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Preface

This book investigates the classical model of cooperative games with trans-
ferable utility (TU-games) and models in which the players have the possi-
bility to cooperate partially, namely fuzzy and multichoice games. In a crisp
game the agents are either fully involved or not involved at all in coopera-
tion with some other agents, while in a fuzzy game players are allowed to
cooperate with infinitely many different participation levels, varying from
non-cooperation to full cooperation. A multichoice game describes an in-
termediate case in which each player may have a fixed number of activity
levels.

Part I of the book is devoted to the most developed model in the theory
of cooperative games, that of a classical TU-game with crisp coalitions,
which we refer to as crisp game along the book. It presents basic notions,
solutions concepts and classes of cooperative crisp games in such a way that
allows the reader to use this part as a reference toolbox when studying the
corresponding concepts from the theory of fuzzy games (Part II) and from
the theory of multichoice games (Part III).

The work on this book started while we were research fellows at ZiF
(Bielefeld) for the project “Procedural Approaches to Conflict Resolution”,
2002. We thank our hosts Matthias Raith and Olaf Gaus for giving us the
possibility to freely structure our research plans as well as the officials
from the ZiF administration for their kind hospitality. The work of Dinko
Dimitrov was generously supported by a Marie Curie Research Fellowship
of the European Community programme “Improving the Human Research
Potential and the Socio-Economic Knowledge Base” under contract number
HPMF-CT-2002-02121 conducted at Tilburg. Thanks are also due to Luis
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G. González Morales for transforming the manuscript into this final version.

Tilburg, Rodica Branzei
January 2005 Dinko Dimitrov

Stef Tijs
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Part I

Cooperative games with crisp coalitions
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Cooperative game theory is concerned primarily with coalitions - groups
of players - who coordinate their actions and pool their winnings. Conse-
quentially, one of the problems here is how to divide the extra earnings (or
cost savings) among the members of the formed coalition. The basis of this
theory was laid by John von Neumann and Oskar Morgenstern in [45] with
coalitional games in characteristic function form, known also as transferable
utility games (TU-games). Since then several solution concepts for cooper-
ative TU-games have been proposed and several interesting subclasses of
TU-games have been introduced. In what follows in this part we present
a selection of basic notions, solution concepts and classes of cooperative
TU-games that will be extensively used in the next two parts of the book.
For recent and more detailed introductory books on the theory of (cooper-
ative) games the reader is referred to [51], [66], where also non-transferable
utility games (NTU-games) are treated.

This part of the book is devoted to the most developed model in the
theory of cooperative games, that of cooperative games in characteristic
function form or cooperative games with transferable utility (TU-games),
which we call here cooperative games with crisp coalitions or, simply, crisp
games. It is organized as follows. Chapter 1 introduces basic notation, defi-
nitions and notions from cooperative game theory dealing with TU-games.
In Chapter 2 we consider set solution concepts like the core, the dominance
core and stable sets, as well as different core catchers. The relations among
these solution concepts are extensively studied. Chapter 3 is devoted to
two well known one-point solutions concepts - the Shapley value and the
τ -value. We present different formulations of these values, discuss some of
their properties and axiomatic characterizations. In Chapter 4 we study
three classes of cooperative games with crisp coalitions - totally balanced,
convex and clan games. We discuss specific properties of the solution con-
cepts introduced in Chapters 2 and 3 on these classes of games and present
specific solution concepts like the concept of a population monotonic alloca-
tion scheme for totally balanced games, the constrained egalitarian solution
for convex games, and the concept of a bi-monotonic allocation scheme for
clan games.





1
Preliminaries

LetN be a non-empty finite set of agents who consider different cooperation
possibilities. Each subset S ⊂ N is referred to as a crisp coalition. The set
N is called the grand coalition and ∅ is called the empty coalition. We
denote the collection of coalitions, i.e. the set of all subsets of N by 2N .
For each S ∈ 2N we denote by |S| the number of elements of S, and by

eS the characteristic vector of S with
(
eS
)i

= 1 if i ∈ S, and
(
eS
)i

= 0 if
i ∈ N \ S. In the following often N = {1, . . . , n}.

Definition 1.1. A cooperative game in characteristic function form is
an ordered pair 〈N, v〉 consisting of the player set N and the characteristic
function v : 2N → R with v (∅) = 0.

The real number v (S) can be interpreted as the maximal worth or cost
savings that the members of S can obtain when they cooperate. Often we
identify the game 〈N, v〉 with its characteristic function v.

A cooperative game in characteristic function form is usually referred to
as a transferable utility game (TU-game). A cooperative game might be
a non-transferable utility game (NTU-game); the reader is referred to [51]
and [66] for an introduction to NTU-games.

Example 1.2. (Glove game) Let N = {1, . . . , n} be divided into two disjoint
subsets L and R. Members of L possess a left hand glove, members of R a
right hand glove. A single glove is worth nothing, a right-left pair of gloves
has value of one euro. This situation can be modeled as a game 〈N, v〉,
where for each S ∈ 2N we have v(S) := min {|L ∩ S| , |R ∩ S|}.
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The set GN of characteristic functions of coalitional games with player
set N forms with the usual operations of addition and scalar multiplication
of functions a

(
2|N | − 1

)
-dimensional linear space; a basis of this space is

supplied by the unanimity games uT , T ∈ 2N \ {∅}, that are defined by

uT (S) =

{
1 if T ⊂ S,
0 otherwise.

(1.1)

One can easily check that for each v ∈ GN we have

v =
∑

T∈2N\{∅}

cTuT with cT =
∑

S:S⊂T

(−1)
|T |−|S|

v (S) . (1.2)

The interpretation of the unanimity game uT is that a gain (or cost
savings) of 1 can be obtained if and only if all players in coalition S are
involved in cooperation.

Definition 1.3. A game v ∈ GN is called simple1 if v (S) ∈ {0, 1} for all
S ∈ 2N \ {∅} and v (∅) = 0, v(N) = 1.

Note that the unanimity game uT , T ∈ 2N \{∅}, is a special simple game.

Definition 1.4. A coalition S is winning in the simple game v ∈ GN if
v(S) = 1.

Definition 1.5. A coalition S is minimal winning in the simple game
v ∈ GN if v(S) = 1 and v(T ) = 0 for all T ⊂ S, T 6= S.

Definition 1.6. A player i ∈ N is a dictator in the simple game v ∈ GN

if the coalition {i} is minimal winning and there are no other minimal
winning coalitions.

Definition 1.7. Let v ∈ GN . For each i ∈ N and for each S ∈ 2N with i ∈
S, the marginal contribution of player i to the coalition S is Mi (S, v) :=
v (S) − v (S \ {i}).

Let π (N) be the set of all permutations σ : N → N of N . The set
P σ (i) :=

{
r ∈ N |σ−1 (r) < σ−1 (i)

}
consists of all predecessors of i with

respect to the permutation σ.

Definition 1.8. Let v ∈ GN and σ ∈ π (N). The marginal contribu-

tion vector mσ (v) ∈ Rn with respect to σ and v has the i-th coordinate
mσ

i (v) := v (P σ (i) ∪ {i}) − v (P σ (i)) for each i ∈ N .

In what follows, we often write mσ instead of mσ (v) when it is clear
which game v we have in mind.

1 In some game theory literature a game is simple if it is additionally monotonic (cf.

Definition 1.10).
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Definition 1.9. For a game v ∈ GN and a coalition T ∈ 2N \ {∅}, the
subgame with player set T is the game vT defined by vT (S) := v (S) for
all S ∈ 2T .

Hence, vT is the restriction of v to the set 2T .

Definition 1.10. A game v ∈ GN is said to be monotonic if v (S) ≤ v (T )
for all S, T ∈ 2N with S ⊂ T .

Definition 1.11. A game v ∈ GN is called non-negative if for each S ∈
2N we have v (S) ≥ 0.

Definition 1.12. A game v ∈ GN is additive if v (S ∪ T ) = v (S) + v (T )
for all S, T ∈ 2N with S ∩ T = ∅.

An additive game v ∈ GN is determined by the vector

a = (v ({1}) , ..., v ({n})) ∈ Rn (1.3)

since v (S) =
∑

i∈S ai for all S ∈ 2N . Additive games form an n-dimensional
linear subspace of GN . A game v ∈ GN is called inessential if it is an
additive game. For an inessential game there is no problem how to divide
v (N) because v (N) =

∑
i∈N v ({i}) (and also v (S) =

∑
i∈S v ({i}) for all

S ⊂ N)2.
Most of the cooperative games arising from real life situations are super-

additive games.

Definition 1.13. A game v ∈ GN is superadditive if v (S ∪ T ) ≥ v (S)+
v (T ) for all S, T ∈ 2N with S ∩ T = ∅.

Of course, in a superadditive game we have v
(
∪k

i=1Si

)
≥ ∑k

i=1 v(Si) if

S1, . . . , Sk are pairwise disjoint coalitions. Especially v (N) ≥ ∑k
i=1 v(Si)

for each partition (S1, . . . , Sk) of N ; in particular v (N) ≥∑n
i=1 v(i). Note

that the game in Example 1.2 is superadditive. In a superadditive game
it is advantageous for the players to cooperate. The set of (characteristic
functions of) superadditive games form a cone in GN , i.e. for all v and w
that are superadditive we have that αv+ βw is also a superadditive game,
where α, β ∈ R+.

Definition 1.14. A game v ∈ GN for which v (N) >
∑n

i=1 v (i) is said to
be an N-essential game .

In what follows in Part I, the notion of a balanced game will play an
important role.

2 Given a game v ∈ GN and a coalition {i, . . . , k} ⊂ N , we will often write v(i, . . . , k)

instead of v({i, . . . , k}).
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Definition 1.15. A map λ : 2N \ {∅} → R+ is called a balanced map if∑
S∈2N\{∅} λ (S) eS = eN .

Definition 1.16. A collection B of coalitions is called balanced if there
is a balanced map λ such that B =

{
S ∈ 2N | λ (S) > 0

}
.

Definition 1.17. A game v ∈ GN is balanced if for each balanced map
λ : 2N \ {∅} → R+ we have

∑

S∈2N\{∅}

λ (S) v (S) ≤ v (N) . (1.4)

Let us consider now two games v, w ∈ GN and answer the question
“When can we say that v and w are ’essentially’ the same?”

Definition 1.18. Let v, w ∈ GN . The game w is strategically equivalent

to the game v if there exist k > 0 and an additive game a (cf. (1.3)) such
that w (S) = kv (S) +

∑
i∈S ai for all S ∈ 2N \ {∅}.

One may think that w arises out of v by the following changes:

− the unit of payoffs is changed, where the exchange rate is k;
− in the game w each player is given either a bonus (if ai > 0) or a fee (if

ai < 0) before the distribution of kv (N) among the players starts.

Notice that the strategic equivalence is an equivalence relation on the set
GN , i.e. we have:

− (Reflexivity) The game v is strategically equivalent to itself (take k = 1
and ai = 0 for each i ∈ N);

− (Symmetry) If w is strategically equivalent to v, then v is strategically
equivalent to w (if for all coalitions S ⊂ N , w (S) = kv (S) +

∑
i∈S ai,

then v (S) = 1
kw (S) −∑i∈S

ai

k and 1
k > 0);

− (Transitivity) If w is strategically equivalent to v and u is strategically
equivalent to w, then u is strategically equivalent to v (w (S) = kv (S)+
a (S) and u (S) = lw (S)+b (S) imply u (S) = lkv (S)+(la (S) + b (S)),
where a (S) :=

∑
i∈S ai).

For most solution concepts − as we will see later − it is sufficient to look
only at one of the games in an (strategic) equivalence class. One considers
often games in an equivalence class that are in (α, β)-form for α, β ∈ R.

Definition 1.19. Let α, β ∈ R. A game v ∈ GN is called a game in

(α, β)-form if v (i) = α for all i ∈ N and v (N) = β.

Theorem 1.20. Each N -essential game v ∈ GN is strategically equivalent
to a game w ∈ GN in (0, 1)-form. This game is unique.
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Proof. For some k > 0 and a1, ..., an ∈ R we try to find a game w with
w (S) = kv (S) + a (S) for all S ∈ 2N \ {∅}, w ({i}) = 0 for all i ∈ N , and
w (N) = 1. Then necessarily

w (i) = 0 = kv (i) + ai, (1.5)

w (N) = 1 = kv (N) +
∑

i∈N

ai. (1.6)

Then w (N)−∑i∈N w (i) = 1 = k
(
v (N) −∑i∈N v (i)

)
by (1.5) and (1.6).

Hence, k = 1
v(N)−

P
i∈N v(i) . From (1.5) we derive ai = − v(i)

v(N)−
P

i∈N v(i) . If

we take for all S ∈ 2N\ {∅}, w (S) =
v(S)−

P
i∈S v(i)

v(N)−
P

i∈N v(i) , then we obtain the

unique game w in (0, 1)-form, which is strategically equivalent to v.

Definition 1.21. A game v ∈ GN is called zero-normalized if for all
i ∈ N we have v (i) = 0.

One can easily check that each game v ∈ GN is strategically equivalent
to a zero-normalized game w ∈ GN , where w (S) = v (S) −∑i∈S v (i).

Definition 1.22. A game v ∈ GN is said to be zero-monotonic if its
zero-normalization is monotonic.

It holds that a game which is strategically equivalent to a zero-monotonic
game is also zero-monotonic.

We turn now to one of the basic questions in the theory of cooperative
TU-games: “If the grand coalition forms, how to divide the profit or cost
savings v (N)?”

This question is approached with the aid of solution concepts in coop-
erative game theory like cores, stable sets, bargaining sets, the Shapley
value, the τ -value, the nucleolus. A solution concept gives an answer to the
question of how the reward (cost savings) obtained when all players in N
cooperate should be distributed among the individual players while taking
account of the potential reward (cost savings) of all different coalitions of
players. Hence, a solution concept assigns to a coalitional game at least
one payoff vector x = (xi)i∈N ∈ Rn, where xi is the payoff allocated to
player i ∈ N . A selection of (set-valued and one-point) solution concepts
which will be used along this book, their axiomatic characterizations and
interrelations will be given in Chapters 2-4.

Definition 1.23. A set-valued solution (or a multisolution) is a multi-
function F : GN →→ Rn.

Definition 1.24. An one-point solution (or a single-valued rule) is a
map f : GN → Rn.
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We mention now some desirable properties for one-point solution con-
cepts. Extensions of these properties to set-valued solution concepts are
straightforward.

Definition 1.25. Let f : GN → Rn. Then f satisfies

(i) individual rationality if fi (v) ≥ v (i) for all v ∈ GN and i ∈ N .
(ii) efficiency if

∑n
i=1 fi (v) = v (N) for all v ∈ GN .

(iii) relative invariance with respect to strategic equivalence if for
all v, w ∈ GN , all additive games a ∈ GN , and all k > 0 we have that
w = kv + a implies f (kv + a) = kf (v) + a.

(iv) the dummy player property if fi (v) = v (i) for all v ∈ GN and for
all dummy players i in v, i.e. players i ∈ N such that v (S ∪ {i}) =
v (S) + v (i) for all S ∈ 2N\{i}.

(v) the anonymity property if f (vσ) = σ∗ (f (v)) for all σ ∈ π (N) .
Here vσ is the game with vσ (σ (U)) := v (U) for all U ∈ 2N or
vσ (S) = v

(
σ−1 (S)

)
for all S ∈ 2N and σ∗ : Rn → Rn is defined

by (σ∗ (x))σ(k) := xk for all x ∈ Rn and k ∈ N .

(vi) additivity if f (v + w) = f (v) + f (w) for all v, w ∈ GN .

We end this chapter by recalling some definitions and results from linear
algebra which are used later.

Definition 1.26. Let V and W be vector spaces over R. Let L : V → W
be a map. Then L is called a linear transformation (linear map, linear
operator) from V into W if for all x, y ∈ V and all α, β ∈ R we have
L (αx+ βy) = αL (x) + βL (y).

Definition 1.27. A set W is a (linear) subspace of the vector space V
if W ⊂ V , 0 ∈ W , and W is closed with respect to addition and scalar
multiplication, i.e. for all x, y ∈ W we have x + y ∈ W , and for each
x ∈W and α ∈ R, also αx ∈W holds.

Definition 1.28. A subset C of a vector space V over R is called convex

if for all x, y ∈ C and all α ∈ (0, 1) we have αx+ (1 − α) y ∈ C.

A geometric interpretation of a convex set is that with each pair x, y of
points in it, the line segment with x, y as endpoints is also in the set.

Definition 1.29. Let C be a convex set. A point x ∈ C is called an ex-

treme point of C if there do not exist x1, x2 ∈ C with x1 6= x, x2 6= x and
α ∈ (0, 1) such that x = αx1 + (1 − α)x2. The set of extreme points of a
convex set C will be denoted by ext (C).

Definition 1.30. A set H of points in Rn is called a hyperplane if it
is the set of solutions of a linear equation a1x1 + ... + anxn = b, with
(a1, ..., an) ∈ Rn \ {0} and b ∈ R. A hyperplane separates a (linear) space
in two (linear) halfspaces. Let A be an n × p matrix and b ∈ Rp; a set
P =

{
x ∈ Rn | xTA ≥ bT

}
is called a polyhedral set.
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The following theorem gives a characterization of extreme points of a
polyhedral set.

Theorem 1.31. Let A be an n × p matrix, b ∈ Rp and let P be the poly-
hedral set of solutions of the set of inequalities xTA ≥ bT . For x ∈ R let
tight (x) be the set of columns

{
Aej | xTAej = bj

}
of A where the corre-

sponding inequalities are equalities for x, and where for each j ∈ N , ej is
the j-th standard basis vector in Rn. Then x is an extreme point of P iff
tight (x) is a complete system of vectors in Rn.

The next theorem is known as the duality theorem from linear program-
ming theory.

Theorem 1.32. Let A be an n × p matrix, b ∈ Rp and c ∈ Rn. Then
min

{
xT c | xTA ≥ bT

}
= max

{
bT y | Ay = c, y ≥ 0

}
if
{
x ∈ Rn | xTA ≥ bT

}
6=

∅ and {y ∈ Rp | Ay = c, y ≥ 0} 6= ∅.

Definition 1.33. Let V be a vector space and A ⊂ V . The convex hull

co (A) of A is the set

{
x ∈ V | ∃p ∈ N, α ∈ ∆p, v1, ..., vp ∈ A s.t.

p∑

i=1

αivi = x

}
,

where ∆p =
{
q ∈ Rp

+ |∑p
i=1 qi = 1

}
is the (p− 1)-dimensional unit sim-

plex.





2
Cores and related solution concepts

In this chapter we consider payoff vectors x = (xi)i∈N ∈ Rn, with xi being
the payoff to be given to player i ∈ N , under the condition that cooperation
in the grand coalition is reached. Clearly, the actual formation of the grand
coalition is based on the agreement of all players upon a proposed payoff in
the game. Such an agreement is, or should be, based on all other cooperation
possibilities for the players and their corresponding payoffs.

2.1 Imputations, cores and stable sets

We note first that only payoff vectors x ∈ Rn satisfying
∑

i∈N xi ≤ v(N)
are reachable in the game v ∈ GN and the set of such payoff vectors is
nonempty and convex. More precisely, it is a halfspace of Rn. We denote
this set by I∗∗(v), i.e.

I∗∗(v) :=

{
x ∈ Rn |

∑

i∈N

xi ≤ v(N)

}
.

However, to have any chance of being agreed upon, a payoff vector should
satisfy efficiency , i.e. ∑

i∈N

xi = v(N).

To motivate the efficiency condition we argue that
∑

i∈N xi ≥ v(N)
should also hold.
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Suppose that
∑

i∈N xi < v(N). In this case we would have

a = v(N) −
∑

i∈N

xi > 0.

Then the players can still form the grand coalition and receive the better
payoff y = (y1, . . . , yn) with yi = xi + a

n for all i ∈ N .
We denote by I∗(v) the set of efficient payoff vectors in the coalitional

game v ∈ GN , i.e.

I∗(v) :=

{
x ∈ Rn |

∑

i∈N

xi = v(N)

}

and, clearly, I∗(v) 6= ∅. This convex set is referred to as the preimputation
set of the game v ∈ GN . It is a hyperplane in Rn. Clearly, I∗(v) ⊂ I∗∗(v).

Now, note that if the proposed allocation x ∈ I∗(v) is such that there
is at least one player i ∈ N whose payoff xi satisfies xi < v (i), the grand
coalition would never form. The reason is that such a player would prefer
not to cooperate since acting on his own he can obtain more.

Hence, the individual rationality condition

xi ≥ v (i) for all i ∈ N

should hold in order that a payoff vector has a real chance to be realized
in the game.

Definition 2.1. A payoff vector x ∈ Rn is an imputation for the game
v ∈ GN if it is efficient and individually rational, i.e.
(i)
∑

i∈N xi = v(N);
(ii) xi ≥ v (i) for all i ∈ N .

We denote by I(v) the set of imputations of v ∈ GN . Clearly, I(v) is
empty if and only if v(N) <

∑
i∈N v (i). Further, for an additive game (cf.

Definition 1.12),

I(v) = {(v (1) , . . . , v (n))} .
The next theorem shows that N -essential games (cf. Definition 1.14)

always have infinitely many imputations. Moreover, I(v) is a simplex with
extreme points f1, . . . , fn, where for each i ∈ N , f i =

(
f i
1, . . . , f

i
j , . . . , f

i
n

)

with

f i
j =

{
v (i) if i 6= j,
v(N) −∑k∈N\{i} v (k) if i = j.

(2.1)

Theorem 2.2. Let v ∈ GN . If v is N -essential, then
(i) I(v) is an infinite set.
(ii) I(v) is the convex hull of the points f 1, . . . , fn.
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Proof. (i) Since v ∈ GN is an N -essential game we have a = v(N) −∑
i∈N xi > 0. For any n-tuple b = (b1, . . . , bn) of nonnegative numbers such

that
∑

i∈N bi = a, the payoff vector x′ = (x′1, . . . , x
′
n) with x′i = v (i) + bi

for all i ∈ N is an imputation.
(ii) This follows from Theorem 1.31 by noting that

I(v) =
{
x ∈ Rn | xTA ≥ bT

}
,

where A is the n× (n+ 2)-matrix with columns e1, . . . , en, 1n,−1n and

b = (v (1) , . . . , v (n) , v(N),−v(N)) ,

where for each i ∈ N , ei is the i-th standard basis in Rn and 1n is the
vector in Rn with all coordinates equal to 1.

Since the imputation set of an N -essential game is too large according
to the above theorem, there is a need for some criteria to single out those
imputations that are most likely to occur. In this way one obtains subsets
of I(v) as solution concepts.

The first (set-valued) solution concept we would like to study is the core
of a game (cf. [30]).

Definition 2.3. The core C(v) of a game v ∈ GN is the set

{
x ∈ I(v) |

∑

i∈S

xi ≥ v(S) for all S ∈ 2N \ {∅}
}
.

If x ∈ C(v), then no coalition S has an incentive to split off if x is
the proposed reward allocation in N , because the total amount

∑
i∈S xi

allocated to S is not smaller than the amount v(S) which the players can
obtain by forming the subcoalition. If C(v) 6= ∅, then elements of C(v) can
easily be obtained because the core is defined with the aid of a finite system
of linear inequalities. The core is a polytope.

In [9] and [59] one can find a characterization of games with a nonempty
core that we present in the next theorem.

Theorem 2.4. Let v ∈ GN . Then the following two assertions are equiva-
lent:
(i) C(v) 6= ∅,
(ii) The game v is balanced (cf. Definition 1.17).

Proof. First we note that C(v) 6= ∅ iff

v(N) = min

{
∑

i∈N

xi |
∑

i∈S

xi ≥ v(S) for all S ∈ 2N \ {∅}
}
. (2.2)

By Theorem 1.32, equality (2.2) holds iff
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v(N) = max





∑

S∈2N\{∅}

λ(S)v(S) |
∑

S∈2N\{∅}

λ(S)eS = eN , λ ≥ 0



 (2.3)

(take for A the matrix with the characteristic vectors eS as columns). Now
(2.3) holds iff (1.4) holds. Hence, (i) and (ii) are equivalent.

Remark 2.5. The core is relative invariant with respect to strategic equiv-
alence (cf. Definition 1.25(iii)): if w ∈ GN is strategically equivalent to
v ∈ GN , say w = kv + a, then

C(w) = kC(v) + a (:= {x ∈ Rn | x = ky + a for some y ∈ C(v)}) .

Other subsets of imputations which are solution concepts for coalitional
games are the dominance core (D-core) and stable sets (cf. [45]). They are
defined based on the following dominance relation over vectors in Rn.

Definition 2.6. Let v ∈ GN , x, y ∈ I(v), and S ∈ 2N \ {∅}. We say that
x dominates y via coalition S, and denote it by xdomS y if
(i) xi > yi for all i ∈ S,
(ii)

∑
i∈S xi ≤ v(S).

Note that if (i) holds, then the payoff x is better than the payoff y for
all members of S; condition (ii) guarantees that the payoff x is reachable
for S.

Definition 2.7. Let v ∈ GN and x, y ∈ I(v). We say that x dominates

y, and denote it by xdom y if there exists S ∈ 2N \{∅} such that xdomS y.

Proposition 2.8. Let v ∈ GN and S ∈ 2N \ {∅}. Then the relations domS

and dom are irreflexive. Moreover, domS is transitive and antisymmetric.

Proof. That domS and dom are irreflexive follows from the fact that for
x ∈ I(v) there is no S ∈ 2N \ {∅} such that xi > xi for all i ∈ S.

To prove that domS is transitive take x, y, z ∈ I(v) such that xdomS y
and y domS z. Then xi > zi for all i ∈ S. So xdomS z.

To prove that domS is antisymmetric, suppose xdomS y. Then xi > yi

for all i ∈ S, i.e. there is no i ∈ S such that yi > xi. Hence, y domS x does
not hold.

For S ∈ 2N \ {∅} we denote by D(S) the set of imputations which are
dominated via S; note that players in S can successfully protest against
any imputation in D(S).

Definition 2.9. The dominance core (D-core) DC(v) of a game v ∈
GN consists of all undominated elements in I(v), i.e. the set I(v) \
∪S∈2N\{∅}D(S).
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It turns out that DC(v) is also a convex set; moreover, it is a polytope
and relative invariant with respect to strategic equivalence.

For v ∈ GN and A ⊂ I(v) we denote by dom (A) the set consisting
of all imputations that are dominated by some element in A. Note that
DC(v) = I(v) \ dom(I(v)).

Definition 2.10. For v ∈ GN a subset K of I(v) is called a stable set if
the following conditions hold:
(i) (Internal stability) K ∩ dom(K) = ∅,
(ii) (External stability) I(v) \K ⊂ dom(K).

This notion was introduced by von Neumann and Morgenstern (cf. [45])
with the interpretation that a stable set corresponds to a “standard of
behavior”, which, if generally accepted, is self-enforcing.

The two conditions in Definition 2.10 can be interpreted as follows:

− By external stability, an imputation outside a stable set K seems un-
likely to become established: there is always a coalition that prefers one
of the achievable imputations inside K, implying that there would exist
a tendency to shift to an imputation in K;

− By internal stability, all imputations in K are “equal” with respect to
the dominance relation via coalitions, i.e. there is no imputation in K
that is dominated by another imputation in K.

Note that for a game v ∈ GN the set K is a stable set if and only if K
and dom(K) form a partition of I(v). In principle, a game may have many
stable sets or no stable set.

Theorem 2.11. Let v ∈ GN and K be a stable set of v. Then
(i) C(v) ⊂ DC(v) ⊂ K;
(ii) If v is superadditive, then DC(v) = C(v);
(iii) If DC(v) is a stable set, then there is no other stable set.

Proof. (i) In order to show that C(v) ⊂ DC(v), let us suppose that there
is x ∈ C(v) such that x /∈ DC(v). Then there is an y ∈ I(v) and a coalition
S ∈ 2N \ {∅} such that y domS x. Then v(S) ≥ ∑i∈S yi >

∑
i∈S xi which

implies that x /∈ C(v).
To prove next that DC(v) ⊂ K it is sufficient to show that I(v) \K ⊂

I(v) \ DC(v). Take x ∈ I(v) \ K. By the external stability of K there is
a y ∈ K with y domx. The elements in DC(v) are not dominated. So
x /∈ DC(v), i.e. x ∈ I(v) \DC(v).

(ii) We divide the proof of this assertion into two parts.
(ii.1) We show that for an x ∈ I(v) with

∑
i∈S xi < v(S) for some

S ∈ 2N \ {∅}, there is y ∈ I(v) such that y domS x. Define y as fol-

lows. If i ∈ S, then yi := xi +
v(S)−

P
i∈S xi

|S| . If i /∈ S, then yi :=

v (i)+
v(N)−v(S)−

P
i∈N\S v(i)

|N\S| . Then y ∈ I(v), where for the proof of yi ≥ v (i)

for i ∈ N\S we use the superadditivity of the game. Furthermore, y domS x.
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(ii.2) In order to show DC(v) = C(v) we have, in view of (i), only to
prove that DC(v) ⊂ C(v). Suppose x ∈ DC(v). Then there is no y ∈ I(v)
such that y domx. In view of (ii.1) we then have

∑
i∈S xi ≥ v(S) for all

S ∈ 2N \ {∅}. Hence, x ∈ C(v).
(iii) Suppose DC(v) is a stable set. Let K also be stable. By (i) we have

DC(v) ⊂ K. To prove K = DC(v), we have to show that K \DC(v) = ∅.
Suppose, to the contrary, that there is x ∈ K \ DC(v). By the external
stability of DC(v) there is y ∈ DC(v) (⊂ K) such that y domx. This is a
contradiction to the internal stability of K. Hence K \DC(v) = ∅ holds.

In addition to the relations among the core, the dominance core and the
stable sets as established in Theorem 2.11, we state next without proof
some additional results that will be used in the next parts of the book.

Theorem 2.12. Let v ∈ GN . Then
(i) If DC(v) 6= ∅ and v(N) ≥ v(S) +

∑
i∈N\S v (i) for each S ⊂ N , then

C(v) = DC(v).
(ii) If C(v) 6= DC(v), then C(v) = ∅.

For details with respect to these relations the reader is referred to [23],
[53], [61], and [66].

Another core-like solution concept which is related to the norm of equity
is the equal division core introduced in [56]. Given a game v ∈ GN , the
equal division core EDC(v) is the set

{
x ∈ I(v) | @S ∈ 2N \ {∅} s.t.

v(S)

|S| > xi for all i ∈ S

}
,

consisting of efficient payoff vectors for the grand coalition which cannot
be improved upon by the equal division allocation of any subcoalition. It is
clear that the core of a cooperative game is included in the equal division
core of that game. The reader can find axiomatic characterizations of this
solution concept on two classes of cooperative games in [7].

2.2 The core cover, the reasonable set and the
Weber set

In this section we introduce three sets related to the core, namely the core
cover (cf. [68]), the reasonable set (cf. [29], [40], and [42]), and the Weber
set (cf. [74]). All these sets can be seen as “core catchers” in the sense that
they all contain the core of the corresponding game as a subset.

In the definition of the core cover the upper vector M(N, v) and the lower
vector m(v) of a game v ∈ GN play a role.

For each i ∈ N , the i-th coordinate Mi(N, v) of the upper vectorM(N, v)
is the marginal contribution of player i to the grand coalition (cf. Definition
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1.7); it is also called the utopia payoff for player i in the grand coalition in
the sense that if player i wants more, then it is advantageous for the other
players in N to throw player i out.

Definition 2.13. Let S ∈ 2N \ {∅} and i ∈ S. The remainder R(S, i)
of player i in the coalition S is the amount which remains for player i if
coalition S forms and all other players in S obtain their utopia payoffs, i.e.

R (S, i) := v(S) −
∑

j∈S\{i}

Mj(N, v).

For each i ∈ N , the i-th coordinate mi(v) of the lower vector m(v) is
then defined by

mi(v) := max
S:i∈S

R(S, i).

We refer to mi(v) also as the minimum right payoff for player i, since
this player has a reason to ask at least mi(v) in the grand coalition N , by
arguing that he can obtain that amount also by drumming up a coalition
S with mi(v) = R(S, i) and making all other players in S happy with their
utopia payoffs.

Definition 2.14. The core cover CC(v) of v ∈ GN consists of all impu-
tations which are between m(v) and M(N, v) (in the usual partial order of
Rn), i.e.

