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Graphical Solutions of Autonomous Differential Equations

In Chapter 4 we learned that the sign of the first derivative tells where the graph of a func-
tion is increasing and where it is decreasing. The sign of the second derivative tells the
concavity of the graph. We can build on our knowledge of how derivatives determine the
shape of a graph to solve differential equations graphically. The starting ideas for doing so
are the notions of phase line and equilibrium value. We arrive at these notions by investi-
gating what happens when the derivative of a differentiable function is zero from a point of
view different from that studied in Chapter 4.

Equilibrium Values and Phase Lines

When we differentiate implicitly the equation

we obtain

Solving for we find In this case the derivative 
is a function of y only (the dependent variable) and is zero when 

A differential equation for which dy dx is a function of y only is called an
autonomous differential equation. Let’s investigate what happens when the derivative in
an autonomous equation equals zero.

> y = 3.
y¿y¿ = 5y - 15 = 5sy - 3d.y¿ = dy>dx

1
5 a 5

5y - 15
b  

dy
dx

= 1.

1
5 ln s5y - 15d = x + 1

9.4

DEFINITION Equilibrium Values
If is an autonomous differential equation, then the values of y for
which are called equilibrium values or rest points.dy>dx = 0

dy>dx = gs yd
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666 Chapter 9: Further Applications of Integration

Thus, equilibrium values are those at which no change occurs in the dependent vari-
able, so y is at rest. The emphasis is on the value of y where not the value of x,
as we studied in Chapter 4.

EXAMPLE 1 Finding Equilibrium Values

The equilibrium values for the autonomous differential equation

are and 

To construct a graphical solution to an autonomous differential equation like the one
in Example 1, we first make a phase line for the equation, a plot on the y-axis that shows
the equation’s equilibrium values along with the intervals where dy dx and are
positive and negative. Then we know where the solutions are increasing and decreasing,
and the concavity of the solution curves. These are the essential features we found in
Section 4.4, so we can determine the shapes of the solution curves without having to find
formulas for them.

EXAMPLE 2 Drawing a Phase Line and Sketching Solution Curves

Draw a phase line for the equation

and use it to sketch solutions to the equation.

Solution

1. Draw a number line for y and mark the equilibrium values and where

2. Identify and label the intervals where and This step resembles what
we did in Section 4.3, only now we are marking the y-axis instead of the x-axis.

We can encapsulate the information about the sign of on the phase line itself.
Since on the interval to the left of a solution of the differential equa-
tion with a y-value less than will increase from there toward We display
this information by drawing an arrow on the interval pointing to 

Similarly, between and so any solution with a value in
this interval will decrease toward y = -1.

y = 2,y = -1y¿ 6 0

–1 2
y

-1.
y = -1.-1

y = -1,y¿ 7 0
y¿

–1 2
y

y' � 0 y' � 0 y' � 0

y¿ 6 0.y¿ 7 0

–1 2
y

dy>dx = 0.
y = 2,y = -1

dy
dx

= s y + 1ds y - 2d

d2y>dx2>

y = 2.y = -1

dy
dx

= s y + 1ds y - 2d

dy>dx = 0,
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9.4 Graphical Solutions of Autonomous Differential Equations 667

For we have so a solution with a y-value greater than 2 will in-
crease from there without bound.

In short, solution curves below the horizontal line in the xy-plane rise to-
ward Solution curves between the lines and fall away from

toward Solution curves above rise away from and keep
going up.

3. Calculate and mark the intervals where and To find we dif-
ferentiate with respect to x, using implicit differentiation.

From this formula, we see that changes sign at and We
add the sign information to the phase line.

y = 2.y = -1, y = 1>2,y–

 = s2y - 1ds y + 1ds y - 2d .

 = s2y - 1dy¿

 = 2yy¿ - y¿

 y– =

d
dx

 s y¿d =

d
dx

 s y2
- y - 2d

 y¿ = s y + 1ds y - 2d = y2
- y - 2

y¿

y– ,y– 6 0.y– 7 0y–

y = 2y = 2y = -1.y = 2
y = 2y = -1y = -1.

y = -1

y¿ 7 0,y 7 2,

Formula for y¿. Á

differentiated implicitly
with respect to x.

