿sxd .

Fsxd = ƒsg sxdd = sin sx2
- 4d?

u = g sxd = x2
- 4,y = ƒsud = sin u

3.5
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Derivative of a Composite Function

We begin with examples.

EXAMPLE 1 Relating Derivatives

The function is the composite of the functions and 

How are the derivatives of these functions related?

Solution We have

Since we see that

Is it an accident that

If we think of the derivative as a rate of change, our intuition allows us to see that this rela-
tionship is reasonable. If changes half as fast as u and changes three
times as fast as x, then we expect y to change times as fast as x. This effect is much like
that of a multiple gear train (Figure 3.26).

EXAMPLE 2

The function

is the composite of and Calculating derivatives, we see that

Calculating the derivative from the expanded formula, we get

Once again,

The derivative of the composite function ƒ(g (x)) at x is the derivative of ƒ at g (x)
times the derivative of g at x. This is known as the Chain Rule (Figure 3.27).
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32

1

C: y turns B: u turns A: x turns

FIGURE 3.26 When gear A makes x
turns, gear B makes u turns and gear C
makes y turns. By comparing circumferences
or counting teeth, we see that 
(C turns one-half turn for each B turn)
and (B turns three times for A’s
one), so Thus, 
s1>2ds3d = sdy>dudsdu>dxd .

dy>dx = 3>2 =y = 3x>2.
u = 3x

y = u>2
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Intuitive “Proof” of the Chain Rule:
Let be the change in u corresponding to a change of in x, that is

Then the corresponding change in y is

It would be tempting to write

(1)

and take the limit as 

 =

dy
du

 
du
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.

 = lim
¢u:0

 
¢y

¢u
# lim

¢x:0
 
¢u
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# ¢u
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¢y
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¢x : 0:

¢y

¢x
=

¢y

¢u
# ¢u

¢x

¢y = ƒsu + ¢ud - ƒsud .

¢u = g sx + ¢xd - g sxd

¢x¢u
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x

g f

Composite f ˚ g

Rate of change at
x is f '(g(x)) • g'(x).

Rate of change
at x is g'(x).

Rate of change
at g(x) is f '(g(x)).

u � g(x) y � f (u) � f (g(x))

FIGURE 3.27 Rates of change multiply: The derivative of at x is the
derivative of ƒ at g (x) times the derivative of g at x.

ƒ � g

THEOREM 3 The Chain Rule
If ƒ(u) is differentiable at the point and is differentiable at x, then
the composite function is differentiable at x, and

In Leibniz’s notation, if and then

where is evaluated at u = g sxd .dy>du

dy
dx

=

dy
du

# du
dx

,

u = g sxd ,y = ƒsud

sƒ � gd¿sxd = ƒ¿sg sxdd # g¿sxd .

sƒ � gdsxd = ƒsg sxdd
g (x)u = gsxd

(Note that as
since g is continuous.)

¢x : 0¢u : 0
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The only flaw in this reasoning is that in Equation (1) it might happen that (even
when ) and, of course, we can’t divide by 0. The proof requires a different ap-
proach to overcome this flaw, and we give a precise proof in Section 3.8.

EXAMPLE 3 Applying the Chain Rule

An object moves along the x-axis so that its position at any time is given by
Find the velocity of the object as a function of t.

Solution We know that the velocity is . In this instance, x is a composite function:
and We have

By the Chain Rule,

As we see from Example 3, a difficulty with the Leibniz notation is that it doesn’t state
specifically where the derivatives are supposed to be evaluated.

“Outside-Inside” Rule

It sometimes helps to think about the Chain Rule this way: If then

In words, differentiate the “outside” function ƒ and evaluate it at the “inside” function g (x)
left alone; then multiply by the derivative of the “inside function.”

EXAMPLE 4 Differentiating from the Outside In

Differentiate with respect to x.

Solution

Repeated Use of the Chain Rule

We sometimes have to use the Chain Rule two or more times to find a derivative. Here is
an example.

d
dx

 sin (x2
+ x) = cos (x2

+ x) # (2x + 1)

sin sx2
+ xd

dy
dx

= ƒ¿sg sxdd # g¿sxd .

y = ƒsg sxdd ,

 = -2t sin st2
+ 1d .