CC(v) := {x ∈ I(v) | m(v) ≤ x ≤M(N, v)} .

That CC(v) is a core catcher follows from the following theorem, which
tells us that the lower (upper) vector is a lower (upper) bound for the core.

Theorem 2.15. Let v ∈ GN and x ∈ C(v). Then m(v) ≤ x ≤ M(N, v)
i.e. mi(v) ≤ xi ≤Mi(N, v) for all i ∈ N .

Proof. (i) xi = x(N) − x (N \ {i}) = v(N) − x (N \ {i}) ≤ v(N) −
v (N \ {i}) = Mi(N, v) for each i ∈ N .

(ii) In view of (i), for each S ⊂ N and each i ∈ S we have

xi = x(S) − x (S \ {i}) ≥ v(S) −
∑

j∈S\{i}

Mj(N, v) = R(S, i).

So, xi ≥ maxS:i∈S R(S, i) = mi(v) for each i ∈ S.

Another core catcher for a game v ∈ GN is introduced (cf. [42]) as follows.

Definition 2.16. The reasonable set R(v) of a game v ∈ GN is the set

{
x ∈ Rn | v(i) ≤ xi ≤ max

S:i∈S
(v(S) − v (S \ {i}))

}
.
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Obviously, C(v) ⊂ CC(v) ⊂ R(v).
The last core catcher for a game v ∈ GN we introduce (cf. [74]) is the

Weber set. In its definition the marginal contribution vectors (cf. Definition
1.8) play a role.

Definition 2.17. The Weber set W (v) of a game v ∈ GN is the convex
hull of the n! marginal vectors mσ (v), corresponding to the n! permutations
σ ∈ π(N).

Here mσ(v) is the vector with

mσ
σ(1)(v) := v (σ (1)) ,

mσ
σ(2)(v) := v (σ (1) , σ (2)) − v (σ (1)) ,

...

mσ
σ(k)(v) := v (σ (1) , . . . , σ (k)) − v (σ (1) , . . . , σ (k − 1))

for each k ∈ N . The payoff vector mσ can be created as follows. Let the
players enter a room one by one in the order σ (1), . . . , σ (n) and give each
player the marginal contribution he creates by entering.

The Weber set is a core catcher as shown in

Theorem 2.18. Let v ∈ GN . Then C(v) ⊂W (v).

Proof. If |N | = 1, then I(v) = C(v) = W (v) = {(v(1))}.
− For |N | = 2 we consider two cases: I(v) = ∅ and I(v) 6= ∅. If I(v) = ∅,

then C(v) ⊂ I(v) = ∅ ⊂W (v). If I(v) 6= ∅, then we let

x′ = (v(1), v(1, 2) − v(1))

and
x′′ = (v(2), v(1, 2) − v(2)) ,

and note that

C(v) = I(v) = co {x′, x′′}
= co {mσ(v) | σ : {1, 2} → {1, 2}} = W (v).

− We proceed by induction on the number of players. So, suppose |N | =
n > 2 and suppose that the core is a subset of the Weber set for all
games with number of players smaller than n.

− Since C(v) and W (v) are convex sets we need only to show that
x ∈ ext (C(v)) implies x ∈ W (v). Take x ∈ ext(C(v)). Then it follows
from Theorem 1.31 that there exists T ∈ 2N \{∅, N} with x(T ) = v(T ).
Consider the |T |-person game u and the (n− |T |)-person game w de-
fined by
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u(S) = v(S) for each S ∈ 2T ,

w(S) = v (T ∪ S) − v(T ) for each S ∈ 2N\T .

Then, obviously, xT ∈ C(u), and also xN\T ∈ C(w) because xN\T (S) =
x(S) = x (T ∪ S)−x (T ) ≥ v (T ∪ S)−x(T ) = v (T ∪ S)−v(T ) = w(S)
for all S ∈ 2N\T and

∑

i∈N\T

x
N\T
i = x(N) − x(T ) = v(N) − v(T ) = w (N \ T ) .

Since |T | < n, |N \ T | < n, the induction hypothesis implies that xT ∈
W (u) and xN\T ∈W (w).
Then x = xT × xN\T ∈W (u) ×W (w) ⊂W (v). This last inclusion can
be seen as follows. The extreme points of W (u)×W (w) are of the form
(mρ,mτ ), where ρ : {1, 2, . . . , |T |} → T and τ : {1, 2, . . . , |N \ T |} →
N \ T are bijections and mρ ∈ R|T |,mτ ∈ R|N\T | are given by

mρ
ρ(1) := u (ρ(1)) = v (ρ(1)) ,

mρ
ρ(2) := u (ρ(1), ρ(2)) − u (ρ(1)) = v (ρ(1), ρ(2)) − v (ρ(1)) ,

...

mρ
ρ(|T |) := u(T ) − u (T \ {ρ (|T |)}) = v (T ) − v (T \ {ρ (|T |)}) ,
mτ

τ(1) := w (τ(1)) = v (T ∪ {τ(1)}) − v(T ),

mτ
τ(2) := w (τ(1), τ(2)) − w (τ(1))

= v (T ∪ {τ(1), τ(2)}) − v(T ∪ {τ(1)}),
...

mτ
τ(|N\T |) := w (N \ T ) − w ((N \ T ) \ {τ (|N \ T |)})

= v (N) − v(N \ {τ (|N \ T |)}).

Hence, (mρ,mτ ) ∈ Rn corresponds to the marginal vector mσ in W (v)
where σ : N → N is defined by

σ(i) :=





ρ(i) if 1 ≤ i ≤ |T | ,

τ (i− |T |) if |T | + 1 ≤ i ≤ n.

So, we have proved that ext (W (u) ×W (w)) ⊂ W (v). Since W (v) is
convex, W (u) ×W (w) ⊂ W (v). We have proved that x ∈ ext (C(v))
implies x ∈W (v).

For another proof of Theorem 2.18 the reader is referred to [22].





3
The Shapley value and the τ -value

The Shapley value and the τ -value are two interesting one-point solution
concepts in cooperative game theory. In this chapter we discuss different
formulations of these values, some of their properties and give axiomatic
characterizations of the Shapley value.

3.1 The Shapley value

The Shapley value (cf. [58]) associates to each game v ∈ GN one payoff
vector in Rn. For a very extensive and interesting discussion on this value
the reader is referred to [54].

The first formulation of the Shapley value uses the marginal vectors (see
Definition 1.8) of a cooperative TU-game.

Definition 3.1. The Shapley value Φ(v) of a game v ∈ GN is the average
of the marginal vectors of the game, i.e.

Φ(v) :=
1

n!

∑

σ∈π(N)

mσ(v). (3.1)

With the aid of (3.1) one can provide a probabilistic interpretation of
the Shapley value as follows. Suppose we draw from an urn, containing
the elements of π(N), a permutation σ (with probability 1

n! ). Then we let
the players enter a room one by one in the order σ and give each player
the marginal contribution created by him. Then, for each i ∈ N , the i-th
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coordinate Φi(v) of Φ(v) is the expected payoff of player i according to this
random procedure.

By using Definition 1.8 one can rewrite (3.1) obtaining

Φi(v) =
1

n!

∑

σ∈π(N)

(v (P σ (i) ∪ {i}) − v (P σ (i))) . (3.2)

Example 3.2. Let N = {1, 2, 3}, v (1, 2) = −2, v(S) = 0 if S 6= {1, 2}. Then
the Shapley value is the average of the vectors (0,−2, 2), (0, 0, 0), (−2, 0, 2),
(0, 0, 0), (0, 0, 0), and (0, 0, 0), i.e.

Φ(v) =

(
−1

3
,−1

3
,
2

3

)
.

Remark 3.3. The game in Example 3.2 shows that the Shapley value needs
not to be individually rational (cf. Definition 1.25(i)); note that Φ1(v) =
− 1

3 < 0 = v(1).

The terms after the summation sign in (3.2) are of the form v (S ∪ {i})−
v (S), where S is a subset of N not containing i. Note that there are exactly
|S|! (n− 1 − |S|)! orderings for which one has P σ (i) = S. The first factor
|S|! corresponds to the number of orderings of S and the second factor
(n− 1 − |S|)! corresponds to the number of orderings of N \ (S ∪ {i}).
Using this, we can rewrite (3.2) and obtain

Φi(v) =
∑

S:i/∈S

|S|! (n− 1 − |S|)!
n!

(v (S ∪ {i}) − v (S)) . (3.3)

Note that |S|!(n−1−|S|)!
n! = 1

n

(
n− 1
|S|

)−1

. This gives rise to a second

probabilistic interpretation of the Shapley value. Create a subset S with
i /∈ S in the following way. First, draw at random a number out of the
urn consisting of possible sizes 0, . . . , n − 1, where each number (i.e. size)
has probability 1

n to be drawn. If size s is chosen, draw a set out of the
urn consisting of subsets of N \ {i} of size s, where each set has the same

probability

(
n− 1
s

)−1

to be drawn. If S is drawn, then one pays player

i the amount v (S ∪ {i}) − v (S). Then, obviously in view of (3.3), the
expected payoff for player i in this random procedure is the Shapley value
for player i in the game v ∈ GN .

Example 3.4. (i) For v ∈ G{1,2} we have

Φi(v) = v(i) +
v(1, 2) − v(1) − v(2)

2
for each i ∈ {1, 2} .

(ii) The Shapley value Φ(v) for an additive game v ∈ GN is equal to
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(v (1) , . . . , v(n)).
(iii) Let uS be the unanimity game for S ⊂ N (cf. (1.1)). Then Φ(uS) =
1
|S|e

S .

The Shapley value satisfies some reasonable properties as introduced in
Definition 1.25. More precisely

Proposition 3.5. The Shapley value satisfies additivity, anonymity, the
dummy player property, and efficiency.

Proof. (Additivity) This follows from the fact that mσ(v + w) = mσ(v) +
mσ(w) for all v, w ∈ GN .

(Anonymity) We divide the proof into two parts.
(a) First we show that

ρ∗ (mσ(v)) = mρσ (vρ) for all v ∈ GN and all ρ, σ ∈ π(N).

This follows because for all i ∈ N :

(mρσ (vρ))ρσ(i) = vρ (ρσ(1), . . . , ρσ(i)) − vρ (ρσ(1), . . . , ρσ(i− 1))

= v (σ(1), . . . , σ(i)) − v (σ(1), . . . , σ(i− 1))

= (mσ (v))σ(i) = ρ∗ (mσ(v))ρσ(i) .

(b) Take v ∈ GN and ρ ∈ π(N). Then, using (a), the fact that ρ → ρσ
is a surjection on π(N) and the linearity of ρ∗, we obtain

Φ (vρ) =
1

n!

∑

σ∈π(N)

mσ(vρ) =
1

n!

∑

σ∈π(N)

mρσ(vρ)

=
1

n!

∑

σ∈π(N)

ρ∗ (mσ(v)) = ρ∗


 1

n!

∑

σ∈π(N)

mσ(v)




= ρ∗ (Φ (v)) .

This proves the anonymity of Φ.
(Dummy player property) This follows from (3.3) by noting that

∑

S:i/∈S

|S|! (n− 1 − |S|)!
n!

= 1.

(Efficiency) Note that Φ is a convex combination ofmσ’s and
∑

i∈N mσ
i (v)=

v(N) for each σ ∈ π(N).

By using the properties listed in Proposition 3.5 one can provide an
axiomatic characterization of the Shapley value.

Theorem 3.6. ([58]) A solution f : GN → Rn satisfies additivity, anony-
mity, the dummy player property, and efficiency if and only if it is the
Shapley value.
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Proof. In view of Proposition 3.5 we have only to show that if f satisfies
the four properties, then f = Φ.

Take v ∈ GN . Then v =
∑

T∈2N\{∅} cTuT with uT being the unanimity

game for coalition T ∈ 2N \ {∅} and

cT =
∑

S:S⊂T

(−1)
|T |−|S|

v(S)

(cf. (1.2)). Then by additivity we have f (v) =
∑

T∈2N\{∅} f (cTuT ), Φ (v) =∑
T∈2N\{∅} Φ (cTuT ). So we have only to show that for all T ∈ 2N \ {∅}

and c ∈ R :
f (cuT ) = Φ (cuT ) . (3.4)

Take T ∈ 2N \ {∅} and c ∈ R. Note first that for all i ∈ N \ T :

cuT (S ∪ {i}) − cuT (S) = 0 = cuT (i) for all S ∈ 2N \ {∅} .

So, by the dummy player property, we have

fi (cuT ) = Φi (cuT ) = 0 for all i ∈ N \ T. (3.5)

Now suppose that i, j ∈ T , i 6= j. Then there is a σ ∈ π(N) with
σ(i) = j, σ(j) = i, σ(k) = k for k = N \ {i, j}. It easily follows that cuT =
σ (cuT ). Then anonymity implies that Φ (cuT ) = Φ (σ (cuT )) = σ∗Φ (cuT ),
Φσ(i) (cuT ) = Φi (cuT ). So

Φi (cuT ) = Φj (cuT ) for all i, j ∈ T , (3.6)

and similarly fi (cuT ) = fj (cuT ) for all i, j ∈ T .
Then efficiency, (3.5) and (3.6) imply that

fi (cuT ) = Φi (cuT ) =
c

|T | for all i ∈ T. (3.7)

Now (3.5) and (3.7) imply (3.4). So f(v) = Φ(v) for all v ∈ GN .

For other axiomatic characterizations of the Shapley value the reader is
referred to [32], [43], and [77].

An alternative formula for the Shapley value is in terms of dividends (cf.
[31]). The dividends dT for each nonempty coalition T in a game v ∈ GN

are defined in a recursive manner as follows:

dT (v) : = v(T ) for all T with |T | = 1,

dT (v) : =
v(T ) −∑S⊂T,S 6=T |S| dS(v)

|T | if |T | > 1.

The relation between dividends and the Shapley value is described in the
next theorem. It turns out that the Shapley value of a player in a game is
the sum of all dividends of coalitions to which the player belongs.



3.1 The Shapley value 27

Theorem 3.7. Let v ∈ GN and v =
∑

T∈2N\{∅} cTuT . Then

(i) |T | dT (v) = cT for all T ∈ 2N \ {∅}.
(ii) Φi(v) =

∑
T :i∈T dT (v) for all i ∈ N .

Proof. We have seen in the proof of Theorem 3.6 that Φ (cTuT ) = cT

|T |e
T

for each T ∈ 2N \ {∅}, so by additivity,

Φ (v) =
∑

T∈2N\{∅}

cT
|T |e

T .

Hence, Φi (v) =
∑

T :i∈T
cT

|T | . The only thing we have to show is that

cT
|T | = dT for all T ∈ 2N \ {∅} . (3.8)

We prove this by induction. If |T | = 1, then cT = v(T ) = dT (v).
Suppose (3.8) holds for all S ⊂ T , S 6= T . Then |T | dT (v) = v(T ) −∑

S⊂T,S 6=T |S| dS(v) = v(T )−∑S⊂T,S 6=T cS = cT because v(T ) =
∑

S⊂T cS .

Now we turn to the description of the Shapley value by means of the
multilinear extension of a game (cf. [49] and [50]).

Let v ∈ GN . Consider the function f : [0, 1]
n → R on the hypercube

[0, 1]
n

defined by

f (x1, . . . , xn) =
∑

S∈2N


∏

i∈S

xi

∏

i∈N\S

(1 − xi)


 v(S). (3.9)

In view of Theorem 1.31, the set of extreme points of [0, 1]
n

is equal to{
eS | S ∈ 2N

}
.

Proposition 3.8. Let v ∈ GN and f be as above. Then f
(
eS
)

= v(S) for
each S ∈ 2N .

Proof. Note that
∏

i∈S

(
eT
)i∏

i∈N\S

(
1 −

(
eT
)i)

= 1 if S = T and the

product is equal to 0 otherwise. Then by (3.9) we have

f
(
eT
)

=
∑

S∈2N


∏

i∈S

(
eT
)i ∏

i∈N\S

(
1 −

(
eT
)i)

 v(S) = v(T ).

One can give a probabilistic interpretation of f(x). Suppose that each
player i ∈ N , independently, decides whether to cooperate (with probability
xi) or not (with probability 1 − xi). Then with probability

∏

i∈S

xi

∏

i∈N\S

(1 − xi)
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the coalition S forms, which has worth v(S). Consequentially, f(x) as given
in (3.9) can be seen as the expectation of the worth of the formed coalition.

We denote by Dkf(x) the derivative of f with respect to the k-th coordi-
nate of x. Then we have the following result, describing the Shapley value
Φk(v) of a game v ∈ GN as the integral along the main diagonal of [0, 1]

n

of Dkf .

Theorem 3.9. ([49]) Let v ∈ GN and f be defined as in (3.9). Then

Φk(v) =
∫ 1

0
(Dkf) (t, . . . , t) dt for each k ∈ N .

Proof. Note that

Dkf(x) =
∑

T :k∈T


 ∏

i∈T\{k}

xi

∏

i∈N\T

(1 − xi)


 v(T )

−
∑

S:k/∈S


∏

i∈S

xi

∏

i∈N\(S∪{k})

(1 − xi)


 v(S)

=
∑

S:k/∈S


∏

i∈S

xi

∏

i∈N\(S∪{k})

(1 − xi)


 (v (S ∪ {k}) − v(S)) .

Hence,
∫ 1

0

(Dkf) (t, t, . . . , t) dt =

∑

S:k/∈S

(∫ 1

0

t|S| (1 − t)
n−|S|−1

dt

)
(v (S ∪ {k}) − v(S)) .

Using the well known (beta)-integral formula

∫ 1

0

t|S| (1 − t)
n−|S|−1

dt =
|S|! (n− 1 − |S|)!

n!

we obtain by (3.3)

∫ 1

0

(Dkf) (t, t, . . . , t) dt =
∑

S:k/∈S

|S|! (n− 1 − |S|)!
n!

(v (S ∪ {k}) − v(S))

= Φk(v).

Example 3.10. Let v ∈ G{1,2,3} with v(1) = v(2) = v(1, 2) = 0, v(1, 3) = 1,
v(2, 3) = 2, v(N) = 4. Then f (x1, x2, x3) = x1 (1 − x2)x3+2 (1 − x1)x2x3+
4x1x2x3 = x1x3 + 2x2x3 + x1x2x3 for all x1, x2, x3 ∈ [0, 1]. So D1f(x) =
x3 + x2x3. By Theorem 3.9 we obtain

Φ1(v) =

∫ 1

0

D1f (t, t, t) dt =

∫ 1

0

(
t+ t2

)
dt =

5

6
.
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3.2 The τ -value

The τ -value was introduced in [64] and it is defined for each quasi-balanced
game. This value is based on the upper vector M(N, v) and the lower vector
m(v) of a game v ∈ GN (cf. Section 2.2).

Definition 3.11. A game v ∈ GN is called quasi-balanced if
(i) m(v) ≤M(N, v) and
(ii)

∑n
i=1mi(v) ≤ v(N) ≤∑n

i=1Mi(N, v).

The set of |N |-person quasi-balanced games will be denoted by QN .

Proposition 3.12. If v ∈ GN is balanced, then v ∈ QN .

Proof. Let v ∈ GN be balanced. Then, by Theorem 2.4, it has a non-empty
core.

Let x ∈ C(v). By Theorem 2.15 we have m(v) ≤ x ≤ M(N, v). From
this it follows m(v) ≤M(N, v) and

n∑

i=1

mi(v) ≤
(

n∑

i=1

xi =

)
v(N) ≤

n∑

i=1

Mi(N, v).

Hence, v ∈ QN .

Definition 3.13. For a game v ∈ QN the τ -value τ(v) is defined by

τ(v) := αm(v) + (1 − α)M(N, v)

where α ∈ [0, 1] is uniquely determined by
∑

i∈N τi(v) = v(N).

Example 3.14. Let v ∈ G{1,2,3} with v (N) = 5, v(i) = 0 for all i ∈ N ,
v (1, 2) = v (1, 3) = 2, and v (2, 3) = 3. Then M(N, v) = (2, 3, 3), m1(v) =
max {0,−1,−1,−1} = 0, m2(v) = m3(v) = max {0, 0, 0, 0} = 0. So m(v) =
0 and v ∈ Q{1,2,3}. Hence, τ(v) = αm(v) + (1 − α)M(N, v) = 5

8 (2, 3, 3) =
5
8M(N, v).

Proposition 3.15. Let v ∈ Q{1,2}. Then
(i) C(v) = I(v),
(ii) τ(v) = Φ(v),
(ii) τ(v) is in the middle of the core C(v).

Proof. (i) For the lower and upper vectors we have

m1(v) = max {v (1) , v (1, 2) −M2(N, v)}
= max {v (1) , v (1, 2) − (v (1, 2) − v (1))}
= v (1) ,

M1(N, v) = v (1, 2) − v (2) .
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From v ∈ Q{1,2} it follows v (1) = m1(v) ≤ M1(N, v) = v (1, 2) − v (2),
i.e. v is superadditive and its imputation set I(v) is non-empty. Then

C(v) =

{
x ∈ I(v) |

∑

i∈S

xi ≥ v(S) for each S ⊂ N

}
= I(v).

(ii) For the Shapley value and for the τ -value we have Φ (v) = (Φi (v))i∈{1,2}

with Φi (v) = 1
2v (i) + 1

2 (v (1, 2) − v (3 − i)), and

τ (v) =
1

2
(M(N, v) +m(v))

=
1

2
((v (1, 2) − v (2) , v (1, 2) − v (1)) + v (1) , v (2))

= Φ (v) .

(iii) From (ii) it follows that Φ (v) = τ(v) = 1
2

(
f1 + f2

)
(cf. (2.1)), which

is in the middle of the core C(v).

Example 3.16. Let v be the 99-person game with
v(N) = 1, v(S) = 1

2 if {1, 2} ⊂ S 6= N ,
v(2, 3, 4, . . . , 99) = v (1, 3, 4, . . . , 99) = 1

4 , and v(S) = 0 otherwise.
For the upper and lower vectors we have

M(N, v) =

(
3

4
,
3

4
,
1

2
, . . . ,

1

2

)

and
m(v) = (0, . . . , 0) .

So, τ(v) = (1 − α)M(N, v) with 1 − α = 4
200 . Hence,

τ(v) =
4

200

(
3

4
,
3

4
,
2

4
, . . . ,

2

4

)
=

1

200
(3, 3, 2, . . . , 2) .

Remark 3.17. The game in Example 3.16 shows that the τ -value may not
be in the core C(v) of a game: note that τ1(v)+ τ2(v) = 6

200 <
1
2 = v (1, 2).

Remark 3.18. For an axiomatic characterization of the τ -value the reader
is referred to [65].



4
Classes of cooperative crisp games

In this chapter we consider three classes of cooperative crisp games: totally
balanced games, convex games, and clan games. We introduce basic char-
acterizations of these games and discuss special properties of the set-valued
and one-point solution concepts introduced so far. Moreover, we relate the
corresponding games with the concept of a population monotonic alloca-
tion scheme as introduced in [63]. We present the notion of a bi-monotonic
allocation scheme for totally clan games and the constrained egalitarian
solution (cf. [25] and [26]) for convex games.

4.1 Totally balanced games

4.1.1 Basic characterizations

Let v ∈ GN . The game v is called totally balanced if all its subgames (cf.
Definition 1.9) are balanced (cf. Definition 1.17). Equivalently, the game v
is totally balanced if C(vT ) 6= ∅ for all T ∈ 2N \ {∅} (cf. Theorem 2.4).

Example 4.1. Let v ∈ G{1,2,3,4} with v (S) = 0, 0, 1, 2 if |S| = 0, 1, 3, 4
respectively, and v (1, 2) = v (1, 3) = v (2, 3) = 1, v (1, 4) = v (2, 4) =
v (3, 4) = 0. Then

(
1
2 ,

1
2 ,

1
2 ,

1
2

)
∈ C(v), so v is balanced, but the subgame

vT with T = {1, 2, 3} is not balanced, so the game v is not totally balanced.

Example 4.2. Let v ∈ G{1,2,3,4} with v (1, 2) = v (3, 4) = 1
2 , v (1, 2, 3) =

v (2, 3, 4) = v (1, 2, 4) = v (1, 3, 4) = 1
2 , v (1, 2, 3, 4) = 1, and v(S) = 0 for

all other S ∈ 2N . Then
(

1
4 ,

1
4 ,

1
4 ,

1
4

)
∈ C(v). Furthermore,

(
0, 1

2 , 0
)

is an
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element of the core of the 3-person subgames and it easily follows that also
the one- and two-person games have non-empty cores. Hence, the game v
is totally balanced.

The following theorem relates totally balanced games that are non-
negative (cf. Definition 1.11) and additive games (cf. Definition 1.12).

Theorem 4.3. ([38]) Let v ∈ GN be totally balanced and non-negative.
Then v is the intersection of 2n − 1 additive games.

Proof. Let v ∈ GN be as above. For each T ∈ 2N \ {∅} consider the
corresponding subgame vT and take xT ∈ C(vT ). Define yT ∈ Rn by yi

T :=
xi

T if i ∈ T and yi
T := α if i ∈ N \ T , where α := maxS∈2N v(S). We prove

that v is equal to ∧T∈2N\{∅}wT

(
:= min

{
wT | T ∈ 2N \ {∅}

})
, where wT

is the additive game with wT (i) = yi
T for all i ∈ N .

We have to show that for S ∈ 2N \ {∅},

min
{
wT (S) | T ∈ 2N \ {∅}

}
= v(S).

This follows from
(a) wS(S) =

∑
i∈S y

i
S =

∑
i∈S x

i
S = vS(S) = v(S),

(b) wT (S) ≥ α ≥ v(S) if S \ T 6= ∅, where the first inequality follows
from the non-negativity of the game,

(c) wT (S) =
∑

i∈S x
i
S ≥ vT (S) = v(S) if S ⊂ T .

Nice examples of totally balanced games are games arising from flow
situations with dictatorial control. A flow situation consists of a directed
network with two special nodes called the source and the sink. For each
arc there are a capacity constraint and a constraint with respect to the
allowance to use that arc. Furthermore, with the aid of a simple game (cf.
Definition 1.3) for each arc, one can describe which coalitions are allowed
to use the arc. These are the coalitions which are winning (cf. Definition
1.4). Such games are called control games in this context. The value of a
coalition S is the maximal flow per unit of time through the network from
source to sink, where one uses only arcs which are controlled by S. Clearly,
a dictatorial control game is a control game in which the arcs are controlled
by dictators (cf. Definition 1.6).

One can show (cf. [38]) that each flow game with dictatorial control is
totally balanced and non-negative. The converse is also true as shown in

Theorem 4.4. ([38]) Let v ∈ GN be totally balanced and non-negative.
Then v is a flow game with dictatorial control.

Proof. The minimum v ∧ w of two flow games v, w ∈ GN with dictatorial
control is again such a flow game: make a series connection of the flow
networks of v and w. Also an additive game v is a flow game with dictatorial
control. Combining these facts with Theorem 4.3 completes the proof.
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4.1.2 Totally balanced games and population monotonic

allocation schemes

The class of totally balanced games includes the class of games with a
population monotonic allocation scheme (pmas). The latter concept was
introduced in [63]. The idea here is that because of the complexity of the
coalition formation process, players may not necessarily achieve full effi-
ciency (if the game is superadditive it is efficient for the players to form the
grand coalition). In order to take the possibility of partial cooperation into
account, a pmas specifies not only how to allocate v(N) but also how to
allocate the value v(S) of every coalition S ∈ 2N \{∅}. Moreover, it reflects
the intuition that there is “strength in numbers”: the share allocated to
each member is nondecreasing in the coalition size.

Definition 4.5. Let v ∈ GN . A scheme a = (aiS)i∈S,S∈2N\{∅} of real num-

bers is a population monotonic allocation scheme (pmas) of v if
(i)
∑

i∈S aiS = v(S) for all S ∈ 2N \ {∅},
(ii) aiS ≤ aiT for all S, T ∈ 2N \ {∅} with S ⊂ T and i ∈ S.

Definition 4.6. Let v ∈ GN . An imputation b ∈ I(v) is pmas extendable

if there exist a pmas a = (aiS)i∈S,S∈2N\{∅} such that aiN = bi for each
player i ∈ N .

As it can be easily derived from Definition 4.5, a necessary condition
for a game to posses a pmas is that the game is totally balanced. This
condition is also a sufficient one for games with at most three players: one
can easily show that every core element of such a game is pmas extendable.
However, if the number of players is at least four, the existence of a pmas
is not guaranteed as the next example shows (cf. [63]).

Example 4.7. Let v ∈ G{1,2,3,4} with v (i) = 0 for i = 1, . . . , 4, v (1, 2) =
v (3, 4) = 0, v (1, 3) = v (1, 4) = v (2, 3) = v (2, 4) = 1, v(S) = 1 for all
S with |S| = 3, and v(N) = 2. The core of this game is the line segment
joining (0, 0, 1, 1) and (1, 1, 0, 0). One can easily see that each subgame of
this game has a nonempty core, i.e. the game is totally balanced. However,
the game lacks a pmas as it can be shown by the following argument:
every pmas must satisfy a1N ≥ a1{1,3,4} = 1, a2N ≥ a2{2,3,4} = 1, a3N ≥
a3{1,2,3} = 1, and a4N ≥ a4{1,2,4} = 1. Hence,

∑
i∈N aiN ≥ 4, which is not

feasible.

For general necessary and sufficient conditions for a game to possess a
pmas the reader is referred to [63].

4.2 Convex games

This class of cooperative games was introduced in [60]. As we shall see,
convex games have nice properties: the core of such a game is the unique
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stable set and its extreme points can be easily described. Moreover, the
Shapley value coincides with the barycenter of the core.

4.2.1 Basic characterizations

Definition 4.8. A game v ∈ GN is called convex iff

v(S ∪ T ) + v (S ∩ T ) ≥ v(S) + v(T ) for all S, T ∈ 2N . (4.1)

In what follows the set of convex games on player set N will be denoted
by CGN .

In the next theorem we give five characterizations of convex games. Char-
acterizations (ii) and (iii) show that for convex games the gain made when
individuals or groups join larger coalitions is higher than when they join
smaller coalitions. Characterizations (iv) and (v) deal with the relation
between the core and the Weber set.

Theorem 4.9. Let v ∈ GN . The following five assertions are equivalent.
(i) v ∈ CGN ;
(ii) For all S1, S2, U ∈ 2N with S1 ⊂ S2 ⊂ N \ U we have

v (S1 ∪ U) − v(S1) ≤ v (S2 ∪ U) − v(S2); (4.2)

(iii) For all S1, S2 ∈ 2N and i ∈ N such that S1 ⊂ S2 ⊂ N \ {i} we have

v (S1 ∪ {i}) − v(S1) ≤ v (S2 ∪ {i}) − v(S2); (4.3)

(iv) All n! marginal vectors mσ(v) of v are elements of the core C(v) of v;
(v) W (v) = C(v).

Proof. We show (i) ⇒ (ii), (ii) ⇒ (iii), (iii) ⇒ (iv), (iv) ⇒ (v), (v) ⇒ (i).
(a) Suppose that (i) holds. Take S1, S2, U ∈ 2N with S1 ⊂ S2 ⊂ N \ U .

From (4.1) with S1 ∪ U in the role of S and S2 in the role of T we obtain
(4.2) by noting that S ∪ T = S2 ∪ U , S ∩ T = S1. Hence, (i) implies (ii).

(b) That (ii) implies (iii) is trivial (take U = {i}).
(c) Suppose that (iii) holds. Let σ ∈ π(N) and takemσ. Then

∑n
k=1m

σ
k =

v(N). To prove that mσ ∈ C(v) we have to show that for S ∈ 2N :∑
k∈S m

σ
k ≥ v(S).

Let S = {σ (i1) , . . . , σ (ik)} with i1 < . . . < ik. Then

v(S) =

k∑

r=1

(v (σ (i1) , . . . , σ (ir)) − v (σ (i1) , . . . , σ (ir−1)))

≤
k∑

r=1

(v (σ (1) , . . . , σ (ir)) − v (σ (1) , . . . , σ (ir − 1)))

=

k∑

r=1

mσ
σ(ir) =

∑

k∈S

mσ
k ,
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where the inequality follows from (iii) applied to i := σ (ir) and S1 :=
{σ (i1) , . . . , σ (ir−1)} ⊂ S2 := {σ (1) , . . . , σ (ir − 1)} for r ∈ {1, . . . , k}.
This proves that (iii) implies (iv).

