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FURTHER APPLICATIONS
OF INTEGRATION

OVERVIEW In Section 4.8 we introduced differential equations of the form dy/dx = f(x),
where y is an unknown function being differentiated. For a continuous function f, we
found the general solution y(x) by integration: y(x) = [ f(x) dx. (Remember that the in-
definite integral represents all the antiderivatives of f, so it contains an arbitrary constant
+C which must be shown once an antiderivative is found.) Many applications in the sci-
ences, engineering, and economics involve a model formulated by even more general dif-
ferential equations. In Section 7.5, for example, we found that exponential growth and
decay is modeled by a differential equation of the form dy/dx = ky, for some constant
k # 0. We have not yet considered differential equations such as dy/dx = y — x, yet such
equations arise frequently in applications. In this chapter, we study several differential
equations having the form dy/dx = f(x, y), where f is a function of both the independent
and dependent variables. We use the theory of indefinite integration to solve these
differential equations, and investigate analytic, graphical, and numerical solution methods.
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Slope Fields and Separable Differential Equations

In calculating derivatives by implicit differentiation (Section 3.6), we found that the
expression for the derivative dy/dx often contained both variables x and y, not just the
independent variable x. We begin this section by considering the general differential equa-
tion dy/dx = f(x, y) and what is meant by a solution to it. Then we investigate equations
having a special form for which the function f can be expressed as a product of a function
of x and a function of y.

General First-Order Differential Equations and Solutions

A first-order differential equation is an equation

d
== fx) 1)

in which f(x, y) is a function of two variables defined on a region in the xy-plane. The
equation is of first-order because it involves only the first derivative dy/dx (and not
higher-order derivatives). We point out that the equations

Y = fry) and Ly = fxy),

are equivalent to Equation (1) and all three forms will be used interchangeably in the text.
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9.1 Slope Fields and Separable Differential Equations 643

A solution of Equation (1) is a differentiable function y = y(x) defined on an interval
I of x-values (perhaps infinite) such that

L) = )

on that interval. That is, when y(x) and its derivative y'(x) are substituted into Equation (1),
the resulting equation is true for all x over the interval /. The general solution to a first-
order differential equation is a solution that contains all possible solutions. The general so-
lution always contains an arbitrary constant, but having this property doesn’t mean a solu-
tion is the general solution. That is, a solution may contain an arbitrary constant without
being the general solution. Establishing that a solution is the general solution may require
deeper results from the theory of differential equations and is best studied in a more ad-
vanced course.

EXAMPLE 1 Verifying Solution Functions

Show that every member of the family of functions

y = % + 2
is a solution of the first-order differential equation
dy 1
o x2=)

on the interval (0, 00), where C is any constant.

Solution Differentiating y = C/x + 2 gives

dv . d (1 e
dx—cdx(x>+o—— |

Thus we need only verify that for all x e (0, 00),
C 1 C
Setf )

This last equation follows immediately by expanding the expression on the right side:

(0] 406) -5

Therefore, for every value of C, the function y = C/x + 2 is a solution of the differential
equation. [

—_—

As was the case in finding antiderivatives, we often need a particular rather than the
general solution to a first-order differential equation y' = f(x, y). The particular solu-
tion satisfying the initial condition y(xg) = yy is the solution y = y(x) whose value is yg
when x = x¢. Thus the graph of the particular solution passes through the point (x¢, yo) in
the xy-plane. A first-order initial value problem is a differential equation y' = f(x, y)
whose solution must satisfy an initial condition y(xo) = yo.

EXAMPLE 2  Verifying That a Function Is a Particular Solution

Show that the function
y=x+1) — %e’“
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is a solution to the first-order initial value problem

dy 2
Solution The equation
dy
y =y

- y=(x+1)—§e"
is a first-order differential equation with f(x,y) = y — x.

2
\ L
. . >'/\ . . On the left:

- y: -1 ’ ) @=ix+l—le" =1—le"
ok dx  dx 3 370
-3+ On the right:
-4 1 1
y—x=(x+ 1)—§e"—x= 1 —§e".
FIGURE 9.1 h of th luti . . . ..
Grilp oF Hhe sotution The function satisfies the initial condition because
y=x+1) - gex to the differential 1 ! 5
equation dy/dx = y — x, with initial y(0) = {(x +1) — 38)1 =1- 3=3
x=0

condition y(0) = %(Example 2).
The graph of the function is shown in Figure 9.1.

Slope Fields: Viewing Solution Curves

Each time we specify an initial condition y(xo) = y, for the solution of a differential equation
y" = f(x,y), the solution curve (graph of the solution) is required to pass through the point
(x0, o) and to have slope f(xo, yo) there. We can picture these slopes graphically by drawing
short line segments of slope f(x, y) at selected points (x, y) in the region of the xy-plane that
constitutes the domain of f. Each segment has the same slope as the solution curve through (x, y)
and so is tangent to the curve there. The resulting picture is called a slope field (or direction
field) and gives a visualization of the general shape of the solution curves. Figure 9.2a shows a
slope field, with a particular solution sketched into it in Figure 9.2b. We see how these line seg-
ments indicate the direction the solution curve takes at each point it passes through.

y y 03)