–1 2
y

y' � 0 y' � 0 y' � 0 y' � 0
y'' � 0 y'' � 0 y'' � 0 y'' � 0

1
2

4. Sketch an assortment of solution curves in the xy-plane. The horizontal lines
and partition the plane into horizontal bands in which we

know the signs of and In each band, this information tells us whether the solu-
tion curves rise or fall and how they bend as x increases (Figure 9.12).

The “equilibrium lines” and are also solution curves. (The con-
stant functions and satisfy the differential equation.) Solution curves
that cross the line have an inflection point there. The concavity changes from
concave down (above the line) to concave up (below the line).

As predicted in Step 2, solutions in the middle and lower bands approach the
equilibrium value as x increases. Solutions in the upper band rise steadily
away from the value 

Stable and Unstable Equilibria

Look at Figure 9.12 once more, in particular at the behavior of the solution curves near the
equilibrium values. Once a solution curve has a value near it tends steadily toward
that value; is a stable equilibrium. The behavior near is just the opposite:
all solutions except the equilibrium solution itself move away from it as x increases.
We call an unstable equilibrium. If the solution is at that value, it stays, but if it is
off by any amount, no matter how small, it moves away. (Sometimes an equilibrium value is
unstable because a solution moves away from it only on one side of the point.)

Now that we know what to look for, we can already see this behavior on the initial
phase line. The arrows lead away from and, once to the left of toward
y = -1.

y = 2,y = 2

y = 2
y = 2

y = 2y = -1
y = -1,

y = 2.
y = -1

y = 1>2 y = 2y = -1
y = 2y = -1

y– .y¿

y = 2y = -1, y = 1>2,

y

x

–1

2

0

y' � 0

y' � 0

y' � 0

y' � 0

y'' � 0

y'' � 0

y'' � 0

y'' � 0

1
2

FIGURE 9.12 Graphical solutions from
Example 2 include the horizontal lines

and through the
equilibrium values.

y = 2y = -1
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We now present several applied examples for which we can sketch a family of solu-
tion curves to the differential equation models using the method in Example 2.

In Section 7.5 we solved analytically the differential equation

modeling Newton’s law of cooling. Here H is the temperature (amount of heat) of an ob-
ject at time t and is the constant temperature of the surrounding medium. Our first ex-
ample uses a phase line analysis to understand the graphical behavior of this temperature
model over time.

EXAMPLE 3 Cooling Soup

What happens to the temperature of the soup when a cup of hot soup is placed on a table in
a room? We know the soup cools down, but what does a typical temperature curve look
like as a function of time?

Solution Suppose that the surrounding medium has a constant Celsius temperature of
15°C. We can then express the difference in temperature as Assuming H is a
differentiable function of time t, by Newton’s law of cooling, there is a constant of propor-
tionality such that

(1)

(minus k to give a negative derivative when ).
Since at the temperature 15°C is an equilibrium value. If

Equation (1) tells us that and If the object is hotter
than the room, it will get cooler. Similarly, if then and

An object cooler than the room will warm up. Thus, the behavior described by
Equation (1) agrees with our intuition of how temperature should behave. These observa-
tions are captured in the initial phase line diagram in Figure 9.13. The value is a
stable equilibrium.

We determine the concavity of the solution curves by differentiating both sides of
Equation (1) with respect to t:

Since is negative, we see that is positive when and negative when
Figure 9.14 adds this information to the phase line.

The completed phase line shows that if the temperature of the object is above the
equilibrium value of 15°C, the graph of H(t) will be decreasing and concave upward. If the
temperature is below 15°C (the temperature of the surrounding medium), the graph of H(t)
will be increasing and concave downward. We use this information to sketch typical solu-
tion curves (Figure 9.15).