(d) Suppose that (iv) holds. Since C(v) is a convex set, we have C(v) ⊃
co {mσ | σ ∈ π(N)} = W (v). From Theorem 2.18 we know that C(v) ⊂
W (v). Hence, (v) follows from (iv).

(e) Finally we prove that (v) implies (i). Take S, T ∈ 2N . Then, there
is σ ∈ π(N) and d, t, u ∈ N with 0 ≤ d ≤ t ≤ u ≤ n such that
S ∩ T = {σ (i1) , . . . , σ (d)}, T \ S = {σ (d+ 1) , . . . , σ (t)}, S \ T =
{σ (t+ 1) , . . . , σ (u)}, N \ (S ∪ T ) = {σ (u+ 1) , . . . , σ (n)}. From (v) fol-
lows that mσ ∈ C(v); hence,

v(S) ≤
∑

i∈S

mσ
i . (4.4)

On the other hand

∑

i∈S

mσ
i =

d∑

r=1

(v (Ar) − v (Ar−1)) +

u−t∑

k=1

v (T ∪Bt+k) − v (T ∪Bt+k−1)

= v(S ∩ T ) + v (S ∪ T ) − v(T ),

where Ar = {σ (1) , . . . , σ (r)}, Ar−1 = Ar\{σ (r)}, Bt+k = {σ (t+ 1) , . . . ,
σ (t+ k)}, and Bt+k−1 = Bt+k \ {σ (t+ k)}.

Combining (4.4) and (4.5) yields (4.1). This completes the proof.

Remark 4.10. It follows easily from Theorem 4.9 that for each game v ∈
CGN we have that the Shapley value Φ(v) coincides with the barycenter
of the core C(v).

Definition 4.11. ([55]) A game v ∈ GN is called exact if for each S ∈
2N \ {∅} there is an x ∈ C(v) with

∑
i∈S xi = v(S).

Remark 4.12. It is not difficult to see that a convex game is exact.

With respect to stable sets for convex games we have

Theorem 4.13. ([60]) Let v ∈ CGN . Then C(v) is the unique stable set.

Proof. In view of Theorem 2.11 we only have to show that C(v) is stable.
This is true if v is additive. So we suppose that v is not additive.

Let y ∈ I(v) \ C(v). Take an S ∈ 2N \ {∅} such that

v(S) −∑i∈S yi

|S| = max
C∈2N\{∅}

v(C) −∑i∈C yi

|C| . (4.5)

Further take z ∈ C(v) such that
∑

i∈S zi = v(S). This is possible in view
of Remark 4.12.



36 4. Classes of cooperative crisp games

Let x ∈ Rn be the vector with

xi :=

{
yi +

v(S)−
P

i∈S yi

|S| if i ∈ S,

zi otherwise.

Then x ∈ I(v) and xdomS y. To prove that x ∈ C(v), note first of all that
for T ∈ 2N with T ∩ S 6= ∅ we have

∑

i∈T∩S

xi =
∑

i∈T∩S

(xi − yi) +
∑

i∈T∩S

yi

= |T ∩ S| v(S) −∑i∈S yi

|S| +
∑

i∈T∩S

yi

≥
(
v(T ∩ S) −

∑

i∈T∩S

yi

)
+
∑

i∈T∩S

yi

= v(T ∩ S),

where the inequality follows from (4.5).
But then

∑

i∈T

xi =
∑

i∈T∩S

xi +
∑

i∈T\S

zi

≥ v(T ∩ S) +
∑

i∈T∪S

zi −
∑

i∈S

zi

≥ v(T ∩ S) + v(T ∪ S) − v(S)

≥ v(T )

because z ∈ C(v),
∑

i∈S zi = v(S) and v ∈ CGN .
For T ∈ 2N \ {∅} with T ∩ S = ∅ we have

∑
i∈T xi =

∑
i∈T zi ≥ v(T )

because z ∈ C(v). So we have proved that x ∈ C(v).
Then I(v) = C(v)∪dom (C(v)) and C(v)∩dom(C(v)) = ∅. Hence, C(v)

is a stable set.

4.2.2 Convex games and population monotonic allocation

schemes

As we have pointed out in Section 4.1.2, a necessary condition for the
existence of a pmas (cf. Definition 4.5) is the total balancedness of the
game. A sufficient condition for the existence of a pmas is the convexity of
the game. In order to see this we will need the following definitions.

For all ρ ∈ π(N) and all i ∈ N , let

N(ρ, i) = {j ∈ N | ρ (j) ≤ ρ(i)} .
One generalizes the definition of a marginal contribution vector (cf. Def-

inition 1.8) as follows.
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Definition 4.14. Let v ∈ GN and ρ ∈ π(N). The extended vector of

marginal contributions associated with ρ is the vector aρ = (aρ
iS)i∈S,S∈2N\{∅}

defined component-wise by

aρ
iS = v (N(ρ, i) ∩ S) − v ((N(ρ, i) ∩ S) \ {i}) .

Proposition 4.15. ([63]) Let v ∈ CGN . Then every extended vector of
marginal contributions is a pmas for v.

Proof. Take v ∈ CGN , ρ ∈ π(N), and aρ. Pick an arbitrary S ∈ 2N \ {∅}
and rank all players i ∈ S in increasing order of ρ(i). Let i, i′ ∈ S be two
players such that i′ immediately follows i. Observe that

aρ
iS = v (N(ρ, i) ∩ S) − v ((N(ρ, i) ∩ S) \ {i}) ,

and

aρ
i′S = v (N(ρ, i′) ∩ S) − v ((N(ρ, i′) ∩ S) \ {i′})

= v (N(ρ, i′) ∩ S) − v ((N(ρ, i) ∩ S)) .

Therefore, aρ
iS + aρ

i′S = v (N(ρ, i′) ∩ S)− v ((N(ρ, i) ∩ S) \ {i}). Repeat-
ing this argument leads to

∑
i∈S a

ρ
iS = v(S), which establishes the feasibil-

ity of aρ.
As for the monotonicity property in Definition 4.5, note that if i ∈ S ⊂

T ⊂ N , then S∩N(ρ, i) ⊂ T ∩N(ρ, i) for all i ∈ N . Hence, by the convexity
of v we have aρ

iS ≤ aρ
iT . This completes the proof.

According to [60] the core of a convex game is a polytope whose extreme
points are the (usual) marginal contribution vectors (cf. Theorem 4.9).
Because every convex combination of pmas of a game v is itself a pmas for
that game, one obtains

Proposition 4.16. Let v ∈ CGN and b = (bi)i∈N ∈ C(v). Then b is pmas
extendable.

Definition 4.17. Let v ∈ GN . The extended Shapley value of v is the
vector Φ̃(v) defined component-wise as follows: for all S ∈ 2N \ {∅} and all
i ∈ S,

Φ̃iS(v) = Φi(vS),

where Φ(vS) = (Φi(vS))i∈S is the Shapley value of the game vS.

As shown in [63], the extended Shapley value is the aritmethic aver-
age of the extended vectors of marginal contributions (cf. Definition 4.14).
Therefore, one obtains

Proposition 4.18. Let v ∈ CGN . Then the extended Shapley value of v is
a pmas for v.
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4.2.3 The constrained egalitarian solution for convex games

Another interesting element of the core of a game v ∈ CGN is the con-
strained egalitarian allocation E (v) introduced in [26] which can be de-
scribed in a simple way and found easily in a finite number of steps. Two

lemmas in which the average worth v(S)
|S| of a nonempty coalition S with

respect to the characteristic function v plays a role, are used further.

Lemma 4.19. Let v ∈ CGN and L(v) := arg maxC∈2N\{∅}
v(C)
|C| . Then

(i) The set L(v) ∪ {∅} is a lattice, i.e. for all S1, S2 ∈ L(v) ∪ {∅} we have
S1 ∩ S2 ∈ L(v) ∪ {∅} and S1 ∪ S2 ∈ L(v) ∪ {∅};
(ii) In L(v) there is a maximal element with respect to ⊂ namely

∪{S | S ∈ L(v)} .

Proof. (i) Let α := maxC∈2N\{∅}
v(C)
|C| and suppose v(S1)

|S1|
= α = v(S2)

|S2|
for

some S1, S2 ∈ 2N \ {∅}. We have to prove that

v(S1 ∪ S2)

|S1 ∪ S2|
= α and v(S1 ∩ S2) = α |S1 ∩ S2| . (4.6)

We have

v(S1 ∪ S2) + v (S1 ∩ S2) =
v(S1 ∪ S2)

|S1 ∪ S2|
|S1 ∪ S2| +

v(S1 ∩ S2)

|S1 ∩ S2|
|S1 ∩ S2|

≤ α |S1 ∪ S2| + α |S1 ∩ S2| = α |S1| + α |S1|
= v(S1) + v(S2) ≤ v(S1 ∪ S2) + v(S1 ∩ S2),

where the first inequality follows from the definition of α and the second
inequality follows from v ∈ CGN . So everywhere we have equalities, which
proves (4.6).

(ii) This assertion follows immediately from (i) and the finiteness of L(v).

Lemma 4.20. Let v ∈ CGN and S ⊂ N,S 6= N . Then v−S ∈ CGN\S,
where

v−S (T ) := v (S ∪ T ) − v(S) for all T ∈ 2N\S .

Proof. Let T1 ⊂ T2 ⊂ (N \ S) \ {i} where i ∈ N \ S. We have to prove
that v−S (T1 ∪ {i}) − v(T1) ≤ v−S (T2 ∪ {i}) − v(T2). Notice that this is
equivalent to prove that v (S ∪ T1 ∪ {i}) − v(S ∪ T1) ≤ v (S ∪ T2 ∪ {i}) −
v(S ∪ T2) which follows by the convexity of v.

Given these two lemmas, one can find the egalitarian allocation E (v) of
a game v ∈ CGN according to the following algorithm (cf. [26]).

In Step 1 of the algorithm one considers the game 〈N1, v1〉 with N1 := N ,

v1 := v, and the per capita value v1(T )
|T | for each non-empty subcoalition T

of N1. Then the largest element T1 ∈ 2N1 \ {∅} in arg maxT∈2N1\{∅}
v1(T )
|T |
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is taken (such an element exists according to Lemma 4.19) and Ei (N, v) =
v1(T )
|T | for all i ∈ T1 is defined. If T1 = N , then we stop.

In case T1 6= N , then in Step 2 of the algorithm one considers the convex
game 〈N2, v2〉 where N2 := N1 \ T1 and v2(S) = v1 (S ∪ T1) − v1 (T1)
for each S ∈ 2N2 \ {∅} (cf. Lemma 4.20) takes the largest element T2

in arg maxT∈2N2\{∅}
v2(T )
|T | and defines Ei (v) = v2(T )

|T | for all i ∈ T2. If

T1 ∪ T2 = N we stop; otherwise we continue by considering the game
〈N3, v3〉 with N3 := N2 \ T2 and v3(S) = v2 (S ∪ T2) − v2 (T2) for each
S ∈ 2N3 \ {∅}, etc. After a finite number of steps the algorithm stops,
and the obtained allocation E (v) ∈ Rn is called the constrained egalitarian
solution of the game v ∈ CGN .

Theorem 4.21. Let v ∈ CGN and let E (v) be the constrained egalitarian
solution. Then E (v) ∈ C(v).

Proof. Suppose that S1, . . . , Sm is the ordered partition of N on which
E (v) is based. So

Ei(v) =
1

|S1|
v(S1) if i ∈ S1,

and for k ≥ 2:

Ei(v) =
1

|Sk|
(
v
(
∪k

r=1Sr

)
− v

(
∪k−1

r=1Sr

))
if i ∈ Sk,

and for all T ⊂ ∪m
r=kSr (k ≥ 1):

v
((
∪k−1

r=1Sr

)
∪ T

)
− v

(
∪k−1

r=1Sr

)

|T | ≤ v
(
∪k

r=1Sr

)
− v

(
∪k−1

r=1Sr

)

|Sr|
. (4.7)

First we prove that E(v) is efficient, i.e.
∑n

i=1Ei(v) = v(N). This follows
by noting that

n∑

i=1

Ei(N, v) =
∑

i∈S1

Ei(v) +

m∑

k=2

∑

i∈Sk

Ei(v)

= v(S1) +

m∑

k=2

(
v
(
∪k

r=1Sr

)
− v

(
∪k−1

r=1Sr

))

= v (∪m
r=1Sr) = v(N).

Now we prove the stability of E(v). Take S ⊂ N . We have to prove that∑
i∈S Ei(v) ≥ v(S). Note first that S = ∪m

r=1Tr, where Tr := S ∩ Sr

(r = 1, . . . ,m). Then
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∑

i∈S

Ei(v) =
∑

i∈T1

Ei(v) +

m∑

k=2

∑

i∈Tk

Ei(v)

= |T1|
v(S1)

|S1|
+

m∑

k=2

|Tk|
(
v
(
∪k

r=1Sr

)
− v

(
∪k−1

r=1Sr

))

|Sk|

≥ |T1|
v(T1)

|T1|
+

m∑

k=2

|Tk|
(
v
((
∪k−1

r=1Sr

)
∪ Tk

)
− v

(
∪k−1

r=1Sr

))

|Tk|

≥ v(T1) +

m∑

k=2

(
v
((
∪k−1

r=1Tr

)
∪ Tk

)
− v

(
∪k−1

r=1Tr

))

= v (∪m
r=1Tr) = v(S),

where the first inequality follows from (4.7), and the second inequality
follows by the convexity of v by noting that ∪k−1

r=1Sr ⊃ ∪k−1
r=1Tr for all

k ∈ {2, . . . ,m}.

Since the constrained egalitarian solution is in the core of the corre-
sponding convex game, it has been interesting to study the interrelation
between E(v) and every other core allocation in terms of a special kind of
domination which can be introduced as follows.

Consider a society of n individuals with aggregate income fixed at I
units. For any x ∈ Rn

+ denote by x̂ = (x̂1, . . . , x̂n) the vector obtained by
rearranging its coordinates in a non-decreasing order, that is, x̂1 ≤ x̂2 ≤
. . . ≤ x̂n. For any x, y ∈ Rn

+ with
∑n

i=1 xi =
∑n

i=1 yi = I, we say that x
Lorenz dominates y, and denote it by x �L y, iff

∑p
i=1 x̂i ≥

∑p
i=1 ŷi for all

p ∈ {1, . . . , n− 1}, with at least one strict inequality.
It turns out that for convex games the constrained egalitarian solution

Lorenz dominates every other core allocation; for a proof the reader is
referred to [26].

4.3 Clan games

Clan games were introduced in [52] to model social conflicts between “pow-
erful” players (clan members) and “powerless” players (non-clan members).
In a clan game the powerful players have veto power and the powerless play-
ers operate more profitably in unions than on their own. Economic appli-
cations of such clan games to bankruptcy problems, production economies,
and information acquisition are provided in [14], [44], and [52].

4.3.1 Basic characterizations

Definition 4.22. A game v ∈ GN is a clan game with clan C ∈ 2N \
{∅, N} if it satisfies the following four conditions:
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(a) Nonnegativity: v(S) ≥ 0 for all S ⊂ N ;
(b) Nonnegative marginal contributions to the grand coalition: Mi(N, v) ≥ 0
for each player i ∈ N ;
(c) Clan property: every player i ∈ C is a veto player, i.e. v(S) = 0 for
each coalition S that does not contain C;
(d) Union property: v(N) − v(S) ≥∑i∈N\S Mi(N, v) if C ⊂ S.

If the clan consists of a single member, the corresponding game is called
a big boss game (cf. [44]).

The next proposition shows that the core of a clan game has an interest-
ing shape.

Proposition 4.23. ([52]) Let v ∈ GN be a clan game. Then

C(v) = {x ∈ I(v) | xi ≤Mi(N, v) for all i ∈ N \ C} .
Proof. Suppose x ∈ C(v). Then

∑
i∈N\{i} xi ≥ v(N \{i}) for all i ∈ N \C.

Since v(N) =
∑

i∈N xi =
∑

j∈N\{i} xj + xi one has

xi = v(N) −
∑

j∈N\{i}

xj ≤ v(N) − v(N \ {i}) = Mi(N, v) for all i ∈ N \ C.

Conversely, if x ∈ I(v) and xi ≤ Mi(N, v) for all i ∈ N \ C, then, for a
coalition S which does not contain C, one finds that

∑
i∈S xi ≥ 0 = v(S).

If C ⊂ S, then, by using condition (d) in Definition 4.22, one has

v(N) − v(S) ≥
∑

i∈N\S

Mi(N, v) ≥
∑

i∈N\S

xi.

Since v(N) =
∑

i∈N xi, one finally obtains
∑

i∈S xi ≥ v(S), i.e. x ∈ C(v).

In fact, a clan game can be fully described by the shape of the core as
indicated in

Proposition 4.24. ([52]) Let v ∈ GN and v ≥ 0. The game v is a clan
game iff
(i) v(N)ej ∈ C(v) for all j ∈ C;
(ii) There is at least one element x ∈ C(v) such that xi = Mi(N, v) for all
i ∈ N \ C.

Proof. One needs to prove only sufficiency. Suppose S ∈ 2N \ {∅} does not
contain C. Take j ∈ C\S. Because x := v(N)ej ∈ C(v), one has

∑
i∈S xi =

0 ≥ v(S) and from v ≥ 0 one finds the clan property in Definition 4.22.
If C ⊂ S and x ∈ C(v) with xi = Mi(N, v) for all i ∈ N \ C, then

v(S) ≤
∑

i∈S

xi =
∑

i∈N

xi −
∑

i∈N\S

xi = v(N) −
∑

i∈N\S

Mi(N, v),

proving the union property in Definition 4.22.
Furthermore, Mi(N, v) = xi ≥ v (i) = 0 for all i ∈ N \ C.
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4.3.2 Total clan games and monotonic allocation schemes

The subgames in a total clan game inherit the structure of the original
(clan) game. This leads to the following

Definition 4.25. A game v ∈ GN is a total clan game with clan C ∈
2N \ {∅, N} if vS is a clan game (with clan C) for every coalition S ⊃ C.

Note that in Definition 4.25 attention is restricted to coalitions that
contain the clan C, since the clan property of v implies that in the other
subgames the characteristic function is simply the zero function.

The next theorem provides a characterization of total clan games. The
reader is referred to [73] for its proof.

Theorem 4.26. Let v ∈ GN and C ∈ 2N \ {∅, N}. The following claims
are equivalent:
(i) v is a total clan game with clan C;
(ii) v is monotonic, every player i ∈ C is a veto player, and for all coalitions
S and T with S ⊃ C and T ⊃ C :

S ⊂ T implies v(T ) − v(S) ≥
∑

i∈T\S

Mi(T, v); (4.8)

(iii) v is monotonic, every player i ∈ C is a veto player, and for all coali-
tions S and T with S ⊃ C and T ⊃ C :

S ⊂ T and i ∈ S \ C imply Mi(S, v) ≥Mi(T, v). (4.9)

One can study also the question whether a total clan game possesses a
pmas (cf. Definitions 4.5, 4.6). The attention in [73] is restricted to the
allocation of v(S) for coalitions S ⊃ C, since other coalitions have value
zero by the clan property.

Theorem 4.27. ([73]) Let v ∈ GN be a total clan game with clan C ∈
2N \ {∅, N} and let b ∈ C(v). Then b is pmas extendable.

Proof. According to Proposition 4.23 we have

C(v) = {x ∈ I(v) | xi ≤Mi(N, v) for all i ∈ N \ C} .

Hence there exists, for each player i ∈ N , a number αi ∈ [0, 1] such that∑
i∈C αi = 1 and

bi =

{
αiMi(N, v) if i ∈ N \ C,
αi

[
v(N) −∑j∈N\C αjMj(N, v)

]
if i ∈ C.

In other words, each non-clan member receives a fraction of his marginal
contribution to the grand coalition, whereas the clan members divide the
remainder.
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Define for each S ⊃ C and i ∈ S :

aiS =

{
αiMi(N, v) if i ∈ S \ C,
αi

[
v(N) −∑j∈S\C αjMj(N, v)

]
if i ∈ C.

Clearly, aiN = bi for each player i ∈ N . We proceed to prove that
the vector (aiS)i∈S,S⊃C is a pmas. Since

∑
i∈C αi = 1, it follows that∑

i∈S aiS = v(S). Now let S ⊃ C, T ⊃ C and i ∈ S ⊂ T .

− If i /∈ C, then aiS = aiT = αiMi(N, v).
− If i ∈ C, then

aiT − aiS = αi[v(T ) −
∑

j∈T\C

αjMj(N, v)]− αi[v(S) −
∑

j∈S\C

αjMj(N, v)]

= αi[v(T ) − v(S) −
∑

j∈T\S

αjMj(N, v)]

≥ αi[v(T ) − v(S) −
∑

j∈T\S

Mj(N, v)]

≥ αi[v(T ) − v(S) −
∑

j∈T\S

Mj(T, v)]

≥ 0,

where the first inequality follows from nonnegativity of the marginal
contributions, the second inequality follows from (4.9), and the final
inequality from (4.8). Consequently, (aiS)i∈S,S⊃C is a pmas.

Whereas a pmas allocates a larger payoff to each player as the coalitions
grow larger, property (4.9) suggests a slightly different approach in total
clan games: the marginal contribution of each non-clan member actually
decreases in a larger coalition. Taking this into account, one might actually
allocate a smaller amount to the non-clan members in larger coalitions.
Moreover, to still maintain some stability, such allocations should still give
rise to core allocations in the subgames. An allocation scheme that satisfies
these properties is called bi-monotonic allocation scheme (cf. [73]).

Definition 4.28. Let v ∈ GN be a total clan game with clan C ∈ 2N \
{∅, N}. A bi-monotonic allocation scheme (bi-mas) for the game v is
a vector a = (aiS)i∈S,S⊃C of real numbers such that

(i)
∑

i∈S aiS = v(S) for all S ∈ 2C \ {∅},
(ii) aiS ≤ aiT for all S ⊃ C, T ⊃ C with S ⊂ T and i ∈ S ∩ C,
(iii) aiS ≥ aiT for all S ⊃ C, T ⊃ C with S ⊂ T and i ∈ S \ C,
(iv) (aiS)i∈S is a core element of the subgame vS for each coalition S ⊃ C.

Definition 4.29. Let v ∈ GN be a total clan game with clan C ∈ 2N \
{∅, N}. An imputation b ∈ I(v) is bi-mas extendable if there exist a
bi-mas a = (aiS)i∈S,S⊃C such that aiN = bi for each player i ∈ N .
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Theorem 4.30. ([73]) Let v ∈ GN be a total clan game with clan C ∈
2N \ {∅, N} and let b ∈ C(v). Then b is bi-mas extendable.

Proof. Take (αi)i∈N ∈ [0, 1]
N

as in the proof of Theorem 4.27. Define for
each S ⊃ C and i ∈ S :

aiS =

{
αiMi(S, v) if i ∈ S \ C,
αi

[
v(S) −∑j∈S\C αjMj(S, v)

]
if i ∈ C.

We proceed to prove that (aiS)i∈S,S⊃C is a bi-mas. Since
∑

i∈C αi = 1,
it follows that

∑
i∈S aiS = v(S). Now let S ⊃ C, T ⊃ C and i ∈ S ⊂ T .

− If i ∈ N \ C, then aiS = αiMi(S, v) ≥ αiMi(T, v) = aiT by (4.9).
− If i ∈ C, then

aiT − aiS = αi[v(T ) −
∑

j∈T\C

αjMj(T, v)]

−αi[v(S) −
∑

j∈S\C

αjMj(S, v)]

= αi[v(T ) − v(S) −
∑

j∈T\S

αjMj(T, v)]

+αi[
∑

j∈S\C

αj (Mj(S, v) −Mj(T, v)) ]

≥ αi[v(T ) − v(S) −
∑

j∈T\S

αjMj(T, v)]

≥ 0,

where the first inequality follows from (4.8) and nonnegativity of
(αj)j∈T\S , and the second inequality follows from (4.9).

Finally, for each coalition S ⊃ C, the vector (aiS)i∈S,S⊃C is shown to be
a core allocation of the clan game vS . Let S ⊃ C. According to Proposition
4.23 we have

C(v) = {x ∈ I(v) | xi ≤Mi(N, v) for all i ∈ N \ C} .
Let i ∈ S\C. Then aiS = αiMi(S, v) ≤Mi(S, v). Also,

∑
i∈S aiS = v(S),

so (aiS)i∈S satisfies efficiency.
To prove individual rationality, consider the following three cases:

− Let i ∈ S \ C. Then aiS = αiMi(S, v) ≥ 0 = v (i);
− Let i ∈ S ∩ C and |C| = 1. Then C = {i} and by construction αi =∑

j∈C αj = 1. Hence aiS ≥ aiC = αiv(C) = v (i);
− Let i ∈ S ∩ C and |C| > 1. Then aiS ≥ aiC = αiv(C) ≥ 0 = v (i), since

every player in C is a veto player.

Consequently, (aiS)i∈S,S⊃C is a bi-mas.
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Cooperative games with fuzzy coalitions
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Cooperative games with fuzzy coalitions are introduced in [1] and [2].
Such games are helpful for approaching sharing problems arising from eco-
nomic situations where agents have the possibility to cooperate with differ-
ent participation levels, varying from non-cooperation to full cooperation,
and where the obtained reward depends on the levels of participation. A
fuzzy coalition describes the participation levels to which each player is in-
volved in cooperation. For example, in a class of production games, partial
participation in a coalition means to offer a part of the available resources
while full participation means to offer all the resources. Since in classical
cooperative games agents are either fully involved or not involved at all in
cooperation with some other agents, one can look at the classical games as
a simplified version of games with fuzzy coalitions. A fuzzy game is repre-
sented by a real valued function that assigns a real number to each fuzzy
coalition.

Games with fuzzy coalitions are studied in [17] where attention is paid
to triangular norm-based measures and special extensions of the diagonal
Aumann-Shapley value (cf. [4]), and in [8] where the stress in on noncoop-
erative games. Fuzzy and multiobjective games are object of analysis also
in [46].

We start this part with the definitions of a fuzzy coalition and a coopera-
tive fuzzy game, and develop the theory of cooperative fuzzy games without
paying extensively attention to the ways in which a game with crisp coali-
tions can be extended to a game with fuzzy coalitions. One possibility is
to consider the multilinear extension of a crisp game introduced in [49] or
to consider extensions that are given using the Choquet integral (cf. [21]).
The reader who is interested in this extension problem is referred to [75]
and [76].

This part is organized as follows. Chapter 5 introduces basic notation and
notions from cooperative game theory with fuzzy coalitions. In Chapter 6
we have collected various set-valued and one-point solution concepts for
fuzzy games like the Aubin core, the dominance core and stable sets, as
well as different core catchers and compromise values. Relations among
these solution concepts are extensively studied. Chapter 7 is devoted to
the notion of convexity of a cooperative fuzzy game. We present several
characterizations of a convex fuzzy game and study special properties of
solution concepts. For this class of fuzzy games we introduce the notion
of a participation monotonic allocation scheme and that of a constrained
egalitarian solution. In Chapter 8 we study the cone of fuzzy clan games
together with related set-valued solution concepts for these games; the new
solution of a bi-monotonic participation allocation scheme is introduced.





5
Preliminaries

Let N be a non-empty set of players usually of the form {1, . . . , n}. From
now on we systematically refer to elements of 2N as crisp coalitions, and
to cooperative games in GN as crisp games.

Definition 5.1. A fuzzy coalition is a vector s ∈ [0, 1]
N

.

The i-th coordinate si of s is the participation level of player i in the
fuzzy coalition s. Instead of [0, 1]

N
we will also write FN for the set of

fuzzy coalitions on player set N .
A crisp coalition S ∈ 2N corresponds in a canonical way with the fuzzy

coalition eS , where eS ∈ FN is the vector with
(
eS
)i

= 1 if i ∈ S, and(
eS
)
i = 0 if i ∈ N \ S. The fuzzy coalition eS corresponds to the situation

where the players in S fully cooperate (i.e. with participation levels 1) and
the players outside S are not involved at all (i.e. they have participation
levels 0). In this part of the book we often refer to fuzzy coalitions eS

with S ∈ 2N as crisp-like coalitions. We denote by ei the fuzzy coalition
corresponding to the crisp coalition S = {i} (and also the i-th standard
basis vector in Rn). The fuzzy coalition eN is called the grand coalition, and
the fuzzy coalition (the n-dimensional vector) e∅ = (0, . . . , 0) corresponds
to the empty crisp coalition. We denote the set of all non-empty fuzzy
coalitions by FN

0 = FN \
{
e∅
}
. Notice that we can identify the fuzzy

coalitions with points in the hypercube [0, 1]
N

and the crisp coalitions with
the 2|N | extreme points (vertices) of this hypercube. For N = {1, 2} we
have a square with vertices (0, 0), (0, 1), (1, 0), (1, 1). The corresponding
geometric picture for N = {1, 2, 3} is that of a cube.
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For s ∈ FN we define the carrier of s by car(s) = {i ∈ N | si > 0}
and call s a proper fuzzy coalition if car(s) 6= N . The set of proper fuzzy
coalitions on player set N is denoted by PFN , and the set of non-empty
proper fuzzy coalitions on player set N by PFN

0 .
For s, t ∈ FN we use the notation s ≤ t iff si ≤ ti for each i ∈ N . We

define s ∧ t = (min (s1, t1) , . . . ,min(sn, tn)) and s ∨ t = (max (s1, t1) , . . . ,
max(sn, tn)). The set operations ∨ and ∧ play the same role for the fuzzy
coalitions as the union and intersection for crisp coalitions.

For s ∈ FN and t ∈ [0, 1], we set
(
s−i ‖ t

)
to be the element in FN with(

s−i ‖ t
)
j

= sj for each j ∈ N \ {i} and
(
s−i ‖ t

)
i
= t.

For each s ∈ FN we introduce the degree of fuzziness ϕ (s) of s by ϕ (s) =
|{i ∈ N | si ∈ (0, 1)}|. Note that ϕ (s) = 0 implies that s corresponds to a
crisp coalition, and that in a coalition s with ϕ (s) = n no participation
level equals 0 or 1.

Definition 5.2. A cooperative fuzzy game with player set N is a map
v : FN → R with the property v(e∅) = 0.

The map v assigns to each fuzzy coalition a real number, telling what
such a coalition can achieve in cooperation.

The set of fuzzy games with player set N will be denoted by FGN . Note
that FGN is an infinite dimensional linear space.

Example 5.3. Let v ∈ FG{1,2,3} with

v(s1, s2, s3) = min {s1 + s2, s3}

for each s = (s1, s2, s3) ∈ F{1,2,3}. One can think of a situation where
players 1, 2, and 3 have one unit of the infinitely divisible goods A, A,
and B, respectively, where A and B are complementary goods, and where
combining a fraction α of a unit of A and of B leads to a gain α.

Example 5.4. Let v ∈ FG{1,2} be defined by

v (s1, s2) =

{
1 if s1 ≥ 1

2 , s2 ≥ 1
2 ,

0 otherwise,

for each s = (s1, s2) ∈ F{1,2}. This game corresponds to a situation is
which only coalitions with participation levels of the players of at least 1

2
are winning, and all other coalitions are losing.

Example 5.5. (A public good game) Suppose n agents want to create a
facility for joint use. The cost of the facility depends on the sum of the
participation levels of the agents and it is described by k (

∑n
i=1 si), where

k is a continuous monotonic increasing function on [0, n], with k(0) = 0,
and where s1, . . . , sn ∈ [0, 1] are the participation levels of the agents.
The gain of an agent i with participation level si is given by gi(si), where
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the function gi : [0, 1] → R is continuously monotonic increasing with
gi(0) = 0. This situation leads to a fuzzy game v ∈ FGN where v(s) =∑n

i=1 gi(si) − k (
∑n

i=1 si) for each s ∈ FN .

For each s ∈ FN , let dsc :=
∑n

i=1 si be the aggregated participation level
of the players in N with respect to s. Given v ∈ FGN and s ∈ FN

0 we
denote by α (s, v) the average worth of s with respect to dsc, that is

α (s, v) :=
v (s)

dsc . (5.1)

Note that α (s, v) can be interpreted as a per participation-level-unit value
of coalition s.

As it is well known, the notion of a subgame plays an important role in
the theory of cooperative crisp games. In what follows, the role of subgames
of a crisp game will be taken over by restricted games of a fuzzy game.

