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Relative Rates of Growth

It is often important in mathematics, computer science, and engineering to compare the
rates at which functions of x grow as x becomes large. Exponential functions are important
in these comparisons because of their very fast growth, and logarithmic functions because
of their very slow growth. In this section we introduce the little-oh and big-oh notation
used to describe the results of these comparisons. We restrict our attention to functions
whose values eventually become and remain positive as 

Growth Rates of Functions

You may have noticed that exponential functions like and seem to grow more rapidly
as x gets large than do polynomials and rational functions. These exponentials certainly
grow more rapidly than x itself, and you can see outgrowing as x increases in Figure
7.14. In fact, as the functions and grow faster than any power of x, even

(Exercise 19).
To get a feeling for how rapidly the values of grow with increasing x, think of

graphing the function on a large blackboard, with the axes scaled in centimeters. At
the graph is above the x-axis. At the graph is

high (it is about to go through the ceiling if it hasn’t done so already).
At the graph is high, higher than most buildings.
At the graph is more than halfway to the moon, and at from the ori-
gin, the graph is high enough to reach past the sun’s closest stellar neighbor, the red dwarf
star Proxima Centauri:
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512 Chapter 7: Transcendental Functions

The distance to Proxima Centauri is about 4.22 light-years. Yet with from the
origin, the graph is still less than 2 feet to the right of the y-axis.

In contrast, logarithmic functions like and grow more slowly as
than any positive power of x (Exercise 21). With axes scaled in centimeters, you

have to go nearly 5 light-years out on the x-axis to find a point where the graph of 
is even high. See Figure 7.15.

These important comparisons of exponential, polynomial, and logarithmic functions
can be made precise by defining what it means for a function ƒ(x) to grow faster than an-
other function g(x) as x : q .

y = 43 cm
y = ln x

x : q

y = ln xy = log2 x

x = 43 cm

DEFINITION Rates of Growth as 
Let ƒ(x) and g(x) be positive for x sufficiently large.

1. ƒ grows faster than g as if

or, equivalently, if

We also say that g grows slower than ƒ as 

2. ƒ and g grow at the same rate as if

where L is finite and positive.

lim
x: q

  
ƒsxd
gsxd

= L

x : q

x : q .

lim
x: q

  
gsxd
ƒsxd

= 0.

lim
x: q

  
ƒsxd
gsxd

= q

x : q

x : q

According to these definitions, does not grow faster than The two
functions grow at the same rate because

which is a finite, nonzero limit. The reason for this apparent disregard of common sense is
that we want “ƒ grows faster than g” to mean that for large x-values g is negligible when
compared with ƒ.

EXAMPLE 1 Several Useful Comparisons of Growth Rates

(a) grows faster than as because

Using l’Hôpital’s Rule twice

(b) grows faster than as because

lim
x: q
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7.6 Relative Rates of Growth 513

(c) grows faster than ln x as because

l’Hôpital’s Rule

(d) ln x grows slower than x as because

l’Hôpital’s Rule

EXAMPLE 2 Exponential and Logarithmic Functions with Different Bases

(a) As Example 1b suggests, exponential functions with different bases never grow at the
same rate as If then grows faster than Since 

(b) In contrast to exponential functions, logarithmic functions with different bases a and
b always grow at the same rate as 

The limiting ratio is always finite and never zero. 

If ƒ grows at the same rate as g as and g grows at the same rate as h as
then ƒ grows at the same rate as h as The reason is that

together imply

If and are finite and nonzero, then so is 

EXAMPLE 3 Functions Growing at the Same Rate

Show that and grow at the same rate as 

Solution We show that the functions grow at the same rate by showing that they both
grow at the same rate as the function 

 lim
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Order and Oh-Notation

Here we introduce the “little-oh” and “big-oh” notation invented by number theorists a
hundred years ago and now commonplace in mathematical analysis and computer science.

514 Chapter 7: Transcendental Functions

DEFINITION Little-oh

A function ƒ is of smaller order than g as if We indi-

cate this by writing (“ƒ is little-oh of g”).ƒ � osgd

lim
x: q

 
ƒsxd
gsxd

= 0.x : q

Notice that saying as is another way to say that ƒ grows slower than g as

EXAMPLE 4 Using Little-oh Notation

(a)

(b) x2
= osx3

+ 1d as x : q because lim
x: q

 
x2

x3
+ 1

= 0

ln x = osxd as x : q because lim
x: q

 
ln x
x = 0

x : q .
x : qf = osgd

DEFINITION Big-oh
Let ƒ(x) and g (x) be positive for x sufficiently large. Then ƒ is of at most the
order of g as if there is a positive integer M for which

for x sufficiently large. We indicate this by writing (“ƒ is big-oh of g”).ƒ � Osgd

ƒsxd
gsxd

… M ,

x : q

EXAMPLE 5 Using Big-oh Notation

(a)

(b)

(c)

If you look at the definitions again, you will see that implies for func-
tions that are positive for x sufficiently large. Also, if ƒ and g grow at the same rate, then

and (Exercise 11).

Sequential vs. Binary Search

Computer scientists often measure the efficiency of an algorithm by counting the number
of steps a computer must take to execute the algorithm. There can be significant differences

g = Osƒdƒ = Osgd

ƒ = Osgdƒ = osgd

x = Osexd as x : q because x
ex : 0 as x : q .

ex
+ x2

= Osexd as x : q because ex
+ x2

ex : 1 as x : q .

x + sin x = Osxd as x : q because x + sin x
x … 2 for x sufficiently large.
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in how efficiently algorithms perform, even if they are designed to accomplish the same
task. These differences are often described in big-oh notation. Here is an example.

Webster’s Third New International Dictionary lists about 26,000 words that begin with
the letter a. One way to look up a word, or to learn if it is not there, is to read through the
list one word at a time until you either find the word or determine that it is not there. This
method, called sequential search, makes no particular use of the words’ alphabetical
arrangement. You are sure to get an answer, but it might take 26,000 steps.

Another way to find the word or to learn it is not there is to go straight to the middle
of the list (give or take a few words). If you do not find the word, then go to the middle of
the half that contains it and forget about the half that does not. (You know which half con-
tains it because you know the list is ordered alphabetically.) This method eliminates
roughly 13,000 words in a single step. If you do not find the word on the second try, then
jump to the middle of the half that contains it. Continue this way until you have either
found the word or divided the list in half so many times there are no words left. How many
times do you have to divide the list to find the word or learn that it is not there? At most
15, because

That certainly beats a possible 26,000 steps.
For a list of length n, a sequential search algorithm takes on the order of n steps to

find a word or determine that it is not in the list. A binary search, as the second algorithm
is called, takes on the order of steps. The reason is that if then

and the number of bisections required to narrow the list to one
word will be at most the integer ceiling for 

Big-oh notation provides a compact way to say all this. The number of steps in a se-
quential search of an ordered list is O(n); the number of steps in a binary search is

In our example, there is a big difference between the two (26,000 vs. 15), and
the difference can only increase with n because n grows faster than as (as in
Example 1d).

n : qlog2 n
Oslog2 nd .

log2 n .m = < log2 n= ,
m - 1 6 log2 n … m ,

2m - 1
6 n … 2m ,log2 n

s26,000>215d 6 1.
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