From the upper solution curve in Figure 9.15, we see that as the object cools down,
the rate at which it cools slows down because dH dt approaches zero. This observation is
implicit in Newton’s law of cooling and contained in the differential equation, but the flat-
tening of the graph as time advances gives an immediate visual representation of the phe-
nomenon. The ability to discern physical behavior from graphs is a powerful tool in under-
standing real-world systems.

>

dH>dt 7 0.
dH>dt 6 0d2H>dt2

-k

 
d2H
dt2 = -k 

dH
dt

.

 
d
dt

 adH
dt
b =

d
dt

 s -ksH - 15dd

H = 15

dH>dt 7 0.
sH - 15d 6 0H 6 15,

dH>dt 6 0.sH - 15d 7 0H 7 15,
H = 15,dH>dt = 0

H 7 15

dH
dt

= -ksH - 15d

k 7 0

Hstd - 15.

HS

dH
dt

= -ksH - HSd, k 7 0
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15
H

� 0 � 0dH
dt

dH
dt

FIGURE 9.13 First step in constructing
the phase line for Newton’s law of cooling
in Example 3. The temperature tends
towards the equilibrium (surrounding-
medium) value in the long run.

15
H

� 0dH
dt� 0dH

dt

� 0d2H
dt2 � 0d2H

dt2

FIGURE 9.14 The complete phase line
for Newton’s law of cooling (Example 3).

H

Initial
temperature

t

15

Temperature
of surrounding
medium

Initial
temperature

FIGURE 9.15 Temperature versus time.
Regardless of initial temperature, the
object’s temperature H(t) tends toward
15°C, the temperature of the surrounding
medium.
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9.4 Graphical Solutions of Autonomous Differential Equations 669

EXAMPLE 4 Analyzing the Fall of a Body Encountering a Resistive Force

Galileo and Newton both observed that the rate of change in momentum encountered by a
moving object is equal to the net force applied to it. In mathematical terms,

(2)

where F is the force and m and y the object’s mass and velocity. If m varies with time, as it
will if the object is a rocket burning fuel, the right-hand side of Equation (2) expands to

using the Product Rule. In many situations, however, m is constant, and Equa-
tion (2) takes the simpler form

(3)

known as Newton’s second law of motion.
In free fall, the constant acceleration due to gravity is denoted by g and the one force

acting downward on the falling body is

the propulsion due to gravity. If, however, we think of a real body falling through the air—
say, a penny from a great height or a parachutist from an even greater height—we know
that at some point air resistance is a factor in the speed of the fall. A more realistic model
of free fall would include air resistance, shown as a force in the schematic diagram in
Figure 9.16.

For low speeds well below the speed of sound, physical experiments have shown that
is approximately proportional to the body’s velocity. The net force on the falling body is

therefore

giving

(4)

We can use a phase line to analyze the velocity functions that solve this differential equation.
The equilibrium point, obtained by setting the right-hand side of Equation (4) equal to

zero, is

If the body is initially moving faster than this, dy dt is negative and the body slows down.
If the body is moving at a velocity below and the body speeds up.
These observations are captured in the initial phase line diagram in Figure 9.17.

We determine the concavity of the solution curves by differentiating both sides of
Equation (4) with respect to t:

d2y

dt2 =

d
dt

 ag -

k
m yb = -

k
m 

dy
dt

.

mg>k, then dy>dt 7 0
>

y =

mg
k

.

 
dy
dt

= g -

k
m y .

 m 
dy
dt

= mg - ky

F = Fp - Fr ,

Fr

Fr

Fp = mg ,

F = m 
dy
dt
 or F = ma ,

dm>dt = 0,

m 
dy
dt

+ y 
dm
dt

F =

d
dt

 smyd

m
y � 0

y positive

Fp � mg

Fr � ky

FIGURE 9.16 An object falling under the
influence of gravity with a resistive force
assumed to be proportional to the velocity.

v

� 0 � 0dy
dt

dy
dt

mg
k

FIGURE 9.17 Initial phase line for
Example 4.
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We see that when and when Figure 9.18
adds this information to the phase line. Notice the similarity to the phase line for Newton’s
law of cooling (Figure 9.14). The solution curves are similar as well (Figure 9.19).