For s, t ∈ [0, 1]
N

let s ∗ t denote the coordinate-wise product of s and t,
i.e. (s ∗ t)i = siti for all i ∈ N .

Definition 5.6. Let v ∈ FGN and t ∈ FN
0 . The t-restricted game of v

is the game vt : FN
0 → R given by vt(s) = v(t ∗ s) for all s ∈ FN

0 .

In a t-restricted game, t ∈ FN
0 plays the role of the grand coalition in

the sense that the t-restricted game considers only the subset FN
t of FN

0

consisting of fuzzy coalitions with participation levels of the corresponding
players at most t, FN

t =
{
s ∈ FN

0 | s ≤ t
}
.

Remark 5.7. When t = eT then vt(s) = v(eT ∗ s) = v
(∑

i∈T sie
i
)

for each
s ∈ FN , and for s = eS we obtain vt(e

S) = v(eS∩T ).

Special attention will be paid to fuzzy unanimity games. In the theory
of cooperative crisp games unanimity games play an important role not
only because they form a natural basis of the linear space GN , but also
since various interesting classes of games are nicely described with the aid
of unanimity games.

For t ∈ FN
0 , we denote by ut the fuzzy game defined by

ut(s) =

{
1 if s ≥ t,
0 otherwise.

(5.2)

We call this game the unanimity game based on t: a fuzzy coalition s
is winning if the participation levels of s exceed weakly the corresponding
participation levels of t; otherwise the coalition is losing, i.e. it has value
zero.

Remark 5.8. The game in Example 5.4 is the unanimity game with t =(
1
2 ,

1
2

)
.
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Of course, the theory of cooperative crisp games has been an inspiration
source for the development of the theory of cooperative fuzzy games. In
the next chapters we will use operators from FGN to GN and from GN to
FGN (cf. [49], [75], and [76]). In particular, we shall consider the multilinear
operator ml : GN → FGN (cf. [49] and (3.9)) and the crisp operator
cr : FGN → GN . Here for a crisp game v ∈ GN , the multilinear extension
ml(v) ∈ FGN is defined by

ml(v)(s) =
∑

S∈2N\{∅}


∏

i∈S

si

∏

i∈N\S

(1 − si)


 v(S) for each s ∈ FN .

For a fuzzy game v ∈ FGN , the corresponding crisp game cr(v) ∈ GN

is given by
cr(v)(S) = v(eS) for each S ∈ 2N .

Remark 5.9. In view of Remark 5.7, the restriction of cr(veT ) : 2N → R to
2T is the subgame of cr(v) on the player set T .

Example 5.10. For the crisp unanimity game uT the multilinear extension
is given by ml (uT ) (s) =

∏
i∈T si (cf. [75] and [76]) and cr (ml (uT )) = uT .

For the games v, w ∈ FG{1,2}, where v (s1, s2) = s1 (s2)
2

and w (s1, s2) =
s1
√
s2 for each s ∈ F{1,2}, we have cr (v) = cr (w).

In general the composition cr ◦ml : GN → GN is the identity map on
GN . But ml◦cr : FGN → FGN is not the identity map on FGN if |N | ≥ 2.

Example 5.11. Let N = {1, 2} and let v ∈ FG{1,2} be given by v(s1, s2) =
5min {s1, 2s2} for each s = (s1, s2) ∈ F{1,2}. Then for the crisp game
cr(v) we have cr(v)({1}) = cr(v)({2}) = 0 and cr(v)({1, 2}) = 5. For the
multilinear extension ml(cr(v)) we have ml(cr(v) (s)) = 5s1s2. Notice that
ml
(
cr (v)

(
1, 1

2

))
= 2 1

2 but v
(
1, 1

2

)
= 5 implying that v 6= ml(cr(v)).

Remark 5.12. Note that for a unanimity game ut, the corresponding crisp
game cr(ut) is equal to uT , where uT is the crisp unanimity game based on
T = car(t). Conversely, ml(uT ) is for no T ∈ 2N \ {∅} a fuzzy unanimity
game because ml(uT ) has a continuum of values: ml(uT ) (s) =

∏
i∈T si for

each s ∈ FN .
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Solution concepts for fuzzy games

In this chapter we introduce several solution concepts for fuzzy games and
study their properties and interrelations. Sections 6.1-6.3 are devoted to
various core concepts and stable sets. The Aubin core introduced in Section
6.1 plays a key role in the rest of this chapter. Section 6.4 presents the
Shapley value and the Weber set for fuzzy games which are based on crisp
cooperation and serve as an inspiration source for the path solutions and
the path solution cover introduced in Section 6.5. Compromise values for
fuzzy games are introduced and studied in Section 6.6.

6.1 Imputations and the Aubin core

Let v ∈ FGN . The imputation set I(v) of v is the set

{
x ∈ Rn |

∑

i∈N

xi = v(eN ), xi ≥ v(ei) for each i ∈ N

}
.

The Aubin core (cf. [1], [2], and [3]) C(v) of a fuzzy game v ∈ FGN is
the subset of imputations which are stable against any possible deviation
by fuzzy coalitions, i.e.

C(v) =

{
x ∈ I(v) |

∑

i∈N

sixi ≥ v(s) for each s ∈ FN

}
.
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So x ∈ C(v) can be seen as a distribution of the value of the grand
coalition eN , where for each fuzzy coalition s, the total payoff is not smaller
than v(s), if each player i ∈ N with participation level si is paid sixi.

Note that the Aubin core C (v) of v ∈ FGN can be also defined
as
{
x ∈ I(v) |∑i∈N sixi ≥ v(s) for each s ∈ FN

0

}
and this is more in the

spirit of the definition of the core of a crisp game (cf. Definition 2.3).

Remark 6.1. The core C (cr (v)) of the crisp game corresponding to v in-
cludes C (v) : C (v) ⊂ C (cr (v)). We will see in the next chapter that for
convex fuzzy games the two cores coincide.

Clearly, the Aubin core C(v) of a fuzzy game v is a closed convex subset
of Rn for each v ∈ FGN . Of course, the Aubin core may be empty as
Example 6.2 shows or can consist of a single element as in Example 6.3.

Example 6.2. Consider again the game v in Example 5.4. The core C (v) is
empty because for a core element x it should hold x1 + x2 = v

(
e{1,2}

)
= 1

and also 1
2x1 + 1

2x2 ≥ v
(

1
2 ,

1
2

)
= 1, which is impossible.

Example 6.3. For the game in Example 5.3, good B is scarce in the grand
coalition which is reflected in the fact that the core consists of one point
(0, 0, 1), corresponding to the situation where all gains go to player 3 who
possesses the scarce good.

The next proposition shows that for a unanimity game ut (cf. (5.2)) every
arbitrary division of 1 among players who have participation level 1 in t
generates a core element (cf. [10]).

Proposition 6.4. Let ut ∈ FGN be the unanimity game based on the fuzzy
coalition t ∈ FN

0 . Then the Aubin core C(ut) is non-empty iff tk = 1 for
some k ∈ N . In fact

C(ut) = co
{
ek | k ∈ N, tk = 1

}
.

Proof. If tk = 1 for some k ∈ N , then ek ∈ C(ut). Therefore,

co
{
ek | k ∈ N, tk = 1

}
⊂ C(ut).

Conversely, x ∈ C(ut) implies that
∑n

i=1 xi = 1 = ut(e
N ),

∑n
i=1 tixi ≥

1 = ut(t), xi ≥ ut(e
i) ≥ 0 for each i ∈ N . So x ≥ 0,

∑n
i=1 xi(1 − ti) ≤ 0,

which implies that xi(1 − ti) = 0 for all i ∈ N . Hence, {xi | xi > 0} ⊂
{i ∈ N | ti = 1} and, consequently, x ∈ co

{
ek | k ∈ N, tk = 1

}
. So,

C(ut) ⊂ co
{
ek | k ∈ N, tk = 1

}
.

In what follows, we denote by FGN
∗ the set of fuzzy games with a non-

empty (Aubin) core.
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6.2 Other cores and stable sets

Now we introduce two other cores for a fuzzy game v ∈ FGN , namely the
proper core and the crisp core, by weakening the stability conditions in the
definition of the Aubin core (cf. [70]).

To define the proper core CP (v) of a fuzzy game v we consider only
stability regarding proper fuzzy coalitions (cf. Chapter 5, page 50), i.e.

CP (v) =

{
x ∈ I(v) |

∑

i∈N

sixi ≥ v(s) for each s ∈ PFN

}
.

Note that CP (v) can be also defined as

{
x ∈ I(v) |

∑

i∈N

sixi ≥ v(s) for each s ∈ PFN
0

}
.

Further, if we consider only crisp-like coalitions eS in the stability con-
ditions, one obtains the crisp core Ccr(v) of the fuzzy game v ∈ FGN ,
i.e.

Ccr(v) =

{
x ∈ I(v) |

∑

i∈S

xi ≥ v(eS) for each S ∈ 2N

}
.

Clearly, the crisp core Ccr(v) of a fuzzy game v can be also defined as{
x ∈ I(v) |∑i∈S xi ≥ v(eS) for each S ∈ 2N \ {∅}

}
and it is also the core

of the crisp game cr(v). One can easily see that both cores CP (v) and
Ccr(v) are convex sets.

Let v ∈ FGN , x, y ∈ I(v) and let s ∈ FN
0 . We say that x dominates y

via s, denoted by xdoms y, if
(i) xi > yi for all i ∈ car(s), and
(ii)

∑
i∈N sixi ≤ v(s).

The two above conditions are interpreted as follows:

− xi > yi implies sixi > siyi for each i ∈ car(s), which means that the
imputation x = (x1, ..., xn) is better than the imputation y = (y1, ..., yn)
for all (active) players i ∈ car(s);

− ∑
i∈N sixi ≤ v(s) means that the payoff

∑
i∈N sixi is reachable by the

fuzzy coalition s.

Remark 6.5. Note that xdoms y implies s ∈ PFN
0 because from xi > yi for

all i ∈ N it follows
∑

i∈N xi >
∑

i∈N yi, in contradiction with x, y ∈ I(v).
It is, however, to be noted that |car(s)| = 1 is possible.

We simply say x dominates y, denoted by xdom y, if there is a non-empty
(proper) fuzzy coalition s such that xdoms y. The negation of xdom y is
denoted by ¬xdom y.
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Definition 6.6. The dominance core DC(v) of a fuzzy game v ∈ FGN

is the set of imputations which are not dominated by any other imputation,

DC(v) = {x ∈ I(v) | ¬ y domx for all y ∈ I(v)}.

Definition 6.7. A stable set of a fuzzy game v ∈ FGN is a nonempty set
K of imputations satisfying the properties:
(i) (Internal stability) For all x, y ∈ K, ¬xdom y;
(ii) (External stability) For all z ∈ I(v) \K, there is an imputation x ∈ K
such that xdom z.

Theorem 6.8. Let v ∈ FGN . Then
(i) C(v) ⊂ CP (v) ⊂ Ccr(v);
(ii) CP (v) ⊂ DC(v);
(iii) for each stable set K it holds that DC(v) ⊂ K.

Proof. The theorem is trivially true if I(v) = ∅. So, suppose in the following
that I(v) 6= ∅.

(i) This follows straightforwardly from the definitions.
(ii) Let x ∈ I(v)\DC(v). Then there are y ∈ I(v) and s ∈ PFN

0 satisfying
yi > xi for each i ∈ car(s) and

∑
i∈N siyi ≤ v(s). Then

∑
i∈car(s) sixi <∑

i∈car(s) siyi ≤ v(s). Hence x ∈ I(v) \ CP (v). We conclude that CP (v) ⊂
DC(v).

(iii) Let K be a stable set. Since DC(v) consists of undominated impu-
tations and each imputation in I(v) \K is dominated by some imputation
by the external stability property, it follows that DC(v) ⊂ K.

In the next theorem we give sufficient conditions for the coincidence of
the proper core and the dominance core for fuzzy games.

Theorem 6.9. Let v ∈ FGN . Suppose v
(
eN
)
−∑i∈N\car(s) v

(
ei
)
− v(s)

s∗ ≥
0 for each s ∈ FN

0 , where s∗ = mini∈car(s) si. Then CP (v) = DC(v).

Proof. Note that CP (v) = DC(v) = ∅ if I(v) = ∅. Suppose I(v) 6= ∅.
From Theorem 6.8 it follows that CP (v) ⊂ DC(v). We show the converse
inclusion by proving that x /∈ CP (v) implies x /∈ DC(v). Let x ∈ I(v) \
CP (v). Then there is s ∈ PFN

0 such that
∑

i∈N sixi < v(s). For each
i ∈ car(s) take εi > 0 such that

∑
i∈car(s) si(xi + εi) = v(s). Since

∑

i∈car(s)

(xi + εi) ≤
∑

i∈car(s)

si(xi + εi)

s∗
=
v(s)

s∗
,

we can take δi ≥ 0 for each i /∈ car(s) such that

∑

i/∈car(s)

δi =
v(s)

s∗
−

∑

i∈car(s)

(xi + εi).
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Further, we define y ∈ RN by

yi =





xi + εi for each i ∈ car(s),

v
(
ei
)

+
v(eN)−

P
i∈N\car(s) v(ei)− v(s)

s∗

|N\car(s)| + δi for each i /∈ car(s).

Note that
∑

i∈N yi = v(eN ), yi > xi > v(ei) for each i ∈ car(s) and,

since v(eN ) −∑i∈N\car(s) v(e
i) − v(s)

s∗ ≥ 0, we have yi ≥ v(ei) for each

i ∈ N \ car(s). Hence y ∈ I(v). Now, since yi > xi for all i ∈ car(s) and∑
i∈N siyi = v(s) we have y doms x; thus x ∈ I(v) \DC(v).

Remark 6.10. Let v ∈ FGN . Take the crisp game w = cr(v). Then

v(eN ) ≥ v(s)
s∗ +

∑
i∈N\car(s) v(e

i) for each s ∈ FN
0 implies w(N) ≥

w(S) +
∑

i∈N\S w(i), for each S ⊆ N . So, Theorem 6.9 can be seen as

an extension of the corresponding property for cooperative crisp games (cf.
Theorem 2.12(i)).

From Theorem 6.9 we obtain the following corollary.

Corollary 6.11. Let v ∈ FGN with v(ei) ≥ 0 for each i ∈ N and CP (v) 6=
DC(v). Then CP (v) = ∅.
Proof. CP (v) 6= DC(v) implies that I(v) 6= ∅ and that there is t ∈ PFN

with v(t) +
∑

i∈N\car(t) v(e
i) > v(eN ) by Theorem 6.9. By v(ei) ≥ 0 for

each i ∈ N , we have x ≥ 0 and
∑

i∈N xi = v(eN ) for each x ∈ I(v). Hence

∑

i∈N

tixi =
∑

i∈car(t)

tixi

≤
∑

i∈car(t)

xi =
∑

i∈N

xi −
∑

i∈N\car(t)

xi

≤ v(eN ) −
∑

i∈N\car(t)

v(ei)

< v(t)

holds for each x ∈ I(v). Thus there is no x ∈ I(v) such that x ∈ CP (v).
Hence, CP (v) = ∅.

Next we prove that for a fuzzy game the dominance core is a convex set.

Lemma 6.12. Let v ∈ FGN with v(ei) ≥ 0 for each i ∈ N. Let v̄ ∈ FGN

be given by

v̄(s) = min



v(s), v(e

N ) −
∑

i∈N\car(s)

v(ei)



 .

Then DC(v) = DC(v̄) = CP (v̄).
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Proof. Note that DC(v) = DC(v̄) = CP (v̄) = ∅ if I(v) = ∅. Suppose
I(v) 6= ∅. It implies I(v) = I(v̄). Thus, to prove DC(v) = DC(v̄), it is
sufficient to show that for x, y ∈ I(v) and s ∈ FN

0 , xdoms y in v if and
only if xdoms y in v̄. We only have to show that for x ∈ I(v) and s ∈ FN

0 ,∑
i∈N sixi ≤ v(s) if and only if

∑
i∈N sixi ≤ v̄(s).

The ‘if’ part follows from v̄(s) ≤ v(s). For the ‘only if’ part note
that for s ∈ FN

0 and x ∈ I(v) we have
∑

i∈N sixi =
∑

i∈car(s) sixi ≤∑
i∈car(s) xi =

∑
i∈N xi − ∑

i∈N\car(s) xi ≤ v(eN ) − ∑
i∈N\car(s) v(e

i),

where the first inequality follows from xi ≥ v(ei) ≥ 0 for each i ∈ car(s) ⊆
N. Hence,

∑
i∈N sixi ≤ v(s) implies

∑
i∈N sixi ≤ v̄(s). Since we have

v̄(s) +
∑

i∈N\car(s) v̄(e
i) ≤ v̄(s) +

∑
i∈N\car(s) v(e

i) ≤ v(eN ) = v̄(eN ) by

v̄(ei) ≤ v(ei), we obtain DC(v̄) = CP (v̄) by Theorem 6.9.

Theorem 6.13. For each v ∈ FGN , DC(v) is a convex set.

Proof. Let v ∈ FGN . Define the fuzzy game v′ by v′(s) = v(s) −∑
i∈car(s) siv(e

i) for each s ∈ FN . Note that v′(ei) = 0 for each i ∈ N. From

Lemma 6.12 it follows that DC(v′) is a convex set, because CP (v̄′) is a con-
vex set. Now, we use the fact that for an arbitrary fuzzy game v, DC(v) =
DC(v′) + (v(e1), . . . , v(en)) holds, where DC(v′) + (v(e1), . . . , v(en)) =
{x+ y | x ∈ DC(v′), y = (v(e1), . . . , v(en))}.

Now we give two examples to illustrate the results in the above theorems.

Example 6.14. Let N = {1, 2} and let v : F{1,2} → R be given by

v(s1, s2) = s1 + s2 − 1 for each s ∈ F{1,2}
0 and v(e∅) = 0. Further, let

v1(s) =

{
v(s) if s 6=

(
0, 1

2

)
,

4 if s =
(
0, 1

2

)
.

v2(s) =

{
v(s) if s 6=

(
1
2 ,

1
2

)
,

4 if s =
(

1
2 ,

1
2

)
.

Let ∆ = {x ∈ R2 | x1 ≥ 0, x2 ≥ 0, x1 + x2 = 1}. Then
(i) C(v) = CP (v) = DC(v) = I(v) = ∆,
(ii) C(v1) = CP (v1) = ∅, DC(v1) = I(v1) = ∆,
(iii) C(v2) = ∅, CP (v2) = DC(v2) = I(v2) = ∆,
(iv) for v, v1, and v2, the imputation set ∆ is the unique stable set.
Note that v2(s) +

∑
i∈N\car(s)v2(e

i) > v2(e
N ) for s =

(
1
2 ,

1
2

)
and CP (v2) =

DC(v2). Hence, the sufficient condition in Theorem 6.9 for the equality
CP (v) = DC(v) is not a necessary condition.

In the next example we give a fuzzy game v with C(v) 6= DC(v) and
C(v) 6= ∅. Notice that for a crisp game w we have that C(w) = ∅ if
C(w) 6= DC(w) (cf. Theorem 2.12(ii)).
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Example 6.15. Let N = {1, 2} and let v : F{1,2} → R be given by
v(s1, 1) =

√
s1 for all (s1, 1) ∈ F{1,2}, and v(s1, s2) = 0 otherwise. Then

I(v) =
{
(x1, x2) ∈ R2

+ | x1 + x2 = 1
}
, C(v) =

{
x ∈ I(v) | 0 ≤ x1 ≤ 1

2

}
6=

I(v), and CP (v) = DC(v) = I(v). Further, I(v) is the unique stable set.

By using the average worth of a coalition s ∈ FN
0 in a game v ∈ FGN

(cf. (5.1)), we define the equal division core EDC(v) of the game v as the
set {

x ∈ I(v) | @s ∈ FN
0 s.t. α (s, v) > xi for all i ∈ car(s)

}
.

So x ∈ EDC(v) can be seen as a distribution of the value of the grand
coalition eN , where for each fuzzy coalition s, there is a player i with a
positive participation level for which the payoff xi is at least as good as the
equal division share α (s, v) of v(s) in s.

Proposition 6.16. Let v ∈ FGN . Then EDC(v) ⊂ EDC(cr(v)).

Proof. Suppose x ∈ EDC (v). Then by the definition of EDC(v) there is
no eS ∈ FN

0 s.t. α
(
eS , v

)
> xi for all i ∈ car(eS). Taking into account that

cr(v) (S) = v
(
eS
)

for all S ∈ 2N , there is no S 6= ∅ s.t. cr(v)(S)
|S| > xi for all

i ∈ S. Hence, x ∈ EDC (cr(v)).

The next example shows that EDC(v) and EDC(cr(v)) are not neces-
sarily equal.

Example 6.17. Let N = {1, 2, 3} and v(s1, s2, s3) =
√
s1 + s2 + s3 for each

s = (s1, s2, s3) ∈ F{1,2,3}. For this game we have

EDC(cr(v)) =

{√
3

3
,

√
3

3
,

√
3

3

}
and EDC(v) = ∅.

Remark 6.18. We refer the reader to [36] for an analysis of other core-like
solution concepts for cooperative fuzzy games.

6.3 The Shapley value and the Weber set

Let π(N) be the set of linear orderings of N . We introduce for v ∈ FGN

the marginal vectors mσ(v) for each σ ∈ π(N), the fuzzy Shapley value
φ(v) and the fuzzy Weber set W (v) as follows (cf. [10]):

(i) mσ(v) = mσ(cr(v)) for each σ ∈ π(N);
(ii) φ(v) = 1

|N |!

∑
σ∈π(N)m

σ(v);

(iii) W (v) = conv {mσ(v) | σ ∈ π(N)}.
Note that φ(v) = φ(cr(v)), W (v) = W (cr(v)). Note further that for

i = σ(k), the i-th coordinate mσ
i (v) of the marginal vector mσ(v) is given

by
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mσ
i (v) = v

(
k∑

r=1

eσ(r)

)
− v

(
k−1∑

r=1

eσ(r)

)
.

One can identify each σ ∈ π(N) with an n-step walk along the edges of
the hypercube of fuzzy coalitions starting in e∅ and ending in eN by passing
the vertices eσ(1), eσ(1) + eσ(2), . . . ,

∑n−1
r=1 e

σ(r). The vector mσ(v) records
the changes in value from vertex to vertex. The result in [74] that the core
of a crisp game is a subset of the Weber set of the game can be extended
for fuzzy games as we see in

Proposition 6.19. Let v ∈ FGN . Then C(v) ⊂W (v).

Proof. By Remark 6.1 we have C(v) ⊂ C(cr(v)) and by Theorem 2.18,
C(cr(v)) ⊂W (cr(v)). Since W (cr(v)) = W (v) we obtain C(v) ⊂W (v).

Note that the Weber set and the fuzzy Shapley value of a fuzzy game are
very robust solution concepts since they are completely determined by the
possibilities of crisp cooperation, regardless of what are the extra options
that players could have as a result of graduating their participation rates.
More specific solution concepts for fuzzy games will be introduced in the
next sections of this chapter.

Inspired by [49] one can define the diagonal value δ(v) for a C1-fuzzy
game v (i.e. a game whose characteristic function is differentiable with
continuous derivatives) as follows: for each i ∈ N the i-th coordinate δi(v)
of δ(v) is given by

δi(v) =

∫ 1

0

Div(t, t, . . . , t)dt,

where Di is the partial derivative of v with respect to the i-th coordinate.
According to Theorem 3.9 we have that for each crisp game v ∈ GN :

φi(v) = δi(ml(v)) for each i ∈ N .

The next example shows that for a fuzzy game v, δ(v) and φ(cr(v)) may
differ.

Example 6.20. Let v ∈ FG{1,2} with v(s1, s2) = s1(s2)
2 for each s =

(s1, s2) ∈ F{1,2}. Then

m(1,2) = (v(1, 0) − v(0, 0), v(1, 1) − v(1, 0)) = (0, 1),

m(2,1) = (v(1, 1) − v(0, 1), v(0, 1) − v(0, 0)) = (1, 0);

so,

φ(v) =
1

2
((0, 1) + (1, 0)) =

(
1

2
,
1

2

)
.

Further,
D1v(s1, s2) = (s2)

2, D2v(s1, s2) = 2s1s2;
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so,

δ1(v) =

∫ 1

0

t2dt =
1

3
, δ2(v) =

∫ 1

0

2t2dt =
2

3
.

Hence,

δ(v) =

(
1

3
,
2

3

)
6=
(

1

2
,
1

2

)
= φ(v).

The diagonal value is in fact the fuzzy value studied in [2], [3]. For ex-
tensions of this value the reader is referred to [17].

6.4 Path solutions and the path solution cover

Let us consider paths in the hypercube [0, 1]
N

of fuzzy coalitions, which
connect e∅ with eN in a special way (cf. [12]).

Formally, a sequence q =
〈
p0, p1, . . . , pm

〉
of m+1 different points in FN

will be called a path (of length m) in [0, 1]
N

if
(i) p0 = (0, 0, . . . , 0), and pm = (1, 1, . . . , 1);
(ii) pk ≤ pk+1 for each k ∈ {0, . . . ,m− 1};
(iii) for each k ∈ {0, . . . ,m− 1}, there is one player i ∈ N (the acting

player in point pk) such that
(
pk
)
j

=
(
pk+1

)
j

for all j ∈ N \ {i},
(
pk
)
i
<(

pk+1
)
i
.

For a path q =
〈
p0, p1, . . . , pm

〉
let us denote by Qi(q) the set of points

pk, where player i is acting, i.e. where
(
pk
)
i
<
(
pk+1

)
i
. Given a game

v ∈ FGN and a path q, the payoff vector xq(v) ∈ Rn corresponding to v
and q has the i-th coordinate

xq
i (v) =

∑

k:pk∈Qi(q)

(
v(pk+1) − v(pk)

)
,

for each i ∈ N .
Given such a path

〈
p0, p1, . . . , pm

〉
of length m and v ∈ FGN , one

can imagine the situation, where the players in N , starting from non-
cooperation

(
p0 = 0

)
arrive to full cooperation

(
pm = eN

)
in m steps,

where in each step one of the players increases his participation level. If the
increase in value in such a step is given to the acting player, the resulting
aggregate payoffs lead to the vector xq(v) = (xq

i (v))i∈N . Note that xq(v) is

an efficient vector, i.e.
∑n

i=1 x
q
i (v) = v

(
eN
)
. We call xq(v) a path solution.

Let us denote by Q(N) the set of paths in [0, 1]
N

. Then we denote by
Q(v) the convex hull of the set of path solutions and call it the path solution
cover. Hence,

Q(v) = co {xq(v) ∈ Rn | q ∈ Q(N)} .



62 6. Solution concepts for fuzzy games

Note that all paths q ∈ Q(N) have length at least n. There are n! paths
with length exactly n; each of these paths corresponds to a situation where
one by one the players − say in the order σ(1), . . . , σ(n) − increase their
participation from level 0 to level 1. Let us denote such a path along n
edges by qσ. Then

qσ =
〈
0, eσ(1), eσ(1) + eσ(2), . . . , eN

〉
.

Clearly, x (qσ) = mσ(v). Hence,

W (v) = co {x (qσ) | σ is an ordering of N} ⊂ Q(v).

According to Proposition 6.19, the core of a fuzzy game is a subset of
the Weber set. Hence

Proposition 6.21. For each v ∈ FGN we have C(v) ⊂W (v) ⊂ Q(v).

Example 6.22. Let v ∈ FG{1,2} be given by v(s1, s2) = s1 (s2)
2

+ s1 + 2s2
for each s = (s1, s2) ∈ F{1,2} and let q ∈ Q(N) be the path of length 3
given by

〈
(0, 0) ,

(
1
3 , 0
)
,
(

1
3 , 1
)
, (1, 1)

〉
. Then xq

1(v) =
(
v
(

1
3 , 0
)
− v (0, 0)

)
+(

v (1, 1) − v
(

1
3 , 1
))

= 1 2
3 , xq

2(v) = v
(

1
3 , 1
)
− v

(
1
3 , 0
)

= 2 1
3 . So

(
1 2

3 , 2
1
3

)
∈

Q(v). The two shortest paths of length 2 given by q(1,2) = 〈(0, 0) , (1, 0) , (1, 1)〉
and q(2,1) = 〈(0, 0) , (0, 1) , (1, 1)〉 have payoff vectors m(1,2)(v) = (1, 3), and
m(2,1)(v) = (2, 2), respectively.

Keeping in mind the interrelations among the Aubin core, the fuzzy
Weber set and the path solution cover, one can try to introduce lower
and upper bounds for payoff vectors in these sets. A lower (upper) bound
is a payoff vector whose i-th coordinate is at most (at least) as good as
the payoff given to player i when a “least desirable” (“most convenient”)
situation for him is achieved. By using pairs consisting of a lower bound
and an upper bound, we obtain hypercubes which are catchers of the Aubin
core, the fuzzy Weber set, and the path solution cover, respectively. In
the next section we obtain compromise values for fuzzy games by taking
a feasible compromise between the lower and upper bounds of the three
catchers.

Formally, a hypercube in Rn is a set of vectors of the form

[a, b] = {x ∈ Rn | ai ≤ xi ≤ bi for each i ∈ N} ,

where a, b ∈ Rn, a ≤ b (and the order ≤ is the standard partial order
in Rn). The vectors a and b are called bounding vectors of the hypercube
[a, b], where, more explicitly, a is called the lower vector and b the upper
vector of [a, b]. Given a set A ⊂ Rn we say that the hypercube [a, b] is a
catcher of A if A ⊂ [a, b], and [a, b] is called a tight catcher of A if there is
no hypercube strictly included in [a, b] which also catches A.
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A hypercube of reasonable outcomes for a cooperative crisp game plays a
role in [42] (see also [29]) and this hypercube can be seen as a tight catcher
of the Weber set for crisp games (cf. Section 2.2). Also in [64] and [68]
hypercubes are considered which are catchers of the core of crisp games.

Our aim is to introduce and study catchers of the Aubin core, the fuzzy
Weber set and the path solution cover for games with a non-empty Aubin
core, i.e. games which belong to FGN

∗ .
Let us first introduce a core catcher

HC(v) = [l (C(v)) , u (C(v))]

for a game v ∈ FGN
∗ , where for each k ∈ N :

lk (C (v)) = sup
{
ε−1v

(
εek
)
| ε ∈ (0, 1]

}
,

and
uk (C (v)) = inf

{
ε−1

(
v(eN ) − v

(
eN − εek

))
| ε ∈ (0, 1]

}
.

Proposition 6.23. For each v ∈ FGN
∗ and each k ∈ N :

−∞ < lk (C(v)) ≤ uk (C(v)) <∞ and C(v) ⊂ HC(v).

Proof. Let x ∈ C(v).
(i) For each k ∈ N and ε ∈ (0, 1] we have

v
(
eN
)
− v

(
eN − εek

)
≥
∑

i∈N

xi −


(1 − ε)xk +

∑

i∈N\{k}

xi


 = εxk.

So,
xk ≤ ε−1

(
v(eN ) − v

(
eN − εek

))

implying that
xk ≤ uk (C(v)) <∞.

(ii) For each ε ∈ (0, 1] we have εxk ≥ v
(
εek
)
. Hence,

xk ≥ sup
{
ε−1v

(
εek
)
| ε ∈ (0, 1]

}
= lk (C (v)) > −∞.

By using (i) and (ii) one obtains the inequalities in the proposition and
the fact that HC(v) is a catcher of C(v).

Now we introduce for each v ∈ FGN
∗ a fuzzy variant HW (v) of the

hypercube of reasonable outcomes introduced in [42],

HW (v) = [l (W (v)) , u (W (v))] ,

where for each k ∈ N :
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lk (W (v)) = min
{
v
(
eS∪{k}

)
− v

(
eS
)
| S ⊂ N \ {k}

}
,

and
uk (W (v)) = max

{
v
(
eS∪{k}

)
− v

(
eS
)
| S ⊂ N \ {k}

}
.

Then we have

Proposition 6.24. For each v ∈ FGN
∗ the hypercube HW (v) is a tight

catcher of W (v).

Proof. Left to the reader.