 = -sin st2
+ 1d # 2t

 = -sin sud # 2t

 
dx
dt

=

dx
du

# du
dt

u = t2
+ 1 

du
dt

= 2t .

x = cossud 
dx
du

= -sin sud

u = t2
+ 1.x = cossud

dx>dt

xstd = cos st2
+ 1d .

t Ú 0

¢x Z 0
¢u = 0
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evaluated at u
dx
du

(+)+*

inside
(+)+*

inside
left alone

(+)+*

derivative of
the inside
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EXAMPLE 5 A Three-Link “Chain”

Find the derivative of 

Solution Notice here that the tangent is a function of whereas the sine is a
function of 2t, which is itself a function of t. Therefore, by the Chain Rule,

The Chain Rule with Powers of a Function

If ƒ is a differentiable function of u and if u is a differentiable function of x, then substitut-
ing into the Chain Rule formula

leads to the formula

Here’s an example of how it works: If n is a positive or negative integer and 
the Power Rules (Rules 2 and 7) tell us that If u is a differentiable function
of x, then we can use the Chain Rule to extend this to the Power Chain Rule:

EXAMPLE 6 Applying the Power Chain Rule

(a)

(b)

In part (b) we could also have found the derivative with the Quotient Rule.

 = -

3
s3x - 2d2

 = -1s3x - 2d-2s3d

 = -1s3x - 2d-2 
d
dx

 s3x - 2d

 
d
dx

 a 1
3x - 2

b =

d
dx

s3x - 2d-1

 = 7s5x3
- x4d6s15x2

- 4x3d
 = 7s5x3

- x4d6s5 # 3x2
- 4x3d

 
d
dx

 s5x3
- x4d7

= 7s5x3
- x4d6 

d
dx

 A5x3
- x4 B

d
du

 Aun B = nun - 1d
dx

 un
= nun - 1 

du
dx

.

ƒ¿sud = nun - 1 .
ƒsud = un ,

d
dx

 ƒsud = ƒ¿sud 
du
dx

.

dy
dx

=

dy
du

# du
dx

y = ƒsud

 = -2scos 2td sec2 s5 - sin 2td .

 = sec2 s5 - sin 2td # s -cos 2td # 2

 = sec2 s5 - sin 2td # a0 - cos 2t #
d
dt

 A2t B b
 = sec2 s5 - sin 2td # d

dt
 A5 - sin 2t B

 g¿std =

d
dt

 A tan A5 - sin 2t B B

5 - sin 2t ,

g std = tan s5 - sin 2td .
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HISTORICAL BIOGRAPHY

Johann Bernoulli
(1667–1748)

Derivative of tan u with
u = 5 - sin 2t

Derivative of 
with u = 2t

5 - sin u

Power Chain Rule with
u = 5x3

- x4, n = 7

Power Chain Rule with
u = 3x - 2, n = -1
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EXAMPLE 7 Finding Tangent Slopes

(a) Find the slope of the line tangent to the curve at the point where 

(b) Show that the slope of every line tangent to the curve is positive.

Solution

(a) Power Chain Rule with 

The tangent line has slope

(b)

Power Chain Rule with 

At any point (x, y) on the curve, and the slope of the tangent line is

the quotient of two positive numbers.

EXAMPLE 8 Radians Versus Degrees

It is important to remember that the formulas for the derivatives of both sin x and cos x
were obtained under the assumption that x is measured in radians, not degrees. The Chain
Rule gives us new insight into the difference between the two. Since radians,

radians where x° means the angle x measured in degrees.
By the Chain Rule,

See Figure 3.28. Similarly, the derivative of 
The factor annoying in the first derivative, would compound with repeated

differentiation. We see at a glance the compelling reason for the use of radian measure.

Parametric Equations

Instead of describing a curve by expressing the y-coordinate of a point P(x, y) on the curve
as a function of x, it is sometimes more convenient to describe the curve by expressing
both coordinates as functions of a third variable t. Figure 3.29 shows the path of a moving
particle described by a pair of equations, and For studying motion,y = g std .x = ƒstd

p>180,
cos sx°d is -sp>180d sin sx°d .

d
dx

 sin sx°d =

d
dx

 sin a px
180
b =

p
180

 cos a px
180
b =

p
180

 cos sx°d .

x° = px>180
180° = p

dy
dx

=

6
s1 - 2xd4 ,

x Z 1>2
 =

6
s1 - 2xd4

 = -3s1 - 2xd-4 # s -2d

u = s1 - 2xd, n = -3 = -3s1 - 2xd-4 # d
dx

 s1 - 2xd

 
dy
dx

=

d
dx

 s1 - 2xd-3

dy
dx
`
x =p>3

= 5 a23
2
b4

 a1
2
b =

45
32

.