Figure 9.19 shows two typical solution curves. Regardless of the initial velocity, we
see the body’s velocity tending toward the limiting value This value, a stable
equilibrium point, is called the body’s terminal velocity. Skydivers can vary their terminal
velocity from 95 mph to 180 mph by changing the amount of body area opposing the fall.

EXAMPLE 5 Analyzing Population Growth in a Limiting Environment

In Section 7.5 we examined population growth using the model of exponential change.
That is, if P represents the number of individuals and we neglect departures and arrivals,
then

(5)

where is the birthrate minus the death rate per individual per unit time.
Because the natural environment has only a limited number of resources to sustain

life, it is reasonable to assume that only a maximum population M can be accommodated.
As the population approaches this limiting population or carrying capacity, resources
become less abundant and the growth rate k decreases. A simple relationship exhibiting
this behavior is

where is a constant. Notice that k decreases as P increases toward M and that k is
negative if P is greater than M. Substituting for k in Equation (5) gives the dif-
ferential equation

(6)

The model given by Equation (6) is referred to as logistic growth.
We can forecast the behavior of the population over time by analyzing the phase line

for Equation (6). The equilibrium values are and and we can see that
if and if These observations are recorded on

the phase line in Figure 9.20.
We determine the concavity of the population curves by differentiating both sides of

Equation (6) with respect to t:

(7)

If then If then and dP dt are positive and
If then and If

then and dP dt are both negative and We add this infor-
mation to the phase line (Figure 9.21).

d2P>dt2
7 0.>sM - 2PdP 7 M ,

d2P>dt2
6 0.sM - 2Pd 6 0, dP>dt 7 0,M>2 6 P 6 M ,d2P>dt2

7 0.
>sM - 2PdP 6 M>2,d2P>dt2

= 0.P = M>2,

 = rsM - 2Pd 
dP
dt

.

 = rM 
dP
dt

- 2rP 
dP
dt

 
d2P
dt2 =

d
dt

 srMP - rP2d

P 7 M .dP>dt 6 00 6 P 6 MdP>dt 7 0
P = 0,P = M

dP
dt

= rsM - PdP = rMP - rP2 .

rsM - Pd
r 7 0

k = rsM - Pd ,

k 7 0

dP
dt

= kP ,

y = mg>k .

y 7 mg>k .d2y>dt2
7 0y 6 mg>kd2y>dt2

6 0
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y

� 0dy
dt� 0dy

dt

� 0d2y

dt2 � 0d2y

dt2

mg
k

FIGURE 9.18 The completed phase line
for Example 4.

Initial
velocity

Initial
velocity

y

t

mg
k

mg
k

y �

FIGURE 9.19 Typical velocity curves in
Example 4. The value is the
terminal velocity.

y = mg>k

0 M
P

� 0 � 0dP
dt

dP
dt

FIGURE 9.20 The initial phase line for
Equation 6.
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� 0dP
dt� 0dP
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dt2� 0d2P
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M
2

FIGURE 9.21 The completed phase line
for logistic growth (Equation 6).
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9.4 Graphical Solutions of Autonomous Differential Equations 671

The lines and divide the first quadrant of the tP-plane into horizon-
tal bands in which we know the signs of both dP dt and In each band, we know
how the solution curves rise and fall, and how they bend as time passes. The equilibrium
lines and are both population curves. Population curves crossing the line

have an inflection point there, giving them a sigmoid shape (curved in two di-
rections like a letter S). Figure 9.22 displays typical population curves.
P = M>2 P = MP = 0

d2P>dt2 .>P = MP = M>2

Time

Limiting
populationM

Po
pu

la
tio

n

t

P

M
2

FIGURE 9.22 Population curves in Example 5.
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