Let us call a set [a, b] with a ≤ b, a ∈ (R ∪ {−∞})n
and b ∈ (R ∪ {∞})n

a generalized hypercube.
Now we introduce for v ∈ FGN

∗ the generalized hypercube

HQ(v) = [l (Q(v)) , u (Q(v))] ,

which catches the path solution cover Q(v) as we see in Theorem 6.25,
where for k ∈ N :

lk (Q(v)) = inf
{
ε−1

(
v
(
s+ εek

)
− v(s)

)
| s ∈ FN , sk < 1, ε ∈ (0, 1 − sk]

}
,

uk (Q(v)) = sup
{
ε−1

(
v
(
s+ εek

)
− v(s)

)
| s ∈ FN , sk < 1, ε ∈ (0, 1 − sk]

}
,

where lk (Q(v)) ∈ [−∞,∞) and uk (Q(v)) ∈ (−∞,∞].

Note that u (Q(v)) ≥ u (C(v)), l (Q(v)) ≤ l (C(v)).

Theorem 6.25. For v ∈ FGN
∗ , HQ(v) is a catcher of Q(v).

Proof. This assertion follows from the fact that for each path q ∈ Q (N)
and any i ∈ N

xq
i (v) =

∑

k:pk∈Qi(q)

(
v
(
pk +

(
pk+1

i − pk
i

)
ei
)
− v

(
pk
))

≤
∑

k:pk∈Qi(q)

(
pk+1

i − pk
i

)
ui (Q(v))

= ui (Q(v)) ,

and, similarly,
xq

i (v) ≥ li (Q(v)) .

Note that the lower and upper bounds of the catcher of the fuzzy Weber
set are obtained by using a finite number of value differences, where only
coalitions corresponding to crisp coalitions play a role. The calculation of
the lower and upper bounds of the catchers of the Aubin core and of the
path solution cover is based on infinite value differences.
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6.5 Compromise values

We introduce now for fuzzy games compromise values of σ-type and of τ -
type with respect to each of the set-valued solutions C, W and Q. For the
first type use is made directly of the bounding vectors of HC(v), HW (v)
and HQ(v), while for the τ -type compromise values the upper vector is
used together with the remainder vector derived from the upper vector (cf.
[12]).

To start with the first type, consider a hypercube [a, b] in Rn and a game
v ∈ FGN

∗ such that the hypercube contains at least one efficient vector, i.e.

[a, b] ∩
{
x ∈ Rn |

n∑

i=1

xi = v
(
eN
)
}

6= ∅.

Then there is a unique point c (a, b) on the line through a and b which
is also efficient in the sense that

∑n
i=1 ci (a, b) = v

(
eN
)
. So c (a, b) is the

convex combination of a and b, which is efficient. We call c(a, b) the feasible
compromise between a and b.

Now we introduce the following three σ-like compromises for v ∈ FGN
∗ :

valσC(v) = c (HC(v)) = c ([l (C(v)) , u (C(v))]) ,

valσW (v) = c (HW (v)) = c ([l (W (v)) , u (W (v))]) ,

and
valσQ(v) = c (HQ(v)) = c ([l (Q(v)) , u (Q(v))])

if the generalized hypercube HQ(v) is a hypercube.
Note that

∅ 6= C(v) ⊂ HC(v) ⊂ HQ(v), (6.1)

and
∅ 6= C(v) ⊂W (v) ⊂ HW (v), (6.2)

so all hypercubes contain efficient vectors and the first two compromise
value vectors are always well defined.

For the τ -like compromise values inspired by the definition of minimal
right vectors for crisp games (cf. [5], [24], and Section 2.2) we define the
fuzzy minimal right operator mv : Rn → Rn for v ∈ FGN

∗ by

mv
i (z) = sup



s

−1
i


v(s) −

∑

j∈N\{i}

sjzj


 | s ∈ FN

0 , si > 0





for each i ∈ N and each z ∈ Rn.
The following proposition shows that mv assigns to each upper bound z

of the Aubin core (i.e. z ≥ x for each x ∈ C(v)) a lower bound mv(z) of
C(v), called the remainder vector corresponding to z.
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Proposition 6.26. Let v ∈ FGN
∗ and let z ∈ Rn be an upper bound of

C(v). Then mv(z) is a lower bound of C(v).

Proof. Let i ∈ N and x ∈ C(v). For each s ∈ FN with si > 0 we have

s−1
i


v(s) −

∑

j∈N\{i}

sjzj


 ≤ s−1

i


∑

j∈N

sjxj −
∑

j∈N\{i}

sjzj




= xi + s−1
i

∑

j∈N\{i}

sj (xj − zj)

≤ xi,

where the first inequality follows from x ∈ C(v) and the second inequality
from the fact that z is an upper bound for C(v), and then z ≥ x. Hence
mv

i (z) ≤ xi for each i ∈ N , which means that mv(z) is a lower bound for
C(v).

Now we are able to introduce the τ -like compromise values taking into
account that all upper vectors of HC(v), HW (v) and HQ(v) are upper
bounds for the Aubin core of v ∈ FGN

∗ as follows from (6.1) and (6.2).
So the following definitions make sense for v ∈ FGN

∗ :

valτC(v) = c ([mv (u (C(v))) , u (C(v))]) ,

valτW (v) = c ([mv (u (W (v))) , u (W (v))]) ,

and
valτQ(v) = c ([mv (u (Q(v))) , u (Q(v))])

if the generalized hypercube HQ(v) is a hypercube.
The compromise value valτC(v) is in the spirit of the τ -value introduced

in [64] for cooperative crisp games (see Section 3.2), and the compromise
value valτW (v) is in the spirit of the χ-value in [6], the µ-value in [33] and
one of the values in [15] and [16] for cooperative crisp games.
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Convex fuzzy games

An interesting class of fuzzy games is generated when the notion of convex-
ity is considered. Convex fuzzy games can be successfully used for solving
sharing problems arising from many economic situations where “coopera-
tion” is the main benefit/cost savings generator; all the solution concepts
treated in Chapter 6 have nice properties for such games. Moreover, for
convex fuzzy games one can use additional sharing rules which are based
on more specific solution concepts like participation monotonic allocation
schemes and egalitarian solutions.

7.1 Basic characterizations

Let v : [0, 1]
n → R. Then v satisfies

(i) supermodularity (SM) if

v (s ∨ t) + v (s ∧ t) ≥ v(s) + v(t) for all s, t ∈ [0, 1]
N

. (7.1)

(ii) coordinate-wise convexity (CwC) if for each i ∈ N and each s−i ∈
[0, 1]

N\{i}
the function gs−i : [0, 1] → R with gs−i(t) = v(s−i ‖ t) for each

t ∈ [0, 1] is a convex function (see page 5).
Now we introduce our definition of convex cooperative fuzzy games (cf.

[10]).

Definition 7.1. Let v ∈ FGN . Then v is called a convex fuzzy game if
v : [0, 1]

N → R satisfies SM and CwC.
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Remark 7.2. Convex fuzzy games form a convex cone.

Remark 7.3. For a weaker definition of a convex fuzzy game we refer to
[72], where only the supermodularity property is used.

As shown in Proposition 7.4, a nice example of convex fuzzy games is
a unanimity game in which the minimal wining coalition corresponds to a
crisp-like coalition.

Proposition 7.4. Let ut ∈ FGN be the unanimity game based on the fuzzy
coalition t ∈ FN

0 . Then the game ut is convex if and only if t = eT for some
T ∈ 2N \ {∅}.

Proof. Suppose t 6= eT for some T ∈ 2N \ {∅}. Then there is a k ∈ N such
that ε = min {tk, 1 − tk} > 0 and 0 = ut(t + εek) − ut(t) < ut(t) − ut(t −
εek) = 1, implying that ut is not convex.

Conversely, suppose that t = eT for some T ∈ 2N \ {∅}. Then we show
that ut has the supermodularity property and the coordinate-wise convexity
property. Take s, k ∈ FN . We can distinguish three cases.

(1) If ut(s ∨ k) + ut(s ∧ k) = 2, then ut(s ∧ k) = 1. Thus, the supermod-
ularity condition (7.1) follows from ut(s) + ut(k) ≥ 2ut(s ∧ k) = 2.

(2) If ut(s∨ k)+ut(s∧ k) = 0, then ut(s∨ k) = 0. Hence ut(s)+ut(k) ≤
2ut(s ∨ k) = 0, ut(s) + ut(k) = 0.

(3) If ut(s ∨ k) + ut(s ∧ k) = 1, then ut(s ∨ k) = 1 and ut(s ∧ k) = 0.
Therefore ut(s) or ut(k) must be equal to 0, and, consequently, ut(s) +
ut(k) ≤ 1 and the supermodularity condition (7.1) is fulfilled.

Hence, the supermodularity property holds for ueT .
Secondly, to prove the coordinate-wise convexity of ueT , note that all

functions gs−i in the definition of coordinate-wise convexity are convex
because they are either constant with value 0 or with value 1, or they have
value 0 on [0, 1) and value 1 in 1. So ueT is a convex game.

In the following the set of convex fuzzy games with player set N will be
denoted by CFGN . Clearly, CFGN ⊂ FGN . Remember that the set of
convex crisp games with player set N was denoted by CGN .

Proposition 7.5. Let v ∈ CFGN . Then cr(v) ∈ CGN .

Proof. We will prove that cr(v) satisfies SM for crisp games (cf. (4.1)). Take
S, T ∈ 2N and apply SM for fuzzy games (7.1) with eS , eT , eS∪T , eS∩T in
the roles of s, t, s ∨ t, s ∧ t, respectively, obtaining

cr(v) (S ∪ T ) + cr(v)(S ∩ T ) ≥ cr(v)(S) + cr(v)(T ).

The next property for convex fuzzy games is related with the increasing
marginal contribution property for players in crisp games (cf. Theorem
4.9(iii)). It states that a level increase of a player in a fuzzy coalition has
more beneficial effect in a larger coalition than in a smaller coalition.
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Proposition 7.6. Let v ∈ CFGN . Let i ∈ N , s1, s2 ∈ FN with s1 ≤ s2

and let ε ∈ R+ with 0 ≤ ε ≤ 1 − s2i . Then

v
(
s1 + εei

)
− v

(
s1
)
≤ v

(
s2 + εei

)
− v

(
s2
)
. (7.2)

Proof. Suppose N = {1, . . . , n}. Define the fuzzy coalitions c0, c1, . . . , cn by
c0 = s1, and ck = ck−1 +

(
s2k − s1k

)
ek for k ∈ {1, . . . , n}. Then cn = s2. To

prove (7.2) it is sufficient to show that for each k ∈ {1, . . . , n} the inequality(
Ik
)

holds

v
(
ck + εei

)
− v

(
ck
)
≥ v

(
ck−1 + εei

)
− v

(
ck−1

)
. (Ik)

Note that
(
Ii
)

follows from the coordinate-wise convexity of v and
(
Ik
)

for
k 6= i follows from SM with ck−1 + εei in the role of s and ck in the role of
t. Then s ∨ t = ck + εei, s ∧ t = ck−1.

Also an analogue of the increasing marginal contribution property for
coalitions (cf. Theorem 4.9(ii)) holds as we see in

Proposition 7.7. Let v ∈ CFGN . Let s, t ∈ FN and z ∈ Rn
+ such that

s ≤ t ≤ t+ z ≤ eN . Then

v(s+ z) − v(s) ≤ v(t+ z) − v(t). (7.3)

Proof. For each k ∈ {1, . . . , n} it follows from Proposition 7.6 (with s +∑k−1
r=1 zre

r in the role of s1, t+
∑k−1

r=1 zre
r in the role of s2, k in the role of

i, and zk in the role of ε) that

v

(
s+

k∑

r=1

zre
r

)
− v

(
s+

k−1∑

r=1

zre
r

)
≤

v

(
t+

k∑

r=1

zre
r

)
− v

(
t+

k−1∑

r=1

zre
r

)
.

By adding these n inequalities we obtain inequality (7.3).

The next proposition introduces a characterizing property for convex
fuzzy games which we call the increasing average marginal return property
(IAMR). This property expresses the fact that for a convex game an in-
crease in participation level of any player in a smaller coalition yields per
unit of level less than an increase in a larger coalition under the condition
that the reached level of participation in the first case is still not bigger
than the reached participation level in the second case.

Proposition 7.8. Let v ∈ CFGN . Let i ∈ N , s1, s2 ∈ FN with s1 ≤ s2

and let ε1, ε2 > 0 with s1i + ε1 ≤ s2i + ε2 ≤ 1. Then

ε−1
1

(
v
(
s1 + ε1e

i
)
− v

(
s1
))

≤ ε−1
2

(
v
(
s2 + ε2e

i
)
− v

(
s2
))
. (7.4)
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Proof. From Proposition 7.6 (with s1,
(
s2 +

(
s1i − s2i

)
ei
)

and ε1 in the roles
of s1, s2 and ε, respectively) it follows that

ε−1
1

(
v
(
s2 +

(
s1i − s2i + ε1

)
ei
)
− v

(
s2 +

(
s1i − s2i

)
ei
))

≥
ε−1
1

(
v
(
s1 + ε1e

i
)
− v

(
s1
))
.

Further, from CwC (by noting that s2i + ε2 ≥ s2i +
(
s1i − s2i + ε1

)
, s2i ≥

s2i +
(
s1i − s2i

)
) it follows that

ε−1
2

(
v
(
s2 + ε2e

i
)
− v

(
s2
))

≥
ε−1
1

(
v
(
s2 +

(
s1i − s2i + ε1

)
ei
)
− v

(
s2 +

(
s1i − s2i

)
ei
))
,

resulting in the desired inequality.

Theorem 7.9. Let v ∈ FGN . Then the following assertions are equivalent:
(i) v ∈ CFGN ;
(ii) v satisfies IAMR.

Proof. We know from Proposition 7.8 that a convex game satisfies IAMR.
On the other hand it is clear that IAMR implies the CwC. Hence, we only
have to prove that IAMR implies SM. So, given s, t ∈ FN we have to prove
inequality (7.1).

Let P = {i ∈ N | ti < si}. If P = ∅, then (7.1) follows from the fact
that s ∨ t = t, s ∧ t = s. For P 6= ∅, arrange the elements of P in a
sequence σ(1), . . . , σ(p), where p = |P |, and put εσ(k) = sσ(k) − tσ(k) > 0
for k ∈ {1, . . . , p}. Note that in this case

s = s ∧ t+

p∑

k=1

εσ(k)e
σ(k), s ∨ t = t+

p∑

k=1

εσ(k)e
σ(k).

Hence,

v(s) − v(s ∧ t) =
p∑

r=1

(
v

(
s ∧ t+

r∑

k=1

εσ(k)e
σ(k)

)
− v

(
s ∧ t+

r−1∑

k=1

εσ(k)e
σ(k)

))
,

and

v(s ∨ t) − v(t) =
p∑

r=1

(
v

(
t+

r∑

k=1

εσ(k)e
σ(k)

)
− v

(
t+

r−1∑

k=1

εσ(k)e
σ(k)

))
.

From these equalities the relation (7.1) follows because IAMR implies
for each r ∈ {1, . . . , p} :
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v

(
s ∧ t+

r∑

k=1

εσ(k)e
σ(k)

)
− v

(
s ∧ t+

r−1∑

k=1

εσ(k)e
σ(k)

)

≤ v

(
t+

r∑

k=1

εσ(k)e
σ(k)

)
− v

(
t+

r−1∑

k=1

εσ(k)e
σ(k)

)
.

Next, we study the implications of two other properties a function v :
[0, 1]N → R may satisfy (cf. [67]). The first one we call monotonicity of
the first partial derivatives property (MOPAD), and the second one is the
directional convexity property (DICOV) introduced in [41].

Let i ∈ N and s ∈ [0, 1]N . We say that the left derivative D−
i v(s) of v in

the i-th direction at s with 0 < si ≤ 1 exists if limε→0
ε>0

ε−1(v(s)−v(s−εei))

exists and is finite; then

D−
i v(s) := lim

ε→0
ε>0

ε−1(v(s) − v(s− εei)).

Similarly, the right derivative of v in the i-th direction at s with 0 ≤
si < 1, denoted by D+

i v(s), is limε→0
ε>0

ε−1(v(s + εei) − v(s)) if this limit

exists and is finite. We put for convenience D−
i v(s) = −∞ if si = 0 and

D+
i v(s) = ∞ if si = 1.

Definition 7.10. We say that v : [0, 1]N → R satisfies MOPAD if for
each i ∈ N the following four conditions hold:
(M1) D−

i v(s) exists for each s ∈ [0, 1]N with 0 < si ≤ 1;
(M2) D+

i v(s) exists for each s ∈ [0, 1]N with 0 ≤ si < 1;
(M3) D−

i v(s) ≤ D+
i v(s);

(M4) D−
i v(s

1) ≤ D−
i v(s

2) and D+
i v(s

1) ≤ D+
i v(s

2) for each s1, s2 ∈ [0, 1]N

with s1 ≤ s2.

Definition 7.11. Let [a, b] = {x ∈ [0, 1]N | ai ≤ xi ≤ bi for each i ∈ N}.
We say that v : [0, 1]N → R satisfies DICOV if for each a, b ∈ [0, 1]N with
a ≤ b and each pair c, d ∈ [a, b] with c+ d = a+ b it follows that

v(a) + v(b) ≥ v(c) + v(d).

Lemma 7.12. Let s ∈ [0, 1]N and i ∈ N with 0 ≤ si < 1 and 0 < ε1 ≤
ε2 < ε3 ≤ 1 − si. If v : [0, 1]N → R satisfies MOPAD then

ε−1
1 (v(s+ ε1e

i) − v(s)) ≤ (ε3 − ε2)
−1(v(s+ ε3e

i) − v(s+ ε2e
i)).

Proof. From the definition of the left derivative and by (M4) it follows
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ε−1
1 (v(s+ ε1e

i) − v(s)) = ε−1
1

∫ ε1

0

D−
i v(s+ xei)dx

≤ ε−1
1

∫ ε1

0

D−
i v(s+ ε1e

i)dx = D−
i v(s+ ε1e

i)

≤ D−
i v(s+ ε2e

i) = (ε3 − ε2)
−1

∫ ε3

ε2

D−
i v(s+ ε2e

i)dx

≤ (ε3 − ε2)
−1

∫ ε3

ε2

D−
i v(s+ xei)dx

= (ε3 − ε2)
−1(v(s+ ε3e

i) − v(s+ ε2e
i)).

The following theorem establishes the equivalence among the introduced
properties provided that the characteristic function v is continuous.

Theorem 7.13. Let v : [0, 1]N → R be a continuous function. The follow-
ing assertions are equivalent:
(i) v satisfies SM and CwC;
(ii) v satisfies MOPAD;
(iii) v satisfies IAMR;
(iv) v satisfies DICOV.

Proof. (i) → (ii): The validity of (M1), (M2), and (M3) in the definition of
MOPAD follows by CwC. To prove (M4) note first that for s1 with s1i = 0
we have D−

i v(s
1) = −∞ ≤ D−

i v(s
2). If s1i > 0, then CwC implies (cf.

Proposition 7.6) that

v(s1) − v(s1 − εei) ≤ v(s2) − v(s2 − εei)

for ε > 0 such that s1i − ε ≥ 0. By multiplying the left and right sides of
the above inequality with ε−1 and then taking the limit for ε going to 0, we
obtain D−

i v(s
1) ≤ D−

i v(s
2). The second inequality in (M4) can be proved

in a similar way.
(ii) → (iii): Suppose that v satisfies MOPAD. We have to prove that for

each a, b ∈ [0, 1]N with a ≤ b, each i ∈ N, δ ∈ (0, 1−ai], ε ∈ (0, 1− bi] such
that ai + δ ≤ bi + ε ≤ 1 it follows that

δ−1(v(a+ δei) − v(a)) ≤ ε−1(v(b+ εei) − v(b)). (7.5)

Take a, b, i, δ, ε as above. Let c = a+ (bi − ai)e
i and d = b+ (ai + δ− bi)e

i.
We consider two cases:

(a) ai + δ ≤ bi. Then

δ−1(v(a+ δei) − v(a)) = δ−1

∫ δ

0

D−
i v(a+ xei)dx

≤ δ−1

∫ δ

0

D−
i v(a+ δei)dx = D−

i v(a+ δei)
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≤ D−
i v(b)

≤ ε−1

∫ ε

0

D−
i v(b+ xei)dx = ε−1(v(b+ εei) − v(b)),

where the inequalities follow by (M4).
(b) ai + δ ∈ (bi, bi + ε]. Then

δ−1(v(a+ δei) − v(a)) = δ−1(v(c) − v(a)) + δ−1(v(a+ δei) − v(c))

≤ δ−1(ci − ai)(ai + δ − ci)
−1(v(a+ δei) − v(c)) + δ−1(v(a+ δei) − v(c))

= (ai + δ − ci)
−1(v(a+ δei) − v(c)),

where the inequality follows by Lemma 7.12, with s = a, ε1 = ε2 = ci−ai <
δ = ε3.

Thus we have

δ−1(v(a+ δei) − v(a)) ≤ (ai + δ − ci)
−1(v(a+ δei) − v(c)). (7.6)

Similarly, by applying Lemma 7.12 with s = b, ε1 = ε2 = di−bi < ε = ε3,
it follows that

(di − bi)
−1(v(d) − v(b)) ≤ ε−1(v(b+ εei) − v(b)). (7.7)

Further, using (M4) with (a−i, t) = (a1, . . . , ai−1, t, ai+1, . . . , an) and
(b−i, t) = (b1, . . . , bi−1, t, bi+1, . . . , bn) in the role of s1 and s2, respectively,
and the equalities ai + δ = di and ci = bi we obtain

v
(
a+ δei

)
− v(c) =

∫ ai+δ

ci

D−
i v(a−i, t)dt

≤
∫ di

bi

D−
i v(b−i, t)dt ≤ v(d) − v(b).

Now, since ai + δ − ci = di − bi, we have

(ai + δ − ci)
−1 (

v
(
a+ δei

)
− v(c)

)
≤ (di − bi)

−1
(v(d) − v(b)) . (7.8)

Combining (7.6) and (7.7) via (7.8) (by using the transitivity property of
the inequality relation), (7.5) follows.

(iii) → (iv): Assume that v satisfies IAMR. Take a, b ∈ [0, 1]N with a ≤ b
and c, d ∈ [a, b] with c + d = a + b. Define h = b − c. Then b = c + h and
d = a+ h. We have

v(b) − v(c) =

n∑

r=1

(v(c+

r∑

i=1

hie
i) − v(c+

r−1∑

i=1

hie
i))

≥
n∑

r=1

(v(a+

r∑

i=1

hie
i) − v(a+

r−1∑

i=1

hie
i)) = f(d) − f(a),
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where the inequality follows by applying IAMR n times.
(iv) → (i): Let v satisfy DICOV. To prove that v satisfies CwC as well,

note that for s−i ∈ [0, 1]N\{i} and 0 ≤ p < 1
2 (p+q) < q ≤ 1, we have (s−i ‖

1
2 (p+ q)) ∈ [(s−i ‖ p), (s−i ‖ q)]. So, (iv) with a = (s−i ‖ p), b = (s−i ‖ q),
c = d = (s−i ‖ 1

2 (p+q)) implies v(s−i ‖ p)+v(s−i ‖ q) ≥ 2v(s−i ‖ 1
2 (p+q)).

To prove that v satisfies SM, let c, d ∈ [0, 1]N . Then c, d ∈ [c ∧ d, c ∨ d].
By (iv) one obtains v(c ∨ d) + v(c ∧ d) ≥ v(c) + v(d).

Finally, we introduce a fifth property that allows for a very simple char-
acterization of a convex fuzzy game. It requires that all second partial
derivatives of v : [0, 1]N → R are non-negative (NNSPAD).

Definition 7.14. Let v ∈ C2. Then v satisfies NNSPAD on [0, 1]
N

if for
all i, j ∈ N we have

∂2v

∂si∂sj
≥ 0.

Obviously, the properties MOPAD and NNSPAD are equivalent on the
class of C2-functions.

Remark 7.15. In [57] it is shown that if v ∈ C2, then DICOV implies
NNSPAD.

Remark 7.16. For each r ∈ {1, . . . ,m}, let µr be defined for each s ∈ [0, 1]N

by µr(s) =
∑

i∈N siµr(i) with µr(i) ≥ 0 for each i ∈ N and
∑

i∈N µr(i) ≤
1. If f ∈ C1 satisfies DICOV, then v with v(s) = f(µ1(s), . . . , µm(s)) is a
convex game (cf. [41]).

7.2 Properties of solution concepts

This section is devoted to special properties of the solution concepts in-
troduced so far on the class of convex fuzzy games. First, we focus on the
Aubin core, the fuzzy Shapley value and the fuzzy Weber set. As we see
in the following theorem the stable marginal vector property (cf. Theorem
4.9(iv)) also holds for convex fuzzy games and the fuzzy Weber set coincides
with the Aubin core. Hence, the Aubin core is large; moreover it coincides
with the core of the corresponding crisp game (cf. [10]).

Theorem 7.17. Let v ∈ CFGN . Then
(i) mσ(v) ∈ C(v) for each σ ∈ π(N);
(ii) C(v) = W (v);
(iii) C(v) = C(cr(v)).

Proof. (i) For each σ ∈ π(N) we have
∑

i∈N mσ
i (v) = v

(
eN
)
. Further for

each σ ∈ π(N) and s ∈ FN
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∑

i∈N

sim
σ
i (v) =

n∑

k=1

sσ(k)m
σ
σ(k)(v)

=

n∑

k=1

sσ(k)

(
v

(
k∑

r=1

eσ(r)

)
− v

(
k−1∑

r=1

eσ(r)

))

≥
n∑

k=1

(
v

(
k∑

r=1

sσ(r)e
σ(r)

)
− v

(
k−1∑

r=1

sσ(r)e
σ(r)

))

= v

(
n∑

r=1

sσ(r)e
σ(r)

)
= v(s),

where the inequality follows by applying n times Proposition 7.8. Hence
mσ(v) ∈ C(v) for each σ ∈ π(N).

(ii) From assertion (i) and the convexity of the core we obtain W (v) =
co {mσ(v) | σ ∈ π(N)} ⊂ C(v). The reverse inclusion follows from Propo-
sition 6.19.

(iii) Since cr(v) is a convex crisp game by Proposition 7.5, we have
C(cr(v)) = W (cr(v)), and W (cr(v)) = W (v) = C(v) by (ii).

It follows from Theorem 7.17 that φ(v) has a central position in the
Aubin core C(v) if v is a convex fuzzy game. For crisp games it holds that
a game v is convex if and only if C(v) = W (v) (cf. Theorem 4.9(v)). For
fuzzy games the implication is only in one direction. Example 7.18 presents
a fuzzy game which is not convex and where the Aubin core and the fuzzy
Weber set coincide.

Example 7.18. Let v ∈ FG{1,2} with v(s1, s2) = s1s2 if (s1, s2) 6=
(

1
2 ,

1
2

)

and v
(

1
2 ,

1
2

)
= 0. Then v /∈ CFG{1,2}, but C(v) = W (v) = co {(0, 1) , (1, 0)}.

Example 7.19. Consider the public good game in Example 5.5. If the func-
tions g1, . . . , gn and −k are convex, then we have v ∈ CFGN .

For fuzzy games the core is a superadditive solution, i.e.

C(v + w) ⊃ C(v) + C(w) for all v, w ∈ FGN ,

and the fuzzy games with a non-empty Aubin core form a cone.
On the set of convex fuzzy games the Aubin core turns out to be an

additive correspondence as we see in

Proposition 7.20. The Aubin core of a convex fuzzy game and the fuzzy
Shapley value are additive solutions.

Proof. Let v, w be convex fuzzy games. Then

C(v + w) = C(cr(v + w)) = C(cr(v) + cr(w))

= C(cr(v)) + C(cr(w)) = C(v) + C(w),
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where the first equality follows from Theorem 7.17(iii) and the third equal-
ity follows from the additivity of the core for convex crisp games (cf. [13]).
Further from φ(v) = φ(cr(v)) and the additivity of the Shapley value for
convex crisp games it follows that φ(v + w) = φ(v) + φ(w).

Now we study properties of other cores and stable sets for convex fuzzy
games (cf. [70]).

Lemma 7.21. Let v ∈ CFGN . Take x, y ∈ I(v) and suppose xdoms y for
some s ∈ FN

0 . Then |car(s)| ≥ 2.

Proof. Take x, y ∈ I(v) and suppose xdoms y for some s ∈ FN
0 with

car(s) = {i}. Then xi > yi and sixi ≤ v(sie
i). By the convexity of v,

we obtain siv(e
i) ≥ v(sie

i). Thus we have yi < xi ≤ v(sie
i)

si
≤ v(ei) which

is a contradiction with the individual rationality of y.

Theorem 7.22. Let v ∈ CFGN and w = cr(v). Then, for all x, y ∈ I(v) =
I(w), we have xdom y in v if and only if xdom y in w.

Proof. First we note that
I(v) =

{
x ∈ Rn |∑i∈N xi = v

(
eN
)
, xi ≥ v(ei) for each i ∈ N

}

and
I(w) =

{
x ∈ Rn |∑i∈N xi = w (N) , xi ≥ w({i}) for each i ∈ N

}

coincide because w(N) = v(eN ) and w(i) = v(ei) for each i ∈ N .
To prove the ‘if’ part, let x, y ∈ I(w) = I(v) and xdomS y for some

S ∈ 2N \ {∅}. Then it implies xdomeS y in v.
Now we prove the ‘only if’ part. Let x, y ∈ I(v) = I(w) and xdoms y for

some s ∈ FN
0 . Let ϕ(s) = |{i ∈ N | 0 < si < 1}|. By Remark 6.5, ϕ(s) < n.

It is sufficient to prove by induction on ϕ(s) ∈ {0, . . . , n−1}, that xdoms y
implies xdom y in w.

Clearly, if ϕ(s) = 0 then xdomcar(s) y because ϕ(s) = 0 implies that s is
a crisp-like coalition.

Suppose now that the assertion “xdoms y in v with ϕ(s) = k implies
xdom y in w” holds for each k with 0 ≤ k < r < n. Take s ∈ FN

0 with
ϕ(s) = r, and i ∈ N such that 0 < si < 1, and take x, y ∈ I(v) such
that xdoms y. Then xi > yi for each i ∈ car(s) and s · x ≤ v(s). Further,
|car(s)| ≥ 2 by Lemma 7.21. We note that s can be represented by a convex
combination of a = s− sie

i and b = s+ (1 − si)e
i, i.e. s = (1 − si)a+ sib.

Note that ϕ(a) = r − 1 and ϕ(b) = r − 1. Further, |car(a)| = |car(s)| − 1,
|car(b)| = |car(s)|.

The inequality s·x ≤ v(s) implies (1−si)a·x+sib·x ≤ v(s). On the other
hand, the (coordinate-wise) convexity of v induces v(s) ≤ (1 − si)v(a) +
siv(b).

Hence, (1− si)a · x+ sib · x ≤ v(s) ≤ (1− si)v(a) + siv(b) which implies
(1− si)(a · x− v(a)) + si(b · x− v(b)) ≤ 0; thus a · x ≤ v(a) or b · x ≤ v(b).
We want to show that
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xdoma y or xdomb y. (7.9)

The following three cases should be considered:
(1) b · x ≤ v(b). Then xdomb y, since |car(b)| ≥ 2.
(2) b · x > v(b) and |car(s)| ≥ 3. Then a · x ≤ v(a); thus xdoma y, since

|car(a)| ≥ 2.
(3) b ·x > v(b) and |car(s)| = 2. Then we have a ·x ≤ v(a) and |car(b)| =

1.
By the convexity of v and the individual rationality, we obtain a ·x ≥ v(a).
In fact, let a = sje

j . Then the convexity of v induces sjv(e
j) ≥ v(sje

j).
By the individual rationality, we obtain xj ≥ v(ej). Hence, a · x = sjxj ≥
sjv(e

j) ≥ v(sje
j) = v(a). So, a · x = v(a), which is contradictory to (1 −

si)(a ·x−v(a))+ si(b ·x−v(b)) ≤ 0, implying that case (3) does not occur.
Hence, (7.9) holds. Since ϕ(a) = ϕ(b) = r − 1, the induction hypothesis

implies that xdom y in w.

Theorem 7.23. Let v ∈ CFGN . Then
(i) C(v) = CP (v) = Ccr(v);
(ii) DC(v) = DC(cr(v));
(iii) C(v) = DC(v).