 = 5 sin4 x cos x

u = sin x, n = 5 
dy
dx

= 5 sin4 x # d
dx

 sin x

y = 1>s1 - 2xd3

x = p>3.y = sin5 x
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sinn x means ssin xdn, n Z -1.
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t usually denotes time. Equations like these are better than a Cartesian formula because
they tell us the particle’s position at any time t.sx, yd = sƒstd, g stdd

196 Chapter 3: Differentiation

x

y

1

180
y � sin x

y � sin(x°) � sin �x
180

FIGURE 3.28 oscillates only times as often as oscillates. Its maximum
slope is at (Example 8).x = 0p/180

sin xp/180Sin sx°d

( f (t), g(t))

Position of particle
at time t

FIGURE 3.29 The path traced by a
particle moving in the xy-plane is not
always the graph of a function of x or a
function of y.

DEFINITION Parametric Curve
If x and y are given as functions

over an interval of t-values, then the set of points defined by
these equations is a parametric curve. The equations are parametric equations
for the curve.

sx, yd = sƒstd, gstdd
x = ƒstd, y = g std

The variable t is a parameter for the curve, and its domain I is the parameter inter-
val. If I is a closed interval, the point (ƒ(a), g (a)) is the initial point of the
curve. The point (ƒ(b), g (b)) is the terminal point. When we give parametric equations
and a parameter interval for a curve, we say that we have parametrized the curve. The
equations and interval together constitute a parametrization of the curve.

EXAMPLE 9 Moving Counterclockwise on a Circle

Graph the parametric curves

(a)

(b)

Solution

(a) Since the parametric curve lies along the unit circle
As t increases from 0 to the point starts at

(1, 0) and traces the entire circle once counterclockwise (Figure 3.30).

(b) For we have
The parametrization describes a motion that begins at the point (a, 0) and traverses the
circle once counterclockwise, returning to (a, 0) at t = 2p .x2

+ y2
= a2

x2
+ y2

= a2 cos2 t + a2 sin2 t = a2 .x = a cos t, y = a sin t, 0 … t … 2p ,

sx, yd = scos t, sin td2p ,x2
+ y2

= 1.
x2

+ y2
= cos2 t + sin2 t = 1,

x = a cos t,  y = a sin t,  0 … t … 2p .

x = cos t,  y = sin t,  0 … t … 2p .

a … t … b ,

x
0

t

(1, 0)

y

x2 � y2 � 1

P(cos t, sin t)

t � 0t � �

 t � 3�
2

 t � �
2

FIGURE 3.30 The equations 
and describe motion on the circle

The arrow shows the
direction of increasing t (Example 9).
x2

+ y2
= 1.

y = sin t
x = cos t
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EXAMPLE 10 Moving Along a Parabola

The position P(x, y) of a particle moving in the xy-plane is given by the equations and pa-
rameter interval

Identify the path traced by the particle and describe the motion.

Solution We try to identify the path by eliminating t between the equations and
With any luck, this will produce a recognizable algebraic relation between x and y.

We find that

Thus, the particle’s position coordinates satisfy the equation so the particle moves
along the parabola 

It would be a mistake, however, to conclude that the particle’s path is the entire
parabola it is only half the parabola. The particle’s x-coordinate is never negative.
The particle starts at (0, 0) when and rises into the first quadrant as t increases
(Figure 3.31). The parameter interval is and there is no terminal point.

EXAMPLE 11 Parametrizing a Line Segment

Find a parametrization for the line segment with endpoints and (3, 5).

Solution Using we create the parametric equations

These represent a line, as we can see by solving each equation for t and equating to obtain

This line goes through the point when We determine a and b so that the line
goes through (3, 5) when 

Therefore,

is a parametrization of the line segment with initial point and terminal point (3, 5).