4 Jo— 4L Jo—
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I;I//// 177/ =—~\ I’I//// 1] 7 7 ===\
[LLL L7 7 7=—~\\ [LLL D177 7=—=~\\
[LL LD RE/=—~NN\\ [T TLLLRES =N\ \
SN A
S eSS S S SR ST SN S S O
W Y5 ANNINF NN 47177 ENN AN
1177 7-"—=~ \\\\Q%V% 1177 \\\\\QV%
/77730 VLV LY 177 AR AR
7772V VALV VLV LY /7 VALV LN LY
/7—=~NNNV VLV VLY / VALV LY
AT T
SNANVVAMELV VLV LY A S L R A

—~
o
=
~
=)
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d
FIGURE 9.2 (a) Slope field for d%c) =y — x.(b) The particular solution

curve through the point (O, %) (Example 2).
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Figure 9.3 shows three slope fields and we see how the solution curves behave by fol-

lowing the tangent line segments in these fields.
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FIGURE 9.3 Slope fields (top row) and selected solution curves (bottom row). In computer

renditions, slope segments are sometimes portrayed with arrows, as they are here. This is not to

be taken as an indication that slopes have directions, however, for they do not.

Constructing a slope field with pencil and paper can be quite tedious. All our examples

were generated by a computer.

While general differential equations are difficult to solve, many important equations
that arise in science and applications have special forms that make them solvable by

One such class is the separable equations.

special techniques.

Separable Equations

y) is separable if f can be expressed as a product of a function of

>

flx
x and a function of y. The differential equation then has the form

!

The equation y

= g)H(y).

dy

dx

When we rewrite this equation in the form

1
h(y)

H(y)

g(x)

dy

h(y)’

dx
its differential form allows us to collect all y terms with dy and all x terms with dx:

= g(x) dx.

h(y) dy

Now we simply integrate both sides of this equation:

(2)

/ o(x) d.

/ h(y) dy

After completing the integrations we obtain the solution y defined implicitly as a function

of x.
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The justification that we can simply integrate both sides in Equation (2) is based on
the Substitution Rule (Section 5.5):

d
[ = [ it G

B g(x) dy  glx)
- / L i

=/g(x) dx.

EXAMPLE 3  Solving a Separable Equation

Solve the differential equation

Video

dy_ PAPS
a—(l-i—y)e.

Solution Since 1 + y?is never zero, we can solve the equation by separating the variables.

dy

JL— ( 1 + y2)ex

dx Treat dy/dx as a quotient of

dy — (1 + yZ)ex dx differentials and multiply
both sides by dx.

d -

Y 5 = eVdx Divide by (1 + »%).
1+y

d

/ Y 5= e~ dx Integrate both sides.

1+y _

1 . C represents the combined
tan "y =e” + C constants of integration.

The equation tan 'y = e¢* + C gives y as an implicit function of x. When —/2
<e* + C < /2, we can solve for y as an explicit function of x by taking the tangent of
both sides:

tan (tan ' y) = tan (e* + C)
y = tan(e* + C). ]

EXAMPLE 4  Solve the equation
Video Gt DY a2 4
dx Y '

Solution We change to differential form, separate the variables, and integrate:

(x + Ddy = x(y* + 1) dx

dy _ X dx v —1
y2+l x+1
dy 1
/1+y2_/<1_x+l)dx
tan 'y = x — In|x + 1|+ C. |
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FIGURE 9.4 The rate at which water runs
out is k\/;, where £ is a positive constant.
In Example 5, k = 1/2 and x is measured
in feet.
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The initial value problem

dy
E = ky > Y (0) =)o

involves a separable differential equation, and the solution y = yje* gives the Law of
Exponential Change (Section 7.5). We found this initial value problem to be a model for
such phenomena as population growth, radioactive decay, and heat transfer. We now
present an application involving a different separable first-order equation.

Torricelli’s Law

Torricelli’s Law says that if you drain a tank like the one in Figure 9.4, the rate at which the
water runs out is a constant times the square root of the water’s depth x. The constant
depends on the size of the drainage hole. In Example 5, we assume that the constant is 1/2.

EXAMPLE 5  Draining a Tank

A right circular cylindrical tank with radius 5 ft and height 16 ft that was initially full of
water is being drained at the rate of 0.5Vx ft’/min. Find a formula for the depth and the
amount of water in the tank at any time #. How long will it take to empty the tank?

Solution The volume of a right circular cylinder with radius » and height 2 is V = r?h,
so the volume of water in the tank (Figure 9.4) is

V =ar’h = w(5)% = 25mx.
Diffentiation leads to

av _ dx
a - P

Negative because V' is decreasing
and dx/dt < 0

dx
—0.5\/); = 25#5 Torricelli’s Law

Thus we have the initial value problem

dx Vx

dt~ 50m°
x(0) = 16

The water is 16 ft deep when 7 = 0.

We solve the differential equation by separating the variables.

=12 g —
¥ 507 dt
12 gy = — 1 d
* r = 507 1 Integrate both sides.
1
2x1/2 =—zhot+C Constants combined
507

The initial condition x(0) = 16 determines the value of C.

1
2(16)'2 = ~ 507 (0 +C

Cc=38
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With C = 8, we have

t
1007 °

2?2 = —7557# + 8 or x? =4 -

The formulas we seek are

2 2
x = (4 100#) and V = 25mx 2577( 100”) .

At any time 7, the water in the tank is (4 — #/(1007))> ft deep and the amount of water is
25m(4 — t/(1007))* f*. Att = 0, we have x = 16 ftand V' = 4007 ft>, as required. The
tank will empty (¥ = 0) in ¢ = 4007 minutes, which is about 21 hours. ]
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