Proof. (i) For convex fuzzy games C(v) = C(cr(v)) (see Theorem 7.17(iii)).
Now, we use Theorem 6.8(i).

(ii) From Theorem 7.22 we conclude that DC(v) = DC(cr(v)).
(iii) Since v ∈ CFGN we have v(eN ) ≥ v(s) +

∑
i∈N\car(s) v(e

i) for each

s ∈ FN . We obtain by Theorem 6.9 that CP (v) = DC(v). Now we use (i).

The next theorem extends the result in [60] that each crisp convex game
has a unique stable set coinciding with the dominance core.

Theorem 7.24. Let v ∈ CFGN . Then there is a unique stable set, namely
DC(v).

Proof. By Theorem 2.11(iii), DC(cr(v)) is the unique stable set of cr(v).
In view of Theorem 7.22, the set of stable sets of v and cr(v) coincide, and
by Theorem 7.23(ii), we have DC(v) = DC(cr(v)). So, the unique stable
set of v is DC(v).

Note that the game v in Example 6.14 is convex, but v1 and v2 are not.

Remark 7.25. The relations among the Aubin core, the proper core, the
crisp core, the dominance core, and the stable sets discussed above remain
valid if one uses the corresponding generalized versions of these notions as
introduced and studied in [36].

We describe now the implications of convexity on the structure of the
tight catchers and compromise values introduced in Sections 6.4 and 6.5.

Let Dkv(0) and Dkv
(
eN
)

for each k ∈ N be the right and left partial
derivative in the direction ek in 0 and eN , respectively.
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Theorem 7.26. Let v ∈ CFGN . Then

HQ(v) =
[
Dv(0), Dv

(
eN
)]
.

Proof. From the fact that v satisfies IAMR (cf. Proposition 7.8) it follows
that

lk (Q(v)) = inf
{
ε−1

(
v
(
εek
)
− v(0)

)
| ε ∈ (0, 1]

}
= Dkv(0),

and

uk (Q(v)) = sup
{
ε−1

(
v
(
eN
)
− v

(
eN − εek

))
| ε ∈ (0, 1]

}
= Dkv

(
eN
)
.

Theorem 7.27. Let v ∈ CFGN . Then HC(v) = HW (v) and this hyper-
cube is a tight catcher for C(v) = W (v). Further

lk (C(v)) = v
(
ek
)
,

uk (C(v)) = v
(
eN
)
− v

(
eN\{k}

)

for each k ∈ N .

Proof. For v ∈ CFGN the IAMR property implies

ε−1
(
v
(
εek
)
− v(0)

)
≤ v

(
ek
)
− v(0) for each ε ∈ (0, 1]

and

v
(
ek
)
− v(0) ≤ v

(
eS + ek

)
− v

(
eS
)

for each S ⊂ N \ {k} .

The first inequality corresponds to s1 = s2 = 0, ε1 = ε, and ε2 = 1,
while the second inequality is obtained by taking s1 = 0, s2 = eS , and
ε1 = ε2 = 1.

So, we obtain

lk (C(v)) = sup
{
ε−1v

(
εek
)
| ε ∈ (0, 1]

}
= v

(
ek
)

= min
{
v
(
eS∪{k}

)
− v

(
eS
)
| S ⊂ N \ {k}

}

= lk (W (v)) .

Similarly, from IAMR it follows

uk (C(v)) = inf
{
ε−1

(
v
(
eN
)
− v

(
eN − εek

))
| ε ∈ (0, 1]

}

= v
(
eN
)
− v

(
eN\{k}

)

= max
{
v
(
eS∪{k}

)
− v

(
eS
)
| S ⊂ N \ {k}

}

= uk (W (v)) .
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This implies that HC(v) = HW (v).
That this hypercube is a tight catcher of C(v) = W (v) (see Theorem

7.17(ii)) follows from the facts that

lk (W (v)) = v
(
ek
)

= mσ
k(v),

uk (W (v)) = v
(
eN
)
− v

(
eN\{k}

)
= mτ

k(v),

where σ and τ are orderings of N with σ(1) = k and τ(n) = k, respectively.

For convex fuzzy games this theorem has consequences with respect to
the coincidence of some of the compromise values introduced in Section
6.5. This can be seen in our next theorem.

Theorem 7.28. Let v ∈ CFGN . Then
(i) mv

k (u (C(v))) = mv
k (u (W (v))) = v

(
ek
)

for each k ∈ N ;
(ii) valτC(v) = valσC(v) = valτW (v) = valσW (v).

Proof. (i) By Theorem 7.27, uk (C(v)) = uk (W (v)) = v
(
eN
)
− v

(
eN\{k}

)

for each k ∈ N . So, to prove (i), we have to show that for k ∈ N ,

mv
k (u (C(v))) = sup

{
s−1

k

(
v(s) −

∫

j∈N\{k}

sj

(
v
(
eN
)
− v

(
eN\{j}

)))}

= v
(
ek
)
,

where the sup is taken over s ∈ FN , sk > 0.
Equivalently, we have to show that for each s ∈ FN with sk > 0

skv
(
ek
)
≥
∫

j∈N\{k}

sj

(
v
(
eN
)
− v

(
eN\{j}

))
. (7.10)

Let σ be an ordering on N with σ(1) = k. Then

v(s) =

∫ n

t=1

(
v

(∫ t

r=1

sσ(r)e
σ(r)

)
− v

(∫ t−1

r=1

sσ(r)e
σ(r)

))

= v
(
ske

k
)

+

∫ n

t=2

(
v

(∫ t

r=1

sσ(r)e
σ(r)

)
− v

(∫ t−1

r=1

sσ(r)e
σ(r)

))
.

Now, note that for each t ∈ {2, . . . , n} IAMR implies

s−1
σ(t)

(
v

(∫ t−1

r=1

sσ(r)e
σ(r) + sσ(t)e

σ(t)

)
− v

(∫ t−1

r=1

sσ(r)e
σ(r)

))

≤ v
(
eN\{σ(t)} + 1.eσ(t)

)
− v

(
eN\{σ(t)}

)
.

So, we obtain
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v(s) ≤ skv
(
ek
)

+

∫

j∈N\{k}

sj

(
v
(
eN
)
− v

(
eN\{j}

))

from which (7.10) follows.
(ii) Since, by (i) and Theorem 7.27, lk (C(v)) = mv

k (u (C(v))) = v
(
ek
)

for each k ∈ N , it follows that valτC(v) = valσC(v) = valτW (v) = valσW (v).

Remark 7.29. Let v ∈ CFGN . Because u (Q(v)) ≥ u (C(v)), it follows from
(i) in the proof of Theorem 7.28 thatmk (u (Q(v))) = v

(
ek
)

for each k ∈ N .
But in general this remainder vector is not equal to Dv(0) (cf. Theorem
7.26), so in general valτQ(v) and valσQ(v) do not coincide.

Example 7.30. Let v ∈ CFG{1,2} with v (s1, s2) = s1 (s2)
5

for each s =
(s1, s2) ∈ F{1,2}. Then, by Theorems 7.17(ii) and 7.27, C(v) = W (v) =
conv

{
m(1,2)(v),m(2,1)(v)

}
= {(0, 1), (1, 0)} and HC(v) = HW (v) =

[(0, 0), (1, 1)]. Hence, valσC(v) = valσW (v) =
(

1
2 ,

1
2

)
. Further, valσQ(v) =(

1
6 ,

5
6

)
because, by Theorem 7.26,HQ(v) =

[
Dv(e∅), Dv

(
e{1,2}

)]
= [(0, 0),

(1, 5)]. By Theorem 7.28, valτC(v) = valτW (v) =
(

1
2 ,

1
2

)
= valσC(v) =

valσW (v). Further, valτQ(v) is the compromise between mv(1, 5) = (0, 0)

and (1, 5), so in this case also valτQ(v) = valσQ(v) =
(

1
6 ,

5
6

)
.

7.3 Participation monotonic allocation schemes

In this section we introduce for convex fuzzy games the notion of a par-
ticipation monotonic allocation scheme (pamas). This notion is inspired
by [63] where population monotonic allocation schemes (pmas) for coop-
erative crisp games which are necessarily totally balanced (cf. Subsections
4.1.2 and 4.2.2) are introduced. Recall that a pmas for a crisp game is a
bundle of core elements, one for each subgame and the game itself, which
are related via a monotonicity condition guaranteeing that each player is
better off when more other players join him. In our approach (cf. [10]) the
role of subgames of a crisp game will be taken over by the t-restricted games
vt ∈ FGN of a fuzzy game v ∈ FGN (cf. Definition 5.6).

Remark 7.31. Note that for each core element x ∈ C(vt) we have xi = 0
for each i /∈ car(t). This follows from

0 = v(e∅) = vt(e
i)

≤ xi =
∑

k∈N

xk −
∑

k∈N\{i}

xk ≤ vt(e
N ) − vt(e

N\{i}) = 0,

where we use that i /∈ car(t) in the second and last equalities, and that
x ∈ C(vt) in the two inequalities.
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Remark 7.32. If v ∈ CFGN , then also vt ∈ CFGN for each t ∈ FN .

Definition 7.33. Let v ∈ FGN . A scheme (ai,t)i∈N,t∈FN
0

is called a par-

ticipation monotonic allocation scheme (pamas) if
(i) (at,i)i∈N ∈ C(vt) for each t ∈ FN

0 (stability condition);

(ii) t−1
i at,i ≥ s−1

i as,i for each s, t ∈ FN
0 with s ≤ t and each i ∈ car(s)

(participation monotonicity condition).

Remark 7.34. Note that such a pamas is an n × ∞-matrix, where the
columns correspond to the players and the rows to the fuzzy coalitions.
In each row corresponding to t there is a core element of the game vt. The
participation monotonicity condition implies that, if the scheme is used as
regulator for the payoff distributions in the restricted fuzzy games, players
are paid per unit of participation more in larger coalitions than in smaller
coalitions.

Remark 7.35. Note that the collection of participation monotonic allocation
schemes of a fuzzy game v is a convex set of n×∞-matrices.

Remark 7.36. In [72] inspired by [63], the notion of fuzzy population mono-
tonic allocation scheme (FPMAS) is introduced. The relation between such
a scheme and core elements is not studied there.

Remark 7.37. A necessary condition for the existence of a pamas for v is the
existence of core elements for vt for each t ∈ FN

0 . But this is not sufficient
as Example 7.38 shows. A sufficient condition is the convexity of a game
as we see in Theorem 7.40.

Example 7.38. Consider the game v ∈ FGN with N = {1, 2, 3, 4} and
v(s) = min {s1 + s2, s3 + s4} for each s = (s1, s2, s3, s4) ∈ FN . Sup-
pose for a moment that (ai,t)i∈N,t∈FN

0
is a pamas. Then for t1 = eN\{2},

t2 = eN\{1}, t3 = eN\{4}, and t4 = eN\{3} we have C (vtk) =
{
ek
}

(see

Example 5.3), and so
(
ai,tk

)
i∈N

= ek for k ∈ N . But then
∑

k∈N ak,eN ≥∑
k∈N ak,tk = 4 > 2 = v

(
eN
)
, and this implies that there does not exist a

pamas. Note that C (vt) 6= ∅ holds for any t = (t1, t2, t3, t4) ∈ FN
0 , because

(t1, t2, 0, 0) ∈ C (vt) if t1 + t2 ≤ t3 + t4; and (0, 0, t3, t4) ∈ C (vt) otherwise.

Definition 7.39. Let v ∈ FGN and x ∈ C(v). Then we call x pamas

extendable if there exists a pamas (ai,t)i∈N,t∈FN
0

such that ai,eN = xi for

each i ∈ N .

In the next theorem we see that convex games have a pamas. Moreover,
each core element is pamas extendable.

Theorem 7.40. Let v ∈ CFGN and x ∈ C(v). Then x is pamas-extendable.
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Proof. We know from Theorem 7.17 that x is in the convex hull of the
marginal vectors mσ(v) with σ ∈ π(N). In view of Remark 7.35 we only
need to prove that each marginal vector mσ(v) is pamas extendable, be-
cause then the right convex combination of these pamas extensions gives a
pamas extension of x.

So take σ ∈ π (N) and define (ai,t)i∈N,t∈FN
0

by ai,t = mσ
i (vt) for each

i ∈ N , t ∈ FN
0 . We claim that this scheme is a pamas extension of mσ(v).

Clearly, ai,eN = mσ
i (v) for each i ∈ N since veN = v. Further, by Re-

mark 7.32, each t-restricted game vt is a convex fuzzy game, and from
Theorem 7.17 it follows that (ai,t)i∈N ∈ C(vt). Hence the scheme satisfies
the stability condition.

To prove the participation monotonicity condition, take s, t ∈ FN
0 with

s ≤ t and i ∈ car(s) and let k be the element in N such that i = σ(k). We
have to prove that t−1

i ai,t ≥ s−1
i ai,s. Now

t−1
i ai,t = t−1

σ(k)m
σ
σ(k)(vt)

= t−1
σ(k)

(
v

(
k∑

r=1

tσ(r)e
σ(r)

)
− v

(
k−1∑

r=1

tσ(r)e
σ(r)

))

≥ s−1
σ(k)

(
v

(
k∑

r=1

sσ(r)e
σ(r)

)
− v

(
k−1∑

r=1

sσ(r)e
σ(r)

))

= s−1
σ(k)m

σ
σ(k)(vs) = s−1

i ai,s,

where the inequality follows from the convexity of v (i.e. v satisfies IAMR).
So (ai,t)i∈N,t∈FN

0
is a pamas extension of mσ(v).

Further, the total fuzzy Shapley value of a game v ∈ CFGN , which is the
scheme (φi,t)i∈N,t∈FN

0
with the fuzzy Shapley value of the restricted game

vt in each row corresponding to t, is a pamas. The total fuzzy Shapley value
is a Shapley function (in the sense of [72]) on the class of n-person fuzzy
games. For a study of a Shapley function in relation with FPMAS we refer
the reader to [72].

Example 7.41. Let v ∈ FG{1,2} be given by v(s1, s2) = 4s1(s1−2)+10(s2)
2

for each s = (s1, s2) ∈ F{1,2}. Then v is convex and m(1,2)(v) = m(2,1)(v) =
φ(v) = (−4, 10) because in fact v is additive: v(s1, s2) = v(s1, 0) + v(0, s2).
For each t ∈ FN

0 the fuzzy Shapley value φ(vt) equals (4t1(t1−2), 10(t2)
2),

and the scheme (ai,t)i∈{1,2},t∈FN
0

with a1,t = 4t1(t1 − 2), a2,t = 10(t2)
2

is a pamas extension of φ(v), with the fuzzy Shapley value of vt in each
row corresponding to t of the scheme, so (ai,t)i∈{1,2},t∈FN

0
is the total fuzzy

Shapley value of v.
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7.4 Egalitarianism in convex fuzzy games

In this section we are interested in introducing an egalitarian solution for
convex fuzzy games. We do this in a constructive way by adjusting the
classical Dutta-Ray algorithm for a convex crisp game (cf. [26]).

As mentioned in Subsection 4.2.3, at each step of the Dutta-Ray algo-
rithm for convex crisp games a largest element exists. Note that for the
crisp case the supermodularity of the characteristic function is equivalent
to the convexity of the corresponding game.

Although the cores of a convex fuzzy game and its related (convex) crisp
game coincide and the Dutta-Ray constrained egalitarian solution is a core
element, finding the egalitarian solution of a convex fuzzy game is a task on
itself. As we show in Lemma 7.42, supermodularity of a fuzzy game implies
a semilattice structure of the corresponding (possibly infinite) set of fuzzy
coalitions with maximal average worth (cf. (5.1)), but it is not enough to
ensure the existence of a maximal element. Different difficulties which can
arise in fuzzy games satisfying only the supermodularity property are il-
lustrated by means of three examples. According to Lemma 7.46 it turns
out that adding coordinate-wise convexity to supermodularity is sufficient
for the existence of such a maximal element; moreover, this element cor-
responds to a crisp coalition. Then, a simple method becomes available to
calculate the egalitarian solution of a convex fuzzy game (cf. [11]).

Lemma 7.42. Let v ∈ FGN be a supermodular game. Then the set

A (N, v) :=

{
t ∈ FN

0 | α (t, v) = sup
s∈FN

0

α (s, v)

}

is closed with respect to the join operation ∨.

Proof. Let α = sups∈FN
0
α (s, v). If α = ∞, then A(N, v) = ∅, so A(N, v)

is closed w.r.t. the join operation.
Suppose now α ∈ R. Take t1, t2 ∈ A (N, v). We have to prove that

t1 ∨ t2 ∈ A (N, v), that is α
(
t1 ∨ t2, v

)
= α.

Since v
(
t1
)

= α
⌈
t1
⌋

and v
(
t2
)

= α
⌈
t2
⌋

we obtain

α
⌈
t1
⌋

+ α
⌈
t2
⌋

= v
(
t1
)

+ v
(
t2
)

≤ v
(
t1 ∨ t2

)
+ v

(
t1 ∧ t2

)

≤ α
⌈
t1 ∨ t2

⌋
+ α

⌈
t1 ∧ t2

⌋
= α

⌈
t1
⌋

+ α
⌈
t2
⌋
,

where the first inequality follows from SM and the second inequality follows
from the definition of α and the fact that v(e∅) = 0. This implies that
v
(
t1 ∨ t2

)
= α

⌈
t1 ∨ t2

⌋
, so t1 ∨ t2 ∈ A (N, v).
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We can conclude from the proof of Lemma 7.42 that in case t1, t2 ∈
A(N, v) not only t1∨ t2 ∈ A (N, v) but also t1∧ t2 ∈ A (N, v) if t1∧ t2 6= e∅.
Further, A (N, v) is closed w.r.t. finite ”unions”, where t1∨ t2 is seen as the
”union” of t1 and t2.

If we try to introduce in a way similar to that of [26] an egalitarian rule
for supermodular fuzzy games, then problems may arise since the set of
non-empty fuzzy coalitions is infinite and it is not clear if there exists a
maximal fuzzy coalition with “maximum value per unit of participation
level”. To be more precise, if v ∈ FGN is a supermodular fuzzy game then
crucial questions are:

(1) Is sups∈FN
0
α (s, v) finite or not? Example 7.43 presents a fuzzy game

for which sups∈FN
0
α (s, v) is infinite.

(2) In case that sups∈FN
0
α (s, v) is finite, is there a t ∈ FN

0 s.t. α (t, v) =

sups∈FN
0
α (s, v)? A fuzzy game for which the set arg sups∈FN

0
α (s, v) is

empty is given in Example 7.44. Note that if the set arg sups∈FN
0
α (s, v) is

non-empty then sups∈FN
0
α (s, v) = maxs∈FN

0
α (s, v).

(3) Let ≥ be the standard partial order on [0, 1]
N

. Suppose that maxs∈FN
0
α (s, v)

exists. Does the set arg maxs∈FN
0
α (s, v) have a maximal element in FN

0

w.r.t. ≥? That this does not always hold for a fuzzy game is shown in
Example 7.45.

Example 7.43. Let v ∈ FG{1,2} be given by

v(s1, s2) =

{
s2tg

πs1

2 if s1 ∈ [0, 1) ,
0 otherwise,

for each s = (s1, s2) ∈ F{1,2}. For this game sup
s∈F

{1,2}
0

α (s, v) = ∞.

Example 7.44. Let v ∈ FG{1,2,3} with

v(s1, s2, s3) =

{
(s1 + s2 + s3)

2
if s1, s2, s3 ∈ [0, 1) ,

0 otherwise,

for each s = (s1, s2, s3) ∈ F{1,2,3}. For this game sup
s∈F

{1,2,3}
0

α (s, v) = 3,

and arg sup
s∈F

{1,2,3}
0

α (s, v) = ∅.

Example 7.45. Let v ∈ FG{1,2} be given by

v(s1, s2) =

{
s1 + s2 if s1, s2 ∈ [0, 1) ,
0 otherwise,

for each s = (s1, s2) ∈ F{1,2}. For this game max
s∈F

{1,2}
0

α (s, v) = 1,

arg max
s∈F

{1,2}
0

α (s, v) = [0, 1) × [0, 1) \ {0}, but this set has no maximal

element w.r.t. ≥.
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One can easily check that the games in Examples 7.43, 7.44, and 7.45
are supermodular, but not convex (CwC is not satisfied). For convex fuzzy
games all three questions mentioned above are answered affirmatively in
Theorem 7.48. By using this theorem, the following additional problems
can also be overcome: “How to define the reduced games in the steps of the
adjusted algorithm, and whether this algorithm has only a finite number
of steps?”

In the proof of Lemma 7.46 we will use the notion of degree of fuzziness
of a coalition (cf. page 50). Note that for s ∈ FN

0 with degree of fuzziness
ϕ (s) = 0 we have α (s, v) ≤ maxS∈2N\{∅} α

(
eS , v

)
, because s is equal to

eT for some T ∈ 2N \ {∅}.

Lemma 7.46. Let v ∈ CFGN and s ∈ FN
0 . If ϕ (s) > 0, then there is a

t ∈ FN
0 with ϕ (t) = ϕ (s) − 1, car(t) ⊂ car(s), and α (t, v) ≥ α (s, v); if

α (t, v) = α (s, v) then t ≥ s.

Proof. Take s ∈ FN
0 with ϕ (s) > 0, and i ∈ N such that si ∈ (0, 1).

Consider t0 =
(
s−i, 0

)
and t1 =

(
s−i, 1

)
. Note that ϕ

(
t0
)

= ϕ
(
t1
)

=
ϕ (s) − 1 and car(t0) ⊂ car(t1) = car(s).

If t0 = e∅, then t1 = ei and then α
(
ei, v

)
≥ α

(
sie

i, v
)

= α (s, v) follows
from CwC. We then take t = ei.

If t0 6= e∅ and α
(
t0, v

)
> α (s, v), then we take t = t0.

Now we treat the case t0 6= e∅ and α
(
t0, v

)
≤ α (s, v). From the last

inequality and from the fact that v(s)
dsc is a convex combination of

v(t0)
dt0c and

v(s)−v(t0)
ds−t0c , i.e.

α (s, v) =
v (s)

dsc =

⌈
t0
⌋

dsc .
v
(
t0
)

dt0c +

⌈
s− t0

⌋

dsc .
v (s) − v

(
t0
)

ds− t0c ,

we obtain
v (s) − v

(
t0
)

ds− t0c ≥ v (s)

dsc = α (s, v) . (7.11)

From the fact that v satisfies IAMR (with t0, s,
⌈
s− t0

⌋
,
⌈
t1 − s

⌋
in the

roles of s1, s2, ε1, ε2, respectively) it follows

v
(
t1
)
− v (s)

dt1 − sc ≥ v (s) − v
(
t0
)

ds− t0c . (7.12)

Now from (7.11) and (7.12) we have

v
(
t1
)
− v (s)

dt1 − sc ≥ v (s)

dsc = α (s, v) . (7.13)

Then, by applying (7.13), we obtain
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α
(
t1, v

)
=
v
(
t1
)

dt1c =

⌈
t1 − s

⌋

dt1c .
v
(
t1
)
− v (s)

dt1 − sc +
dsc
dt1c .

v (s)

dsc

≥
⌈
t1 − s

⌋

dt1c .
v (s)

dsc +
dsc
dt1c .

v (s)

dsc =
v (s)

dsc = α (s, v) .

So, we can take t = t1.

From Lemma 7.46 it follows that for each s ∈ FN
0 , there is a sequence

s0, . . . , sk in FN
0 , where s0 = s and k = ϕ (s) such that ϕ

(
sr+1

)
=

ϕ (sr) − 1, car
(
sr+1

)
⊂ car (sr), and α

(
sr+1, v

)
≥ α (sr, v) for each

r ∈ {0, . . . , k − 1}. Since ϕ
(
sk
)

= 0, sk corresponds to a crisp coalition,
say T . So, we have proved

Corollary 7.47. Let v ∈ CFGN . Then for all s ∈ FN
0 there exists T ∈

2N \ {∅} such that T ⊂ car(s) and α
(
eT , v

)
≥ α (s, v).

From Corollary 7.47 it follows immediately

Theorem 7.48. Let v ∈ CFGN . Then
(i) sups∈FN

0
α (s, v) = maxT∈2N\{∅} α

(
eT , v

)
;

(ii) T ∗ = max
(
arg maxT∈2N\{∅} α

(
eT , v

))
generates the largest element in

arg sups∈FN
0
α (s, v), namely eT∗

.

In view of this result it is easy to adjust the Dutta-Ray algorithm to a
convex fuzzy game v. In Step 1 one puts N1 := N , v1 := v and considers
arg sup

s∈F
N1
0
α (s, v1). According to Theorem 7.48, there is a unique maxi-

mal element in arg sup
s∈F

N1
0
α (s, v), which corresponds to a crisp coalition,

say S1. Define Ei (v) = α
(
eS1 , v1

)
for each i ∈ S1. If S1 = N , then we stop.

In case S1 6= N , then in Step 2 one considers the convex fuzzy game v2

with N2 := N1 \ S1 and, for each s ∈ [0, 1]
N\S1 ,

v2 (s) = v1
(
eS1 y s

)
− v1

(
eS1
)
,

where
(
eS1 y s

)
is the element in [0, 1]

N
with

(
eS1 y s

)
i
=

{
1 if i ∈ S1,
si if i ∈ N \ S1.

Once again, by using Theorem 7.48, one can take the largest element
eS2 in arg maxS∈2N2\{∅} α

(
eS , v2

)
and defines Ei (v) = α

(
eS2 , v2

)
for all

i ∈ S2. If S1 ∪ S2 = N we stop; otherwise we continue by considering the
convex fuzzy game v3, etc. After a finite number of steps the algorithm
stops, and the obtained allocation E (v) is called the egalitarian solution of
the convex fuzzy game v.
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Theorem 7.49. Let v ∈ CFGN . Then
(i) E (v) = E (cr (v));
(ii) E (v) ∈ C (v);
(iii) E (v) Lorenz dominates every other allocation in the Aubin core C(v).

Proof. (i) This assertion follows directly from Theorem 7.48 and the ad-
justed Dutta-Ray algorithm given above.

(ii) Note that E (v) = E (cr(v)) ∈ C (cr (v)) = C (v), where the first
equality follows from (i), the second equality follows from Theorem 7.17(iii),
and the relation E (cr(v)) ∈ C (cr (v)) is a main result in [26] for convex
crisp games.

(iii) It is a fact that E (cr (v)) Lorenz dominates every other element of
C (cr (v)) (cf. [26]). Since E (v) = E (cr (v)) and C (cr (v)) = C (v), our
assertion (iii) follows.

Theorem 7.49 should be interpreted as strengthening Dutta and Ray’s
result. One can also think that the egalitarian solution for a convex crisp
game will keep the Lorenz domination property in any fuzzy extension
satisfying IAMR.

The Dutta-Ray egalitarian solution for convex fuzzy games is also related
to the equal division core (cf. page 59) for convex fuzzy games as Theorem
7.50 shows.

Theorem 7.50. Let v ∈ CFGN . Then
(i) C (v) ⊂ EDC (v);
(ii) E (v) ∈ EDC (v);
(iii) EDC (v) = EDC (cr (v)).

Proof. (i) Suppose x /∈ EDC(v). Then there exists s ∈ FN
0 s.t. α (s, v) > xi

for all i ∈ car(s). Then

n∑

i=1

sixi <

n∑

i=1

α (s, v) si = v(s)

which implies that x /∈ C(v). So C (v) ⊆ EDC (v).
(ii) According to (i) and Theorem 7.49(ii), we have E (v) ∈ C (v) ⊆

EDC (v).
(iii) The relation EDC(v) ⊂ EDC(cr(v)) follows from Proposition 6.16.

Suppose x ∈ EDC (cr(v)). We prove that for each s ∈ FN
0 there is i ∈

car(s) s.t. xi ≥ α (s, v).
Take T as in Corollary 7.47. Since x ∈ EDC (cr(v)), there is an i ∈ T

s.t. xi ≥ α
(
eT , v

)
. Now, from Corollary 7.47 it follows that xi ≥ α (s, v)

for i ∈ T ⊂ car(s).

The next example is meant to illustrate the various interrelations among
the egalitarian solution, the core, and the equal division core for convex
fuzzy games as stated in Theorems 7.49 and 7.50.
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Example 7.51. Let N = {1, 2, 3} and T = {1, 2}. Consider the unanimity
fuzzy game ueT with

ueT (s) =

{
1 if s1 = s2 = 1,
0 otherwise,

for each s = (s1, s2, s3) ∈ F{1,2,3}. According to Proposition 7.4, the game
ueT is convex. Its Aubin core is given by

C (ueT ) = co
{
e1, e2

}
= co {(1, 0, 0) , (0, 1, 0)} ,

and the egalitarian allocation is given by

E (ueT ) =

(
1

2
,
1

2
, 0

)
∈ C (ueT ) .

It is easy to see that E (ueT ) Lorenz dominates every other allocation in
C (ueT ). Moreover, the equal division core EDC (ueT ) is the set B1 ∪ B2,
where B1 = co

{
e1, 1

2

(
e1 + e2

)
, 1

2

(
e1 + e3

)}
and B2 = co

{
1
2

(
e1 + e2

)
, e2,

1
2

(
e2 + e3

)}
. Note that C (ueT ) ⊂ EDC (ueT ) = EDC (cr (ueT )).
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Fuzzy clan games

In this chapter we consider fuzzy games of the form v : [0, 1]
N1×{0, 1}N2 →

R, where the players in N1 have participation levels which may vary be-
tween 0 and 1, while the players in N2 are crisp players in the sense that
they can fully cooperate or not cooperate at all. With this kind of games we
can model various economic situations where the group of agents involved
is divided into two subgroups with different status: a “clan” consisting of
“powerful” agents and a set of available agents willing to cooperate with the
clan. This cooperation generates a positive reward only for coalitions where
all clan members are present. Such situations are modeled in the classical
theory of cooperative games with transferable utility by means of (total)
clan games where only the full cooperation and non-cooperation at all of
non-clan members with the clan are taken into account (cf. Section 4.3).
Here we take over this simplifying assumption and allow non-clan members
to cooperate with all clan members and some other non-clan members to
a certain extent. As a result the notion of a fuzzy clan game is introduced.

8.1 The cone of fuzzy clan games

Let N = {1, ..., n} be a finite set of players. We denote the non-empty set
of clan members by C, and treat clan members as crisp players. In the
following we denote the set of crisp subcoalitions of C by {0, 1}C , the set
of fuzzy coalitions on N\C by [0, 1]N\C (equivalent to FN\C), and denote
[0, 1]N\C × {0, 1}C by FN

C . For each s ∈ FN
C , sN\C and sC will denote its
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restriction to N\C and C, respectively. We denote the vector (eN )C by
1C in the following. Further we denote by FN

1C
the set [0, 1]N\C × {1C} of

fuzzy coalitions on N where all clan members have participation level 1,
and where the participation level of non-clan members may vary between
0 and 1 (cf. [71]).

We define fuzzy clan games by using veto power of clan members, mono-
tonicity, and a condition reflecting the fact that a decrease in participation
level of a non-clan member in growing coalitions containing at least all clan
members with full participation level results in a decrease of the average
marginal return of that player (DAMR-property).

Formally, a game v : FN
C → R is a fuzzy clan game if v satisfies the

following three properties:
(i) (veto-power of clan members) v(s) = 0 if sC 6= 1C ;
(ii) (Monotonicity) v(s) ≤ v(t) for all s, t ∈ FN

C with s ≤ t;
(iii) (DAMR-property for non-clan members) For each i ∈ N\C, all

s1, s2 ∈ FN
1C

and all ε1, ε2 > 0 such that s1 ≤ s2 and 0 ≤ s1−ε1ei ≤ s2−ε2ei

we have

ε−1
1 (v(s1) − v(s1 − ε1e

i)) ≥ ε−1
2 (v(s2) − v(s2 − ε2e

i)).

Property (i) expresses the fact that the full participation level of all
clan members is a necessary condition for generating a positive reward for
coalitions.

Fuzzy clan games for which the clan consists of a single player are called
fuzzy big boss games, with the single clan member as the big boss.

Remark 8.1. One can see a fuzzy clan game as a special mixed action-set
game, the latter being introduced in [19].

As an introduction we give two examples of interactive situations one of
them leading to a fuzzy clan game, but the other one not.