Slopes of Parametrized Curves

A parametrized curve and is differentiable at t if ƒ and g are differen-
tiable at t. At a point on a differentiable parametrized curve where y is also a differentiable
function of x, the derivatives , , and are related by the Chain Rule:

If we may divide both sides of this equation by to solve for .dy>dxdx>dtdx>dt Z 0,

dy
dt

=

dy
dx

# dx
dt

 .

dy>dxdx>dtdy>dt

y = g stdx = ƒstd

s -2, 1d

x = -2 + 5t, y = 1 + 4t, 0 … t … 1

y = 5 when t = 1 .5 = 1 + b Q b = 4

x = 3 when t = 1 .3 = -2 + a Q a = 5

t = 1.
t = 0.s -2, 1d

x + 2
a =

y - 1
b

.

x = -2 + at, y = 1 + bt .

s -2, 1d

s -2, 1d

[0, q d
t = 0

y = x2 ;

y = x2 .
y = x2 ,

y = t = A1t B2 = x2 .

y = t .
x = 1t

x = 1t, y = t, t Ú 0.
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x

y

0

(1, 1)

  

Starts at
t � 0

t � 1

y � x2, x � 0

P(�t, t)

FIGURE 3.31 The equations 
and and the interval describe
the motion of a particle that traces the
right-hand half of the parabola 
(Example 10).

y = x2

t Ú 0y = t
x = 1t
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EXAMPLE 12 Differentiating with a Parameter

If and find the value of 

Solution Equation (2) gives as a function of t:

When Notice that we are also able to find the derivative as a
function of x.

EXAMPLE 13 Moving Along the Ellipse 

Describe the motion of a particle whose position P(x, y) at time t is given by

Find the line tangent to the curve at the point where (The con-
stants a and b are both positive.)

Solution We find a Cartesian equation for the particle’s coordinates by eliminating t be-
tween the equations

The identity yields

The particle’s coordinates (x, y) satisfy the equation so the parti-
cle moves along this ellipse. When the particle’s coordinates are

so the motion starts at (a, 0). As t increases, the particle rises and moves toward the left,
moving counterclockwise. It traverses the ellipse once, returning to its starting position
(a, 0) at 

The slope of the tangent line to the ellipse when is

 =

b>22

-a>22
= -

b
a .

 =

b cos t
-a sin t

`
t =p>4

 
dy
dx
`
t =p>4

=

dy>dt

dx>dt
`
t =p>4

t = p>4t = 2p .

x = a coss0d = a, y = b sin s0d = 0,

t = 0,
sx2>a2d + sy2>b2d = 1,

ax
a b

2

+ ay
b
b2

= 1, or x2

a2 +

y2

b2 = 1.

cos2 t + sin2 t = 1,

cos t =

x
a ,  sin t =

y
b

 .

t = p>4.Aa>22, b>22 B ,
x = a cos t, y = b sin t, 0 … t … 2p .

x2>a2
+ y2>b2

= 1

dy>dxt = 6, dy>dx = 6.

dy
dx

=

dy>dt

dx>dt
=

2t
2

= t =

x - 3
2

 .

dy>dx

dy>dx at t = 6.y = t2
- 1,x = 2t + 3
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Parametric Formula for 
If all three derivatives exist and 

(2)
dy
dx

=

dy>dt

dx>dt
 .

dx>dt Z 0,
dy/dx
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The tangent line is

or

If parametric equations define y as a twice-differentiable function of x, we can apply
Equation (2) to the function to calculate as a function of t:

Eq. (2) with in place of yy¿

d2y

dx2 =

d
dx

 s y¿d =

dy¿>dt

dx>dt
 .

d2y>dx2dy>dx = y¿

y = -

b
a x + 22b .

 y =

b22
-

b
a ax -

a22
b

 y -

b22
= -

b
a ax -

a22
b
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Parametric Formula for 

If the equations define y as a twice-differentiable function of
x, then at any point where 

(3)
d2y

dx2 =

dy¿>dt

dx>dt
.

dx>dt Z 0,
x = ƒstd, y = gstd

d 2y/dx2

EXAMPLE 14 Finding for a Parametrized Curve

Find as a function of t if 

Solution

1. Express in terms of t.

2. Differentiate with respect to t.

Quotient Rule

3. Divide by .

Eq. (3)