Example 8.2. (A production situation with owners and gradually available
workers) Let N\C = {1, . . . ,m}, C = {m+1, . . . , n}. Let f : [0, 1]N\C → R
be a monotonic non-decreasing function with f(0) = 0 that satisfies the
DAMR-property. Then v : [0, 1]N\C × {0, 1}C → R defined by v(s) = 0 if
sC 6= 1C and v(s) = f(s1, . . . , sm) otherwise, is a fuzzy clan game with clan
C. One can think of a production situation where the clan members are
providers of different (complementary) essential tools needed for the pro-
duction and the production function measures the gains if all clan members
are cooperating with the set of workers N\C (cf. [52]), where each worker
i can participate at level si which may vary from lack of participation to
full participation.

Example 8.3. (A fuzzy voting situation with a fixed group with veto power)
Let N and C be as in Example 8.2, and 0 < k < |N\C|. Let v : [0, 1]N\C ×
{0, 1}C → R with
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v(s) =

{
1 if sC = 1C and

∑m
i=1 si ≥ k,

0 otherwise.

Then v has the veto power property for members in C and the monotonicity
property, but not the DAMR-property with respect to members of N\C,
hence it is not a fuzzy clan game. This game can be seen as arising from a
voting situation where to pass a bill all members of C have to (fully) agree
upon and the sum of the support levels

∑
i∈N\C si of N \C should exceed

a fixed threshold k, where si = 1 (si = 0) correspond to full support (no
support) of the bill, but also partial supports count.

In the following the set of all fuzzy clan games with a fixed non-empty
set of players N and a fixed clan C is denoted by FCGN

C . We notice that
FCGN

C is a convex cone in FGN , that is for all v, w ∈ FCGN
C and p, q ∈ R+,

pv+ qw ∈ FCGN
C , where R+ denotes the set of non-negative real numbers.

Now we show that for each game v ∈ FCGN
C the corresponding crisp

game w = cr(v) is a total clan game if |C| ≥ 2, and a total big boss game
if |C| = 1.

Let v ∈ FCGN
C . The corresponding crisp game w has the following prop-

erties which follow straightforwardly from the properties of v:

− w(S) = 0 if C 6⊂ S;
− w(S) ≤ w(T ) for all S, T with S ⊂ T ⊂ N ;
− for all S, T with C ⊂ S ⊂ T and each i ∈ S \ C, w(S) − w(S\{i}) ≥

w(T ) − w(T \ {i}).

So, w is a total clan game in the terminology of [73] if |C | ≥ 2 (cf.
Subsection 4.3.2) and a total big boss game in the terminology of [14] if
|C | = 1.

Fuzzy clan games can be seen as an extension of crisp clan games in what
concerns the possibilities of cooperation available to non-clan members.
Specifically, in a fuzzy clan game each non-clan member can be involved in
cooperation at each extent between 0 and 1, whereas in a crisp clan game
a non-clan member can only be or not a member of a (crisp) coalition
containing all clan members.

In the following we consider t-restricted games corresponding to a fuzzy
clan game and prove, in Proposition 8.4, that these games are also fuzzy
clan games.

Let v ∈ FCGN
C and t ∈ FN

1C
. Recall that the t-restricted game vt of v

with respect to t is given by vt(s) = v(t ∗ s) for each s ∈ FN
C .

Proposition 8.4. Let vt be the t-restricted game of v ∈ FCGN
C , with t ∈

FN
1C

. Then vt ∈ FCGN
C .

Proof. First, note that for each s ∈ FN
C with sC 6= 1C we have (t∗s)C 6= 1C ,

and then the veto-power property of v implies vt(s) = v(t ∗ s) = 0. To
prove the monotonicity property, let s1, s2 ∈ FN

C with s1 ≤ s2. Then
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vt(s
1) = v(t∗s1) ≤ v(t∗s2) = vt(s

2), where the inequality follows from the
monotonicity of v. Now, we focus on DAMR regarding non-clan members.
Let i ∈ N\C, s1, s2 ∈ FN

1C
, and let ε1 > 0, ε2 > 0 such that s1 ≤ s2 and

0 ≤ s1 − ε1e
i ≤ s2 − ε2e

i. Then

ε−1
2 (vt(s

2) − vt(s
2 − ε2e

i)) = ε−1
2 (v(t ∗ s2) − v(t ∗ s2 − tiε2e

i))

≤ ε−1
1 (v(t ∗ s1) − v(t ∗ s1 − tiε1e

i))

= ε−1
1 (vt(s

1) − vt(s
1 − ε1e

i),

where the inequality follows from the fact that v satisfies the DAMR-
property.

For each i ∈ N\C, x ∈ [0, 1] and t ∈ FN
C , let (t−i ||x) be the element in

FN
C such that (t−i ||x)j = tj for each j ∈ N\{i} and (t−i ||x)i = x. The

function v : [0, 1]N\C × {0, 1}C → R is called coordinate-wise concave re-
garding non-clan members if for each i ∈ N\C the function gt−i : [0, 1] → R
with gt−i(x) = v(t−i ||x) for each x ∈ [0, 1] is a concave function. Intu-
itively, this means that the function v is concave in each coordinate corre-
sponding to (the participation level of) a non-clan member when all other
coordinates are kept fixed.

The function v : [0, 1]N\C×{0, 1}C → R is said to have the submodularity
property on [0, 1]N\C if v(s ∨ t) + v(s ∧ t) ≤ v(s) + v(t) for all s, t ∈ FN

1C
,

where s ∨ t and s ∧ t are those elements of [0, 1]N\C × {1C} with the i-
th coordinate equal, for each i ∈ N \ C, to max{si, ti} and min{si, ti},
respectively.

Remark 8.5. The DAMR-property regarding non-clan members implies two
important properties of v, namely coordinate-wise concavity and submod-
ularity. Note that the coordinate-wise concavity follows straightforwardly
from the DAMR-property of v. The proof of the submodularity follows
the same line as in the proof of Theorem 7.9 where it was shown that the
IAMR-property implies supermodularity.

Let ε > 0 and s ∈ FN
C . For each i ∈ N \ C we denote by Div(s) the

i-th left derivative of v in s if si > 0, and the i-th right derivative of v
in s if si = 0, i.e. Div(s) = lim ε→0

ε>0
ε−1(v(s) − v(s − ε ei)), if si > 0, and

Div(s) = lim ε→0
ε>0

ε−1(v(s+ ε ei)− v(s)), if si = 0. It is well known that for

a concave real-valued function each tangent line to the graph lies above the
graph of the function. Based on this property we state

Lemma 8.6. Let v ∈ FCGN
C , t ∈ FN

1C
, and i ∈ N \C. Then, for si ∈ [0, ti],

v(t−i || ti) − v(t−i|| si) ≥ (ti − si)Div(t).

Proof. Applying the coordinate-wise concavity of v and the property of
tangent lines to the graph of g−i in (ti, g−i(ti)) one obtains v(t−i|| ti) −
(ti − si)Div(t) ≥ v(t−i|| si).
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8.2 Cores and stable sets for fuzzy clan games

We provide an explicit description of the Aubin core of a fuzzy clan game
and give some insight into its geometrical shape (cf. [70] and [71]). We start
with the following

Lemma 8.7. Let v ∈ FCGN
C and s ∈ FN

1C
. Then v(eN ) − v(s) ≥∑

i∈N\C (1 − si)Div(e
N ).

Proof. Suppose that |N \ C| = m and denote N \ C = {1, . . . ,m}, C =
{m + 1, . . . , n}. Let a0, . . . , am and b1, . . . , bm be the sequences of fuzzy

coalitions on N given by a0 = eN , ar = eN −
r∑

k=1

(1− sk)ek, br = eN − (1−

sr)e
r for each r ∈ {1, . . . ,m}. Note that am = s ∈ FN

1C
, and ar−1∨br = eN ,

ar−1 ∧ br = ar for each r ∈ {1, . . . ,m}. Then

v(eN ) − v(s) =
m∑

r=1

(
v
(
ar−1

)
− v (ar)

)
≥

m∑

r=1

(v(eN ) − v(br)), (8.1)

where the inequality follows from the submodularity property of v applied
for each r ∈ {1, . . . ,m}. Now, for each r ∈ {1, . . . ,m}, we have by Lemma
8.6

Drv(e
N ) ≤ (1 − sr)

−1(v(eN ) − v(eN − (1 − sr)e
r)),

thus obtaining

v(eN ) − v(br) = v(eN ) − v(eN − (1 − sr)e
r) ≥ (1 − sr)Drv(e

N ). (8.2)

Now we combine (8.1) and (8.2).

Theorem 8.8. Let v ∈ FCGN
C . Then

(i) C(v) = {x ∈ Rn | ∑n
i=1 xi = v(eN ), 0 ≤ xi ≤ Div(e

N ) for each i ∈
N \ C, 0 ≤ xi for each i ∈ C}, if |C| > 1;
(ii) C(v) = {x ∈ Rn |∑n

i=1 xi = v(eN ), 0 ≤ xi ≤ Div(e
N ) for each

i ∈ N \ {n}, v(en) ≤ xn}, if C = {n}.

Proof. We only prove (i).
(a) Let x ∈ C(v). Then xi = ei · x ≥ v(ei) = 0 for each i ∈ N and

n∑
i=1

xi = v(eN ). Further, for each i ∈ N \ C and each ε ∈ (0, 1), we have

xi = ε−1(eN · x− (eN − ε ei) · x) ≤ ε−1(v(eN ) − v(eN − ε ei)).

We use now the monotonicity property and the coordinate-wise concavity
property of v obtaining that limε→0

ε>0
ε−1(v(eN ) − v(eN − εei)) exists and

this limit is equal to Div(e
N ). Hence xi ≤ Div(e

N ), thus implying that
C(v) is a subset of the set on the right side of the equality in (i).
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(b) To prove the converse inclusion, let x ∈ Rn with
∑n

i=1 xi = v(eN ),
0 ≤ xi ≤ Div(e

N ) for each i ∈ N \ C, and 0 ≤ xi for each i ∈ C. We have
to show that the inequality s · x ≥ v(s) holds for each s ∈ [0, 1]N . First, if
s ∈ [0, 1]N is such that sC 6= 1C , then v(s) = 0 ≤ s · x. Now let s ∈ [0, 1]N ,
with sC = 1C . Then

s · x =
∑

i∈C

xi +
∑

i∈N\C

sixi = v(eN ) −
∑

i∈N\C

(1 − si)xi

≥ v(eN ) −
∑

i∈N\C

(1 − si)Div(e
N ).

The inequality s · x ≥ v(s) follows then from Lemma 8.7.

The Aubin core of a fuzzy clan game has an interesting geometric shape.
It is the intersection of a simplex with “hyperbands” corresponding to
the non-clan members. To be more precise, for fuzzy clan games, we have
C(v) = ∆(v(eN )) ∩ B1(v) ∩ · · · ∩ Bm(v), where ∆(v(eN )) is the simplex

{x ∈ Rn
+ |

n∑
i=1

xi = v(eN )}, and for each player i ∈ {1, . . . ,m}, Bi(v) = {x ∈
Rn | 0 ≤ xi ≤ Div(e

N )} is the region between the two parallel hyperplanes
in Rn, {x ∈ Rn |xi = 0} and {x ∈ Rn |xi = Div(e

N )}, which we call the
“hyperband” corresponding to i. An interesting core element is

b(v) =

(
D1v(e

N )

2
, . . . ,

Dmv(e
N )

2
, t, . . . , t

)
,

with

t = |C|−1

(
v(eN ) −

m∑

i=1

Div(e
N )

2

)
,

which corresponds to the point with a central location in this geometric
structure. Note that b(v) is in the intersection of middle-hyperplanes of all
hyperbands Bi(v), i = 1, . . . ,m, and it has the property that the coordi-
nates corresponding to clan members are equal.

Example 8.9. For a three-person fuzzy big boss game with player 3 as the
big boss and v(e3) = 0 the Aubin core has the shape of a parallelogram
(in the imputation set) with vertices: (0, 0, v(eN )), (D1v(e

N ), 0, v(eN ) −
D1v(e

N )), (0, D2v(e
N ), v(eN ) − D2v(e

N )), (D1v(e
N ), D2v(e

N ), v(eN ) −
D1v(e

N ) −D2v(e
N )). Note that

b(v) =

(
D1v(e

N )

2
,
D2v(e

N )

2
, v
(
eN
)
− D1v(e

N ) +D2v(e
N )

2

)

is the middle point of this parallelogram.

For v ∈ CFGN we know that C(v) = C(cr(v)) (cf. Theorem 7.17(iii)). This
is not the case in general for fuzzy clan games as the next example shows.
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Example 8.10. Let N = {1, 2}, let v : [0, 1] × {0, 1} → R be given by
v(s1, 1) =

√
s1, v(s1, 0) = 0 for each s1 ∈ [0, 1], and let w = cr(v).

Then v is a fuzzy big boss game with player 2 as the big boss, and
C(v) =

{
(α, 1 − α) | α ∈

[
0, 1

2

]}
, C(w) = {(α, 1 − α) | α ∈ [0, 1]}. So,

C(v) 6= C(w).

The next lemma plays a role in what follows.

Lemma 8.11. Let v ∈ FCGN
C . Let t ∈ FN

1C
and vt be the t-restricted game

of v. Then, for each non-clan member i ∈ car(t), Divt(e
N ) = tiDiv(t).

Proof. We have that

Divt(e
N ) = lim ε→0

ε>0
ε−1(vt(e

N ) − vt(e
N − ε ei))

= lim ε→0
ε>0

ε−1(v(t) − v(t− εtie
i)

= tiDiv(t).

Theorem 8.12. Let v ∈ FCGN
C . Then for each t ∈ FN

1C
the Aubin core

C(vt) of the t-restricted game vt is described by
(i) C(vt) = {x ∈ Rn | ∑

i∈N

xi = v(t), 0 ≤ xi ≤ tiDiv(t) for each i ∈
N \ C, 0 ≤ xi for each i ∈ C}, if |C| > 1;
(ii) C(vt) = {x ∈ Rn | ∑

i∈N

xi = v(t), 0 ≤ xi ≤ tiDiv(t) for each i ∈
N \ {n}, v(tnen) ≤ xn}, if C = {n}.

Proof. We only prove (i). Let t ∈ FN
1C

, with |C| > 1. Then, by the def-
inition of the Aubin core of a fuzzy game, C(vt) = {x ∈ Rn | ∑

i∈N

xi =

vt(e
N ),

∑
i∈N

sixi ≥ vt(s) for each s ∈ FN
C }. Since vt(e

N ) = v(t) and since,

by Proposition 8.4, vt is itself a fuzzy clan game, we can apply Theorem
8.8(i), thus obtaining C(vt) = {x ∈ Rn | ∑

i∈N

xi = v(t), 0 ≤ xi ≤ Divt(e
N )

for each i ∈ N \ C, 0 ≤ xi for each i ∈ C}. Now we apply Lemma 8.11.

In addition to the interrelations among the different core notions and
stable sets for general fuzzy games (cf. Section 6.2) the dominance core
and the proper core of a fuzzy clan game coincide.

Theorem 8.13. Let v ∈ FCGN
C . Then DC(v) = CP (v).

Proof. From the veto-power property we have that v(ei) = 0 for each i ∈ N
if |C| > 1. Then the monotonicity of v implies v(eN )−∑i∈N\car(s) v(e

i)−
v(s) = v(eN )− v(s) ≥ 0 for each s ∈ FN . One can easily check that in the
case |C| = 1, v(eN ) −∑i∈N\car(s) v(e

i) − v(s) ≥ 0 for each s ∈ FN , too.

The equality DC(v) = CP (v) follows then from Theorem 6.8(ii).
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Now we give two examples of fuzzy clan games v to illustrate situations
in which DC(v) 6= C(v) and DC(v) is not a stable set, respectively.

Example 8.14. Let N = {1, 2} and let v : [0, 1]×{0, 1} → R be given for all
s1 ∈ [0, 1] by v(s1, 1) =

√
s1 and v(s1, 0) = 0. This is a big boss game with

player 2 as the big boss, so C(v) 6= ∅. Moreover, as in Example 6.15, we
obtain C(v) =

{
x ∈ I(v) | 0 ≤ x1 ≤ 1

2

}
, DC(v) = {(x1, x2) ∈ R2

+ | x1 +
x2 = 1}, so DC(v) 6= C(v). Note that I(v) = {(x1, x2) ∈ R2

+ | x1 +x2 = 1}
is the unique stable set.

The following example shows that DC(v) can be a proper subset of a
stable set.

Example 8.15. Let N = {1, 2, 3} and v be given by v(s1, s2, 0) = 0 and
v(s1, s2, 1) = min{s1 + s2, 1} for all (s1, s2) ∈ [0, 1]2. Then DC(v) =
{(0, 0, 1)}, and no element in I(v) is dominated by (0, 0, 1). So, DC(v)
is not a stable set. The set Ka,b = {(εa, εb, 1 − ε) | 0 ≤ ε ≤ 1} when
a, b ∈ R+ with a+ b = 1 is a stable set of v.

8.3 Bi-monotonic participation allocation rules

We present in this section the fuzzy counterpart of a bi-monotonic allo-
cation scheme (bi-mas) for total clan games (cf. Section 4.3.2). We call
the corresponding scheme a bi-monotonic participation allocation scheme
(bi-pamas) and study this kind of schemes with the help of a compensation-
sharing rule we introduce now (cf. [71]).

Let N \C = {1, · · · ,m} and C = {m+ 1, . . . , n}. We introduce for each

α ∈ [0, 1]m and β ∈ ∆(C) = ∆({m+1, . . . , n}) = {z ∈ Rn−m
+ ,

n∑
i=m+1

zi = 1}

an allocation rule ψα,β : FCGN
C → Rn whose i-th coordinate ψα,β

i (v) for
each v ∈ FCGN

C is given by
{
αiDiv

(
eN
)

if i ∈ {1, . . . ,m} ,
βi

(
v
(
eN
)
−∑m

k=1 αkDkv
(
eN
))

if i ∈ {m+ 1, . . . , n} .

We call this rule the compensation-sharing rule with compensation vector
α and sharing vector β. The i-th coordinate αi of the compensation vector
α indicates that player i ∈ {1, . . . ,m} obtains the part αiDiv(e

N ) of his
marginal contribution Div(e

N ) to eN . Then for each i ∈ {m + 1, . . . , n},
the i-th coordinate βi of the sharing vector β determines the share

βi

(
v
(
eN
)
−

m∑

k=1

αkDkv
(
eN
)
)

for the clan member i from what is left for the group of clan members in
eN .
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Theorem 8.16. Let v ∈ FCGN
C . Then

(i) ψα,β: FCGN
C → Rn is stable (i.e. ψα,β(v) ∈ C(v) for each v ∈ FCGN

C )
and additive for each α ∈ [0, 1]m and each β ∈ ∆(C);
(ii) C(v) = {ψα,β(v) |α ∈ [0, 1]N\C , β ∈ ∆(C)};
(iii) the multi-function C : FCGN

C →→ Rn which assigns to each v ∈
FCGN

C the subset C(v) of Rn is additive.

Proof. (i) ψα,β(pv + qw) = pψα,β(v) + qψα,β(w) for all v, w ∈ FCGN
C and

all p, q ∈ R+, so ψα,β is additive on the cone of fuzzy clan games. The
stability follows from Theorem 8.8.
(ii) Clearly, each ψα,β(v) ∈ C(v). Conversely, let x ∈ C(v). Then, according
to Theorem 8.8, xi ∈ [0, Div(e

N )] for each i ∈ N \ C. Hence, for each
i ∈ {1, . . . ,m} there is αi ∈ [0, 1] such that xi = αiDiv(e

N ).
Now we show that

v(eN ) −
m∑

i=1

αiDiv(e
N ) ≥ 0. (8.3)

Note that eC ∈ FN
1C

is the fuzzy coalition where each non-clan member has
participation level 0 and each clan-member has participation level 1. We
have

v(eN ) − v(eC) =

m∑

i=1

(
v

(
i∑

k=1

ek + eC

)
− v

(
i−1∑

k=1

ek + eC

))

≥
m∑

i=1

(
v
(
eN
)
− v(eN − ei)

)
≥

m∑

i=1

Div(e
N )

≥
m∑

i=1

αiDiv(e
N ),

where the first inequality follows from the DAMR-property of v by taking

s1 =
i∑

k=1

ek + eC , s2 = eN , ε1 = ε2 = 1, the second inequality follows

from Lemma 8.6 with t = eN and si = 1, and the third inequality since
Div(e

N ) ≥ 0 in view of the monotonicity property of v. Hence (8.3) holds.
Inequality (8.3) expresses the fact that the group of clan members is left

a non-negative amount in the grand coalition.
The fact that xi ≥ v(ei) for each i ∈ C implies that xi ≥ 0 for each

i ∈ {m+ 1, . . . , n}. But then there is a vector β ∈ ∆(C) such that

xi = βi

(
v
(
eN
)
−

m∑

k=1

αkDkv
(
eN
)
)

(take β ∈ ∆(C) arbitrarily if v(eN ) −
m∑

i=1

Div(e
N ) = 0, and βi =

xi

(
v
(
eN
)
−∑m

i=1 αiDiv
(
eN
))−1

for each i ∈ C, otherwise). Hence x =
ψα,β(v).



98 8. Fuzzy clan games

(iii) Trivially, C(v + w) ⊃ C(v) + C(w) for all v, w ∈ FCGN
C . Conversely,

let v, w ∈ FCGN
C . Then

C(v + w) = {ψα,β(v + w) | α ∈ [0, 1]N\C , β ∈ ∆(C)}
= {ψα,β(v) + ψα,β(w) | α ∈ [0, 1]N\C , β ∈ ∆(C)}
⊂ {ψα,β(v) | α ∈ [0, 1]N\C , β ∈ ∆(C)}

+ {ψα,β(w) | α ∈ [0, 1]N\C , β ∈ ∆(C)}
= C(v) + C(w),

where the equalities follow from (ii).

For fuzzy clan games the notion of bi-monotonic participation allocation
scheme which we introduce now plays a similar role as pamas for convex
fuzzy games (see Section 7.3).

Let v ∈ FCGN
C . A scheme (bi,t)i∈N,t∈FN

1C

is called a bi-monotonic par-

ticipation allocation scheme (bi-pamas) for v if the following conditions
hold:

(i) (Stability) (bi,t)i∈N ∈ C(vt) for each t ∈ FN
1C

;
(ii) (Bi-monotonicity w.r.t. participation levels) For all s, t ∈ FN

1C
with

s ≤ t we have:
(ii.1) s−1

i bi,s ≥ t−1
i bi,t for each i ∈ (N \ C) ∩ car(s);

(ii.2) bi,s ≤ bi,t for each i ∈ C.

Remark 8.17. The restriction of (bi,t)i∈N,t∈FN
1C

to a crisp environment

(where only the crisp coalitions are considered) is a bi-monotonic allocation
scheme as studied in Subsection 4.3.2.

Lemma 8.18. Let v ∈ FCGN
C . Let s, t ∈ FN

1C
with s ≤ t and let i ∈ car(s)

be a non-clan member. Then Div(s) ≥ Div(t).

Proof. We have thatDiv(s) = lim ε→0
ε>0

ε−1(v(s)−v(s−εei)) ≥ lim ε→0
ε>0

ε−1(v(t)−
v(t−ε ei)) = Div(t), where the inequality follows from the DAMR-property
of v, with ε1 = ε2 = ε.

Theorem 8.19. Let v ∈ FCGN
C , with N \ C = {1, . . . ,m}. Then for each

α ∈ [0, 1]m and β ∈ ∆(C) = ∆({m + 1, . . . , n}) the compensation-sharing

rule ψα,β generates a bi-pamas for v, namely
(
ψα,β

i (vt)
)

i∈N,t∈FN
1C

.

Proof. We treat only the case |C| > 1. In Theorem 8.12(i) we have proved
that for each t ∈ FN

1C
the Aubin core C(vt) of the t-restricted game vt

is given by C(vt) = {x ∈ Rn | ∑i∈N xi = v(t), 0 ≤ xi ≤ tiDiv(t) for
each i ∈ N \ C, 0 ≤ xi for each i ∈ C}. Then, for each non-clan member
i the α-based compensation (regardless of β) in the “grand coalition” t

of the t-restricted game vt is ψα,β
i = αitiDiv(t), i ∈ {1, . . . ,m}. Hence,

ψα,β
i = βi (v (t) −∑m

i=1 αitiDiv (t)) for each i ∈ {m+ 1, . . . , n}.
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First we prove that for each non-clan member i the compensation per unit
of participation level is weakly decreasing when the coalition containing all
clan members with full participation level and in which player i is active
(i.e. si > 0) becomes larger.

Let s, t ∈ FN
1C

with s ≤ t and i ∈ car(s) ∩ (N\C). We have

ψα,β
i (vs) = αiDivs(e

N ) = αisiDi(vs)

≥ αisiDi(vt) = αisi(ti)
−1Divt(e

N ) = si(ti)
−1ψα,β

i (vt),

where the inequality follows from Lemma 8.18 and the second and third
equalities by Lemma 8.11. Hence, for each s, t ∈ FN

1C
with s ≤ t and each

non-clan member i ∈ car(s)

s−1
i ψα,β

i (vs) ≥ t−1
i ψα,β

i (vt).

Now, denote by Rα(vt) the α-based remainder for the clan members in
the “grand coalition” t of the t-restricted game vt. Formally,

Rα(vt) = vt(e
N ) −

∑

i∈N\C

αiDivt(e
N ) = v(t) −

∑

i∈N\C

αiDiv(t).

First we prove that for each s, t ∈ FN
1C

with s ≤ t

Rα(vt) ≥ Rα(vs). (8.4)

Inequality (8.4) expresses the fact that the remainder for the clan members
is weakly larger in larger coalitions (when non-clan members increase their
participation level).

Let s, t ∈ FN
1C

with s ≤ t. Then

v(t) − v(s) =
m∑

k=1

(
v

(
s+

k∑

i=1

(ti − si)e
i

)
− v

(
s+

k−1∑

i=1

(ti − si) e
i

))

≥
m∑

k=1

(tk − sk)Dkv

(
s+

k∑

i=1

(ti − si) e
i

)

≥
m∑

k=1

(tk − sk)Dkv(t) ≥
m∑

k=1

(tk − sk)αkDkv(t),

where the first inequality follows from Lemma 8.6 and the second inequality
from Lemma 8.18. This implies

v(t) −
m∑

k=1

tkαkDkv(t) ≥ v(s) −
m∑

k=1

skαkDkv(t)

≥ v(s) −
m∑

k=1

skαkDkv(s),
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where the last inequality follows from Lemma 8.18. So, we proved that
Rα(vt) ≥ Rα(vs) for all s, t ∈ FN

1C
with s ≤ t.

Now note that inequality (8.4) implies that for each clan member the
individual share (of the remainder for the whole group of clan members) in
vt, that is βiRα(vt), is weakly increasing when non-clan members increase
their participation level.

Let v ∈ FCGN
C and x ∈ C(v). Then we call x bi-pamas extendable if

there exists a bi-pamas (bi,t)i∈N,t∈FN
1C

such that bi,eN = xi for each i ∈ N .

In the next theorem we show that each core element of a fuzzy clan game
is bi-pamas extendable.

Theorem 8.20. Let v ∈ FCGN
C and x ∈ C(v). Then x is bi-pamas ex-

tendable.

Proof. Let x ∈ C(v). Then, according to Theorem 8.16(ii), x is of the form

ψα,β(veN ). Take now
(
ψα,β

i (vt)
)

i∈N,t∈FN
1C

, which is a bi-pamas by Theorem

8.19.



Part III

Multichoice games
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In a multichoice game each player has a finite number of activity levels to
participate with when cooperating with other players. Roughly speaking,
cooperative crisp games can be seen as multichoice games where each player
has only two activity levels: full participation and not participation at all.

Multichoice games were introduced in [34], [35] and extensively studied
also in [18], [20], [47], and [48]. In this part we basically follow [48].

The part is organized as follows. Chapter 9 contains basic notation and
notions for multichoice games. In Chapter 10 solution concepts for multi-
choice games are introduced inspired by classical solution concepts for crisp
games. In Chapter 11 balanced and convex multichoice games are presented
and special properties of solution concepts on these two classes of games
are studied.





9
Preliminaries

Let N be a non-empty finite set of players, usually of the form {1, . . . , n}.
In a multichoice game each player i ∈ N has a finite number of activity
levels at which he or she can choose to play. In particular, any two players
may have different numbers of activity levels. The reward which a group of
players can obtain depends on the effort of the cooperating players. This is
formalized by supposing that each player i ∈ N has mi +1 activity levels at
which he can play. We set Mi := {0, . . . ,mi} as the action space of player i,
where action 0 means not participating. Elements of MN := Πi∈NMi are
called (multichoice) coalitions. The coalition m = (m1, . . . ,mn) plays the
role of the grand coalition. The empty coalition (0, . . . , 0) is also denoted
by 0. For further use we introduce the notation M+

i := Mi \ {0} and
MN

0 := MN \ {(0, . . . , 0)}. A characteristic function v : MN → R with
v(0, . . . , 0) = 0 gives for each coalition s = (s1, . . . , sn) ∈ MN the worth
that the players can obtain when each player i plays at level si ∈Mi.

Definition 9.1. A multichoice game is a triple (N,m, v) where N is

the set of players, m ∈ (N ∪ {0})N
is the vector describing the number

of activity levels for all players, and v : MN → R is the characteristic
function.

If there will be no confusion, we will denote a game (N,m, v) by v. We
denote the set of all multichoice games with player set N by MCN .

Example 9.2. Consider a large building project with a deadline and a
penalty for every day this deadline is exceeded. Obviously, the date of
completion depends on the effort of all people involved in the project: the
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greater their effort the sooner the project will be completed. This situation
gives rise to a multichoice game. The worth of a coalition where each player
works at a certain activity level is defined as minus the penalty that is to
be paid given the completion date of the project when every player makes
the corresponding effort.

Example 9.3. Suppose we are given a large company with many divisions,
where the profits of the company depend on the performance of the divi-
sions. This gives rise to a multichoice game in which the players are the
divisions and the worth of a coalition where each division functions at a
certain level is the corresponding profit made by the company.

Definition 9.4. A game v ∈MCN is called simple if v(s) ∈ {0, 1} for all
s ∈ MN and v(m) = 1.

Definition 9.5. A game v ∈MCN is called zero-normalized if no player
can gain anything by working alone, i.e. v

(
jei
)

= 0 for all i ∈ N and
j ∈Mi.

Definition 9.6. A game v ∈MCN is called additive if the worth of each
coalition s equals the sum of the worths of the players when they all work
alone at the level they work at in s, i.e. v(s) =

∑
i∈N v

(
sie

i
)

for all s ∈
MN .

Definition 9.7. For a game v ∈ MCN the zero-normalization of v is
the game v0 that is obtained by subtracting from v the additive game a with
a
(
jei
)

:= v
(
jei
)

for all i ∈ N and j ∈M+
i .

Definition 9.8. A game v ∈MCN is called zero-monotonic if its zero-
normalization is monotonic, i.e. v0(s) ≤ v0(t) for all s, t ∈ MN with s ≤ t.

For two sets A and B in the same vector space we set A + B =
{x+ y | x ∈ A and y ∈ B}. By convention, the empty sum is zero.

Let v ∈ MCN . We define M := {(i, j) | i ∈ N, j ∈Mi} and M+ :={
(i, j) | i ∈ N, j ∈M+

i

}
. A (level) payoff vector for the game v is a function

x : M → R, where, for all i ∈ N and j ∈ M+
i , xij denotes the increase in

payoff to player i corresponding to a change of activity level j − 1 to j by
this player, and xi0 = 0 for all i ∈ N .

Let x and y be two payoff vectors for the game v. We say that x is weakly
smaller than y if for each s ∈ MN ,

X(s) :=
∑

i∈N

Xisi
=
∑

i∈N

si∑

k=0

xik ≤
∑

i∈N

si∑

k=0

yik =
∑

i∈N

Yisi
=: Y (s).

Note that this does not imply that xij ≤ yij for all i ∈ N and j ∈Mi. The
next example illustrates this point. To simplify the notation in the example
we represent a payoff vector x : M → R by a deficient matrix [aij ] with
i = 1, . . . , n and j = 1, . . . ,max {m1, . . . ,mn}. In this matrix aij := xij if
i ∈ N and j ∈M+

i , and aij is left out (∗) if i ∈ N and j > mi.
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Example 9.9. Let a multichoice game be given with N = {1, 2}, m = (2, 1)
and v ((1, 0)) = v ((0, 1)) = 1, v ((2, 0)) = 2, v ((1, 1)) = 3 and v ((2, 1)) = 5.
Consider the two payoff vectors x and y defined by

x =

[
1 2
2 ∗

]
, y =

[
2 1
2 ∗

]
.