EXAMPLE 15 Dropping Emergency Supplies

A Red Cross aircraft is dropping emergency food and medical supplies into a disaster area.
If the aircraft releases the supplies immediately above the edge of an open field 700 ft long
and if the cargo moves along the path

x = 120t and y = -16t2
+ 500, t Ú 0

d2y

dx2 =

dy¿>dt

dx>dt
=

s2 - 6t + 6t2d>s1 - 2td2

1 - 2t
=

2 - 6t + 6t2

s1 - 2td3

dx>dtdy¿>dt

dy¿

dt
=

d
dt

 a1 - 3t2

1 - 2t
b =

2 - 6t + 6t2

s1 - 2td2

y¿

y¿ =

dy
dx

=

dy>dt

dx>dt
=

1 - 3t2

1 - 2t

y¿ = dy>dx

x = t - t2,  y = t - t3 .d2y>dx2

d2y>dx2

Finding in Terms of t
1. Express in terms of t.
2. Find 
3. Divide by .dx>dtdy¿>dt

dy¿>dt .
y¿ = dy>dx

d2y>dx2
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does the cargo land in the field? The coordinates x and y are measured in feet, and the pa-
rameter t (time since release) in seconds. Find a Cartesian equation for the path of the
falling cargo (Figure 3.32) and the cargo’s rate of descent relative to its forward motion
when it hits the ground.

Solution The cargo hits the ground when which occurs at time t when

Set 

The x-coordinate at the time of the release is At the time the cargo hits the ground,
the x-coordinate is

Since the cargo does land in the field.
We find a Cartesian equation for the cargo’s coordinates by eliminating t between the

parametric equations:

Parametric equation for y

A parabola

The rate of descent relative to its forward motion when the cargo hits the ground is

Thus, it is falling about 1.5 feet for every foot of forward motion when it hits the ground.

 = -

225
3

L -1.49.

 =

-32t
120

`
t = 525>2

 
dy
dx
`
t = 525>2

=

dy>dt

dx>dt
`
t = 525>2

 = -
1

900
x2

+ 500.

 = -16 a x
120
b2

+ 500

 y = -16t2
+ 500

30025 L 670.8 6 700,

x = 120t = 120 a525
2
b = 30025 ft .

x = 0.

t Ú 0 t = A500
16

=

525
2

 sec.

y = 0 . -16t2
+ 500 = 0

y = 0,
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x

Position of aircraft at release

Path of dropped cargo

Open field

y

500

?0 700

FIGURE 3.32 The path of the dropped
cargo of supplies in Example 15.

Substitute for t from the
equation x = 120t .

USING TECHNOLOGY Simulation of Motion on a Vertical Line

The parametric equations

will illuminate pixels along the vertical line If ƒ(t) denotes the height of a moving
body at time t, graphing will simulate the actual motion. Try it for
the rock in Example 5, Section 3.3 with say, and in dot
mode with Why does the spacing of the dots vary? Why does the grapher seem
to stop after it reaches the top? (Try the plots for and separately.)

For a second experiment, plot the parametric equations

xstd = t, ystd = 160t - 16t2

5 … t … 100 … t … 5
t Step = 0.1.

ystd = 160t - 16t2 ,xstd = 2,
sxstd, ystdd = sc, ƒstdd

x = c .

xstd = c, ystd = ƒstd

x(t ) = 2
y(t ) = 160t –16t 2

and

x(t ) = t
y(t ) = 160t –16t 2

in dot mode
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3.5 The Chain Rule and Parametric Equations 201

together with the vertical line simulation of the motion, again in dot mode. Use what you
know about the behavior of the rock from the calculations of Example 5 to select a win-
dow size that will display all the interesting behavior.

Standard Parametrizations and Derivative Rules

CIRCLE ELLIPSE

FUNCTION DERIVATIVES

 y = ƒstd
y¿ =

dy
dx

=

dy>dt

dx>dt
, d2y

dx2 =

dy¿>dt

dx>dt

 x = t

y = ƒsxd :

 0 … t … 2p 0 … t … 2p

 y = b sin t y = a sin t

 x = a cos t x = a cos t

x2

a2 +

y2

b2 = 1:x2
+ y2

= a2 :
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