Then x is weakly smaller than y, since X ((1, 0)) ≤ Y ((1, 0)), X ((1, 1)) ≤
Y ((1, 1)) and X (s) ≤ Y (s) for all other s. The reason here is that player 1
gets 3 for playing at his second level according to both payoff vectors , while
according to y player 1 gets 2 for playing at his first level and according to
x player 1 gets only 1 at the first level.





10
Solution concepts for multichoice
games

In this chapter we present the extension of solution concepts for cooperative
crisp games to multichoice games. Special attention is paid to imputations,
cores and stable sets, and to solution concepts based on the marginal vectors
of a multichoice game (Shapley values and the Weber set).

10.1 Imputations, cores and stable sets

Let v ∈ MCN . A payoff vector x : M → R is called efficient if X(m) =∑
i∈N

∑mi

j=1 xij = v(m) and it is called level increase rational if, for all

i ∈ N and j ∈ M+
i , xij is at least the increase in worth that player i can

obtain when he works alone and changes his activity from level j − 1 to
level j, i.e. xij ≥ v

(
jei
)
− v

(
(j − 1) ei

)
.

Definition 10.1. Let v ∈MCN . A payoff vector x : M → R is an impu-

tation of v if it is efficient and level increase rational.

We denote the set of imputations of a game v ∈ MCN by I(v). It can
be easily seen that

I(v) 6= ∅ ⇔
∑

i∈N

v
(
mie

i
)
≤ v(m). (10.1)

Definition 10.2. The core C(v) of a game v ∈ MCN consists of all x ∈
I(v) that satisfy X(s) ≥ v(s) for all s ∈ MN .
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Let s ∈ MN
0 and x, y ∈ I(v). The imputation y dominates the imputation

x via coalition s, denoted by y doms x, if Y (s) ≤ v(s) and Yisi
> Xisi

for
all i ∈ car(s). We say that the imputation y dominates the imputation x
if there exists s ∈ MN

0 such that y doms x.

Definition 10.3. The dominance core DC(v) of a game v ∈MCN con-
sists of all x ∈ I(v) for which there exists no y such that y dominates x.

In Theorems 10.4, 10.6 and 10.7 we deal with the relations between the
core and the dominance core of a multichoice game.

Theorem 10.4. For each game v ∈MCN , we have C(v) ⊂ DC(v).

Proof. Let x ∈ C(v) and suppose y ∈ I(v) and s ∈ MN
0 , such that y doms x.

Then

v(s) ≥ Y (s) =
∑

i∈N

Yisi
>
∑

i∈N

Xisi
= X(s) ≥ v(s),

which clearly gives a contradiction. Therefore, x is not dominated.

Let v ∈ MCN be a zero-normalized game (cf. Definition 9.7) and x a
payoff vector for v. Then the condition of level increase rationality boils
down to the condition x ≥ 0. For an additive game a we have C(a) =
DC(a) = I(a) = {x}, where x : M → R is the payoff vector with xij :=
a
(
jei
)
−a
(
(j − 1) ei

)
for all i ∈ N and j ∈M+

i . Now we have the following

Proposition 10.5. Let v ∈ MCN and v0 be the zero-normalization of v.
Let x be a payoff vector for v. Define y : M → R by yij := xij − v

(
jei
)

+

v
(
(j − 1) ei

)
for all i ∈ N and j ∈M+

i . Then we have
(i) x ∈ I(v) ⇔ y ∈ I(v0),
(ii) x ∈ C(v) ⇔ y ∈ C(v0),
(iii) x ∈ DC(v) ⇔ y ∈ DC(v0).

We leave the proof of this proposition as an exercise to the reader.

Theorem 10.6. Let v ∈ MCN with DC(v) 6= ∅. Then C(v) = DC(v) if
and only if the zero-normalization v0 of v satisfies v0(s) ≤ v0(m) for all
s ∈ MN .

Proof. By Proposition 10.5 it suffices to prove this theorem for zero-
normalized games. So, suppose v is zero-normalized. Further, suppose
C(v) = DC(v) and let x ∈ C(v). Then

v(m) = X(m) =
∑

i∈N

si∑

j=1

xij +
∑

i∈N

mi∑

j=si+1

xij ≥ v(s)

for all s ∈ MN .
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Now suppose v(s) ≤ v(m) for all s ∈ MN . Since C(v) ⊂ DC(v) (cf.
Theorem 10.4), it suffices to prove that x /∈ DC(v) for all x ∈ I(v) \ C(v).
Let x ∈ I(v)\C(v) and s ∈ MN

0 such that X(s) < v(s). Define y : M+ → R
as follows

yij :=

{
xij + v(s)−X(s)P

k∈N sk
if i ∈ N and j ∈ {1, . . . , si} ,

v(m)−v(s)P
k∈N (mk−sk) if i ∈ N and j ∈ {si + 1, . . . ,mi} .

It follows readily from the definition of y that y is efficient. Since x ≥ 0,
v(s) > X(s) and v(m) ≥ v(s), it follows that y ≥ 0. Hence, y is also level
increase rational and we conclude that y ∈ I(v).

For i ∈ N and j ∈ {1, . . . , si} we have that yij > xij . Hence, Yisi
> Xisi

for all i ∈ N . This and the fact that

Y (s) = X(s) +
∑

i∈N

si∑

j=1

v(s) −X(s)∑
k∈N sk

= v(s)

imply that y doms x. Hence, x /∈ DC(v).

Using Theorems 10.4 and 10.6 we can easily prove Theorem 10.7. Note
that this theorem also holds for cooperative crisp games, because the class
of multichoice games contains the class of cooperative crisp games.

Theorem 10.7. Let v ∈MCN with C(v) 6= ∅. Then C(v) = DC(v).

Proof. It suffices to prove the theorem for zero-normalized games (cf.
Proposition 10.5). So, suppose that v is zero-normalized. From the first
part of the proof of Theorem 10.6 we see that the fact that C(v) 6= ∅
implies that v(s) ≤ v(m) for all s ∈ MN . Because C(v) ⊂ DC(v) (cf.
Theorem 10.4), we know that DC(v) 6= ∅. Now Theorem 10.6 immediately
implies C(v) = DC(v).

Considering Theorem 10.7 one might ask oneself if there actually exist
games where the core is not equal to the dominance core. The answer to
this question is given in Example 10.8, where we provide a multichoice
game with an empty core and a non-empty dominance core.

Example 10.8. Let a multichoice game be given with N = {1, 2}, m = (2, 1)
and v ((1, 0)) = v ((0, 1)) = 0, v ((2, 0)) = 1

4 and v ((1, 1)) = v ((2, 1)) = 1.
An imputation x should satisfy the following (in)equalities:

x11 + x12 + x21 = 1, x11 ≥ 0, x21 ≥ 0, x12 ≥ 1

4
.

Hence, we obtain

I(v) = co

{[
0 1

4
3
4 ∗

]
,

[
3
4

1
4

0 ∗

]
,

[
0 1
0 ∗

]}
.
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Note that for this game an imputation can only dominate another impu-
tation via the coalition (1, 1) and, since x11 + x21 ≤ 3

4 for all x ∈ I(v), this
gives us

DC(v) = co

{[
0 1

4
3
4 ∗

]
,

[
3
4

1
4

0 ∗

]}
.

Finally, for none of the elements x of the dominance core x11 + x21 ≥
v ((1, 1)). Since C(v) ⊂ DC(v) one obtains C(v) = ∅. Note that for the
zero-normalization v0 of v it holds that v0 ((1, 1)) = 1 > 3

4 = v0 ((2, 1)).

We leave it to the reader to find an example of a cooperative crisp game
for which the core is not equal to the dominance core (a game with three
players will suffice).

For the game in Example 10.8 both the core and the dominance core are
convex sets. This is generally true, as it is stated next.

Theorem 10.9. Let v ∈MCN . Then the following two assertions hold:
(i) C(v) is convex,
(ii) DC(v) is convex.

Proof. We omit the proof of part (i) because it is a simple exercise. In
order to prove part (ii) it suffices to prove that DC(v) is convex if v is zero-
normalized. So, suppose that v is zero-normalized. Obviously, ifDC(v) = ∅,
then it is convex. Now suppose DC(v) 6= ∅. We define a game w ∈ MCN

by w(s) := min {v(s), v(m)} for all s ∈ MN . It can be easily seen that

w(m) = v(m). (10.2)

We show that DC(v) = DC(w) = C(w). Since DC(v) 6= ∅, we know
that I(v) 6= ∅. Since v is zero-normalized, this implies v(m) ≥ 0 (cf. (10.1))
and

w
(
jei
)

= min
{
v
(
jei
)
, v(m)

}
= 0 (10.3)

for all i ∈ N and j ∈Mi.
Using (10.2) and (10.3) we see that I(w) = I(v).
Now let s ∈ MN

0 and let x, y ∈ I(v) = I(w). Since w(s) ≤ v(s) we see
that if xdoms y in w, then xdoms y in v. On the other hand, if xdoms y
in v, then X(s) ≤ v(s) and

X(s) =
∑

i∈N

mi∑

j=1

xij −
∑

i∈N

mi∑

j=si+1

xij ≤ v(m)

and therefore X(s) ≤ w(s) and xdoms y in w.
We conclude that

DC(w) = DC(v). (10.4)

This implies that DC(w) 6= ∅. Since w is zero-normalized (cf. (10.3)) and
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w(s) = min {v(s), v(m)} ≤ v(m) = w(m),

by Theorem 10.6,

C(w) = DC(w). (10.5)

Now (10.4), (10.5) and part (i) of this theorem immediately imply that
DC(v) is convex.

Other sets of payoff vectors for multichoice games which are based on
the notion of domination are introduced in [47] as follows.

Let v ∈ MCN and 2I(v) := {A | A ⊂ I(v)}. We introduce two maps,
D : 2I(v) → 2I(v) and U : 2I(v) → 2I(v), given for all A ⊂ I(v) by

D(A) : = {x ∈ I(v) | there exists a ∈ A that dominates x} ;

U(A) : = I(v) \D(A).

The set D(A) consists of all imputations that are dominated by some ele-
ment of A. The set U(A) consists of all imputations that are undominated
by elements of A. Hence, DC(v) = U (I(v)).

A set A ⊂ I(v) is internally stable if elements of A do not dominate
each other, i.e. A ∩D(A) = ∅, and it is externally stable if all imputations
not in A are dominated by an imputation in A, i.e. I(v) \ A ⊂ D(A). A
set A ⊂ I(v) is a stable set (cf. [45]) if it is both internally and externally
stable.

It can be easily seen that a set A ⊂ I(v) is stable if and only if A is
a fixed point of U , i.e. U(A) = A. The following theorem is an extension
towards multichoice games of Theorem 2.11.

Theorem 10.10. Let v ∈MCN . Then the following two assertions hold:
(i) Every stable set contains the dominance core as a subset;
(ii) If the dominance core is a stable set, then there are no other stable sets.

It has been shown in [39] that there exist cooperative crisp games without
a stable set. Therefore, since all our definitions are consistent with the
corresponding definitions for cooperative crisp games, we may conclude
that multichoice games do not always have a stable set.

10.2 Marginal vectors, Shapley values and the
Weber set

Let v ∈ MCN . Suppose the grand coalition m = (m1, . . . ,mn) forms step
by step, starting from the coalition (0, . . . , 0) and where in each step the
level of one of the players is increased by 1. So, in particular, there are∑

i∈N mi steps in this procedure. Now assign for every player to each level
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the marginal value that is created when the player reaches that particular
level from the level directly below. This is formalized as follows.

An admissible ordering (for v) is a bijection σ : M+ →
{
1, . . . ,

∑
i∈N mi

}

satisfying σ ((i, j)) < σ ((i, j + 1)) for all i ∈ N and j ∈ {1, . . . ,mi − 1}.
The number of admissible orderings for v is

(
P

i∈N mi)!
Πi∈N (mi!)

. The set of all

admissible orderings for a game v will be denoted by Ξ(v).
Now let σ ∈ Ξ (v) and let k ∈

{
1, . . . ,

∑
i∈N mi

}
. The coalition that is

present after k steps according to σ, denoted by sσ,k, is given by

sσ,k
i := max {j ∈Mi | σ ((i, j)) ≤ k} ∪ {0}

for all i ∈ N , and the marginal vector wσ : M → R corresponding to σ is
defined by

wσ
ij := v

(
sσ,σ((i,j))

)
− v

(
sσ,σ((i,j))−1

)

for all i ∈ N and j ∈M+
i .

In general the marginal vectors of a multichoice game are not necessarily
imputations, but for zero-monotonic games they are.

Theorem 10.11. Let v ∈ MCN be zero-monotonic. Then for every σ ∈
Ξ(v) the marginal vector corresponding to σ is an imputation of v.

We can consider the average of the marginal vectors of a multichoice
game that will give us an extension of the Shapley value for crisp games to
multichoice games.

Definition 10.12. ([48]) Let v ∈MCN . Then the Shapley value Φ(v) is
the average of all marginal vectors of v, in formula

Φi(v) :=
Πi∈N (mi!)(∑

i∈N mi

)
!

∑

σ∈Ξ(v)

wσ.

It turns out that there is more than one reasonable extension of the
definition of the Shapley value for cooperative crisp games to multichoice
games. Following [47] we will consider the Shapley values that were intro-
duced in [34]. These values were defined by using weights on the actions,
thereby extending ideas of weighted Shapley values (cf. [37]).

We start by introducing the notion of a minimal effort game that is the
analogue of a crisp unanimity game for multichoice games. A minimal effort
game us ∈MCN with s ∈ MN

0 is defined by

us(t) :=

{
1 if ti ≥ si for all i ∈ N,
0 otherwise,

for all t ∈ MN . The name of these games is clear: all players have to put
in a minimal effort in order to obtain profit.
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The definition of dividends for crisp games (cf. [31]) can be extended to
multichoice games as follows: for v ∈MCN

4v(0) : = 0 (10.6)

4v(s) : = v(s) −
∑

t≤s,t6=s

4v(t).

Theorem 10.13. The minimal effort games us ∈MCN , s ∈ MN
0 , form a

basis of the space MCN . Moreover, for v ∈MCN it holds that

v =
∑

s∈MN
0

4v(s)us.

When introducing the values of [35], we must restrict ourselves to multi-
choice games where all players have the same number of activity levels. So,
let MCN

∗ denote the subclass of MCN with the property that mi = mj

for all i, j ∈ N . For v ∈ MCN
∗ set m̃ := mi (i ∈ N arbitrarily) and let for

each j ∈ {0, . . . , m̃} a weight wj ∈ R be associated with level j such that
higher levels have larger weights, i.e. 0 = w0 < w1 < . . . < wem. The value
Ψ is defined with respect to the weights w.

Definition 10.14. ([35]) For s ∈ MN
0 , the value Ψw (us) of the minimal

effort game us is given by

Ψw
ij (us) =

{ wjP
i∈N wsi

if j = si,

0 otherwise,

for all i ∈ N and j ∈Mi.

Further, the value Ψw (v) of an arbitrary game v ∈MCN
∗ is determined

by

Ψw (v) :=
∑

s∈MN
0

4v(s)Ψw (us) .

An axiomatic characterization of this value has been provided in [35],
using additivity, the carrier property, the minimal effort property and a
fourth axiom that explicitly uses weights. We describe these properties of
an allocation rule γ : MCN → RM+

below.

− Additivity: For all v, w ∈MCN

γ (v + w) = γ (v) + γ(w).

− Carrier property: If t is a carrier of v ∈ MCN , i.e. v(s) = v (s ∧ t) for
all s ∈ MN , then

∑

i∈car(t)

ti∑

j=1

γij(v) = v(m).
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− Minimal effort property: If v ∈ MCN and t ∈ MN are such that
v(s) = 0 for all s with s � t, then for all i ∈ N and j < ti

γij(v) = 0.

− Weight property: Suppose that the weights 0 = w0 < w1 < . . . < wem
are given. If a game v ∈ MCN

∗ is a multiple of a minimal effort game,
say v = βus, s ∈ MN , then for all i, j ∈ N

γi,si
(v).wsj

= γj,sj
(v).wsi

.

The reader is referred to [35] for the proof of the following

Theorem 10.15. Consider the class MCN
∗ . Let weights 0 = w0 < . . . <

wem be given. Then Ψw is the unique allocation rule on MCN
∗ satisfying

additivity, the carrier property, the minimal effort property and the weight
property.

The value Φ introduced in Definition 10.12 can be characterized by ad-
ditivity, the carrier property and the hierarchical strength property, which
in fact incorporates the minimal effort property and the weight property,
where the difference lies in the fact that the ’weights’ that are used are now
determined by the numbers of the activity levels of the players (cf. [28]).

− The hierarchical strength hs ((i, j)) in s ∈ MN
0 of (i, j) ∈ M+ with

j ≤ si is defined by the average number of σ ∈ Ξ(v) in which (i, j) is
s-maximal, i.e. hs ((i, j)) equals

Πi∈N (mi!)(∑
i∈N mi

)
!

∣∣∣∣
{
σ ∈ Ξ(v) | σ ((i, j)) = max

(k,l):l≤sk

σ ((k, l))

}∣∣∣∣ .

− An allocation rule γ : MCN → RM+

satisfies the hierarchical strength
property if for each v ∈ MCN which is a multiple of a minimal effort
game, say v = βus with s ∈ MN

0 and β ∈ R, we have that for all
(i1, j1) , (i2, j2) ∈M+

γi1,j1(v).hs (i2, j2) = γi2,j2(v).hs (i1, j1) .

The reader is referred to [28] for the proof of the following

Theorem 10.16. The value Φ is the unique allocation rule on MCN
∗ satis-

fying additivity, the carrier property and the hierarchical strength property.

An interesting question that arises now is whether the value Φ is related
to the values Ψw. We provide an example of a multichoice game for which
the value Φ is not equal to any of the values Ψw.
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Example 10.17. Let v ∈MC{1,2} withm = (3, 3) and let v = u(1,2)+u(3,1)+
u(2,3). There are 20 admissible orderings for this game. Some calculation
shows that

Φ(v) =

[
4
20

4
20

19
20

1
20

16
20

16
20

]
.

Now, suppose we have weights w1 < w2 < w3 associated with the activity
levels. Then the corresponding value Ψw is

Ψw(v) =

[ w1

w1+w2

w2

w2+w3

w3

w1+w3
w1

w1+w3

w2

w1+w2

w3

w2+w3

]
.

Hence, if we want to find weights w such that Ψw(v) = Φ(v), then these
weights should satisfy the conditions 0 < w1 < w2 < w3, w2 = 4w1,
w3 = 4w2 and w3 = 19w1. Clearly, it is impossible to find weights satisfying
all these conditions.

Instead of concentrating of the average of the marginal vectors of a mul-
tichoice game, one can also consider the convex hull of the marginal vectors
of a multichoice game, i.e. its Weber set.

Definition 10.18. ([48]) The Weber set W (v) of a game v ∈ MCN is
defined as

W (v) := co {wσ | σ ∈ Ξ(v)} .

The next theorem shows a relation between the core C(v) and the Weber
set W (v) of a multichoice game v.

Theorem 10.19. Let v ∈ MCN and x ∈ C(v). Then there is a y ∈ W (v)
that is weakly smaller than x.

Proof. It will be actually proved that for each game v ∈ MCN and each
x ∈ C̃(v) there is a vector y ∈ W (v) such that y is weakly smaller than x,

where C̃(v) is a core catcher of C(v)
(
C(v) ⊂ C̃(v)

)
given by

{
x ∈ I(v) | X(s) ≥ v(s) ∀s ∈ MN , xi0 = 0 ∀i ∈ N

}
.

We will do so by induction on the number of levels involved in the game v.
Two basic steps can be distinguished.

(i) Let v ∈ MC{1} with m1 ∈ N being arbitrary. Then there is only one
marginal vector y, which satisfies

y1j = v
(
je1
)
− v

(
(j − 1) e1

)

for all j ∈ {1, . . . ,m1}. Suppose x ∈ C̃(v). Then

X
(
m1e

1
)

= v
(
m1e

1
)

= Y
(
m1e

1
)
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and
X
(
je1
)
≥ v

(
je1
)

= Y
(
je1
)

for all j ∈ {1, . . . ,m1} .
Hence, y is weakly smaller than x.
(ii) Let v ∈ MC{1,2} with m = (1, 1). Then there are two marginal

vectors,

y1 =

[
v
(
e1
)

v
(
e1 + e2

)
− v

(
e1
)
]

and y2 =

[
v
(
e1 + e2

)
− v

(
e2
)

v
(
e2
)

]
.

Suppose x ∈ C̃(v). Then

x11 ≥ v
(
e1
)
, x21 ≥ v

(
e2
)

and x11 + x21 = v
(
e1 + e2

)
.

Hence, x is a convex combination of y1 and y2. We conclude that x ∈
W (v).

(iii) Now let v ∈ MCN be such that |{i ∈ N | mi > 0}| ≥ 2 and∑
i∈N mi > 2. Suppose we already proved the statement for all games

v ∈ MCN with
∑

i∈N mi <
∑

i∈N mi. Since, obviously, C̃(v) and W (v)
are both convex sets, it suffices to prove that for all extreme points x
of C̃(v) we can find y ∈ W (v) such that y is weakly smaller than x.

So, let x be an extreme point of C̃(v). Then let t ∈ MN be such that
1 ≤∑i∈N ti ≤

∑
i∈N mi − 1 and X(t) = v(t). The game v can be split up

into a game u with vector of activity levels t and a game w with vector of
activity levels m− t, defined by

u(s) := v(s) for all s ∈ MN with s ≤ t

and
w(s) := v(s+ t) − v(t) for all s ∈ MN with s ≤ m− t.

The payoff x can be also split up into two parts,

xu : {(i, j) | i ∈ N, j ∈ {0, . . . , ti}} → R

and
xw : {(i, j) | i ∈ N, j ∈ {0, . . . ,mi − ti}} → R

defined by
xu

ij := xij for all i ∈ N and j ∈ {0, . . . , ti}
and

xw
ij :=

{
xi,j+ti

if i ∈ N and j ∈ {1, . . . ,mi − ti} ,
0 if i ∈ N and j = 0.

Now xu ∈ C̃(u) because Xu(t) = X(t) = v(t) = u(t) and Xu(s) =

X(s) ≥ v(s) = u(s) for all s ∈ MN with s ≤ t. Further, xw ∈ C̃(w)
because
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Xw(m− t) =
∑

i∈N

mi−ti∑

j=1

xi,j+ti

= X(m) −X(t) = v(m) − v(t) = w(m− t)

and

Xw(s) =
∑

i∈N

si∑

j=1

xi,j+ti

= X(s+ t) −X(t) ≥ v(s+ t) − v(t) = w(s)

for all s ∈ MN with s ≤ m− t.
Using the induction hypothesis, one can find yu ∈W (u) such that yu is

weakly smaller than xu, and one can find yw ∈W (w) such that yw is weakly
smaller than xw. Then y := (yu, yw) is weakly smaller than x := (xu, xw).
Hence, the only thing to prove still is that y ∈W (v).

For the payoff vector

z1 : {(i, j) | i ∈ N, j ∈ {0, . . . , ti}} → R

for u and the payoff vector

z2 : {(i, j) | i ∈ N, j ∈ {0, . . . ,mi − ti}} → R

for w one defines the payoff vector
(
z1, z2

)
: M → R for v as follows:

(
z1, z2

)
ij

:=

{
z1
ij if i ∈ N and j ∈ {0, . . . , ti} ,
z2
ij if i ∈ N and j ∈ {ti + 1, . . . ,mi} .

We prove that

(W (u),W (w)) :=
{(
z1, z2

)
| z1 ∈W (u), z2 ∈W (w)

}

is a subset of W (v). Note that (W (u),W (w)) and W (v) are convex sets.
Hence, it suffices to prove that the extreme points of (W (u),W (w)) are
elements of W (v). Suppose

(
z1, z2

)
is an extreme point of (W (u),W (w)).

Then, obviously, z1 is a marginal vector of u and z2 is a marginal vector of
w. Let σ ∈ Ξ(u) and ρ ∈ Ξ(w) be such that z1 is the marginal vector of u
corresponding to σ and z2 is the marginal vector of w corresponding to ρ.
Then

(
z1, z2

)
is the marginal vector of v corresponding to the admissible

ordering τ for v defined by τ ((i, j)) := σ ((i, j)) if i ∈ N and j ∈ {1, . . . , ti},
and τ ((i, j)) := ρ ((i, j − ti)) +

∑
i∈N ti if i ∈ N and j ∈ {ti + 1, . . . ,mi}.

Hence,
(
z1, z2

)
∈W (v) and this completes the proof.





11
Classes of multichoice games

11.1 Balanced multichoice games

In [48] a notion of balancedness for multichoice games is introduced and
a theorem in the spirit of Theorem 2.4 is proved, which we present in the
following.

Definition 11.1. A game v ∈ MCN is called balanced if for all maps
λ : MN

0 → R+ satisfying

∑

s∈MN
0

λ(s)ecar(s) = eN (11.1)

it holds that
∑

s∈MN
0
λ(s)v0(s) ≤ v0(m), where v0 is the zero-normalization

of v.

Note that this definition coincides with the familiar definition of bal-
ancedness for cooperative crisp games v ∈ MCN with m = (1, . . . , 1) (cf.
Definition 1.17).

The next theorem is an extension to multichoice games of a theorem
proved in [9] and [59] which gives a necessary and sufficient condition for
the nonemptiness of the core of a game.

Theorem 11.2. Let v ∈MCN . Then C(v) 6= ∅ if and only if v is balanced.

Proof. It suffices to prove the theorem for zero-normalized games.
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Suppose v is zero-normalized, C(v) 6= ∅ and x ∈ C(v). Then we define a
payoff vector y : M+ → R by

yij :=

{
0 if i ∈ N and j ∈ {2, . . . ,mi} ,∑mi

l=1 xil if i ∈ N and j = 1.

Then, obviously, y ∈ C(v). Further, one can identify y with the vec-
tor (y11, . . . , yn1). This proves that C(v) 6= ∅ if and only if there exist
z1, . . . , zn ∈ R+ such that ∑

i∈N

zi = v(m) (11.2)

and ∑

i∈car(s)

zi ≥ v(s) (11.3)

for all s ∈ MN
0 .

Obviously, there exist z1, . . . , zn ∈ R+ satisfying (11.2) and (11.3) if and
only if for all i ∈ N and all s ∈ MN

0 we have

v(m) = min




∑

i∈N

zi | zi ∈ R,
∑

i∈car(s)

zi ≥ v(s)



 . (11.4)

From the duality theorem of linear programing theory (cf. Theorem 1.31)
we know that (11.4) is equivalent to

v(m) = max




∑

s∈MN
0

λ(s)v(s) | (11.1) holds and λ(s) ≥ 0



 . (11.5)

It can be easily seen that (11.5) is equivalent to v being balanced.

The rest of this section deals with multichoice flow games arising from
flow situations with committee control and their relations with balanced
multichoice games. Our presentation of the results is according to [48].
Using multichoice games to model flow situations with committee control
allows one to require a coalition to make a certain effort in order to be
allowed to use the corresponding arcs, for example to do a necessary amount
of maintenance of the used arcs. Flow situations with committee control
generate either crisp flow games when the control games on the arcs are
crisp games or they generate multichoice games when the control games on
the arcs are multichoice games. For an introduction to crisp flow games we
refer the reader to [38].

Let N be a set of players and let m ∈ (N ∪ {0})N
. A flow situation

consists of a directed network with two special nodes called the source and
the sink. For each arc there are a capacity constraint and a constraint with
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respect to the allowance to use that arc. If l is an arc in the network and
w is the (simple) control game for arc l, then a coalition s is allowed to
use arc l if and only if w(s) = 1. The capacity of an arc l in the network
is denoted by cl ∈ (0,∞). The flow game corresponding to a flow situation
assigns to a coalition s the maximal flow that coalition s can send through
the network from the source to the sink.

For cooperative crisp games it was shown in [38] that a nonnegative
cooperative crisp game is totally balanced if and only if it is a flow game
corresponding to a flow situation in which all arcs are controlled by a single
player (cf. Theorem 4.4). The corresponding definitions of a dictatorial
simple game and of a totally balanced game for the multichoice case are
given below.

Definition 11.3. A simple game v ∈ MCN is called dictatorial if there
exist i ∈ N and j ∈ M+

i such that v(s) = 1 if and only if si ≥ j for all
s ∈ MN

0 .

Definition 11.4. A game v ∈MCN is called totally balanced if for every
s ∈ MN

0 the subgame vs is balanced, where vs(t) := v(t) for all t ∈ MN

with t ≤ s.

However, as exemplified in [48], one cannot generalize Theorem 4.4 to
multichoice games. In order to reach balancedness, we will restrict ourselves
to zero-normalized games. Then we have the following

Theorem 11.5. Consider a flow situation in which all control games are
zero-normalized and balanced. Then the corresponding flow game v ∈MCN

is non-negative, zero-normalized and balanced.

Proof. It is obvious that v is zero-normalized and non-negative. Now, in
order to prove that v is balanced, let L = {l1, . . . , lp} be a set of arcs with
capacities c1, . . . , cp and control games w1, . . . , wp such that every directed
path from the source to the sink contains an arc in L and the capacity of L,∑p

r=1 cr, is minimal. From a theorem in [27] we find that v(m) =
∑p

r=1 cr
and v(s) ≤∑p

r=1 crwr(s) for all s ∈ MN .
Now, let xr ∈ C (wr) for all r ∈ {1, . . . , p}. Define y :=

∑p
r=1 crx

r. Then

Y (m) =

p∑

r=1

crX
r(m) =

p∑

r=1

crwr(m) = v(m) (11.6)

and

Y (s) =

p∑

r=1

crX
r(s) ≥

p∑

r=1

crwr(s) ≥ v(m), (11.7)

for all s ∈ MN .
Now, let i ∈ N and j ∈ M+

i . Since cr ≥ 0 and xr
ij ≥ 0 for all r ∈

{1, . . . , p} it easily follows that
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yij =

p∑

r=1

crx
r
ij ≥ 0. (11.8)

Now (11.6), (11.7) and (11.8) imply y ∈ C(v). Hence, v is balanced.

We can prove the converse of Theorem 11.5 using

Theorem 11.6. Each non-negative zero-normalized balanced multichoice
game is a non-negative linear combination of zero-normalized balanced sim-
ple games.

Proof. Let v ∈ MCN be non-negative, zero-normalized and balanced. We
provide an algorithm to write v as a non-negative linear combination of
zero-normalized balanced simple games.

Suppose v 6= 0 and let x ∈ C(v). Let k ∈ N be the smallest integer in

{i ∈ N | ∃j ∈ N s.t. xij > 0}

and let l be the smallest integer in
{
j ∈M+

k | xkj > 0
}
.

Further, let

β := min
{
xkl,min

{
v(s) | s ∈ MN

0 , sk ≥ l, v(s) > 0
}}

and let w be defined by

w(s) :=

{
1 if sk ≥ l and v(s) > 0,
0 otherwise,

for each s ∈ MN . Then w is a zero-normalized balanced simple game and
β > 0.

Let v := v − βw and let x : M → R be defined by

xij :=

{
xkl − β if i = k and j = l,
xij otherwise.

Note that v is a non-negative zero-normalized game, v = v + βw, and
x ∈ C(v).

Further,

|{(i, j) ∈M} | xij > 0| < |{(i, j) ∈M} | xij > 0|

or ∣∣{s ∈ MN | v(s) > 0
}∣∣ <

∣∣{s ∈ MN | v(s) > 0
}∣∣ .

If v 6= 0 we follow the same procedure with v in the role of v and x in the role
of x. It can be easily seen that if we keep on repeating this procedure, then
after finitely many steps we will obtain the zero game. Suppose this happens
after q steps. Then we have found β1, . . . , βq > 0 and zero-normalized
balanced simple games w1, . . . , wq such that v =

∑q
r=1 βrwr.
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Theorem 11.7. Let v ∈ MCN be non-negative, zero-normalized and bal-
anced. Then v is a flow game corresponding to a flow situation in which all
control games are zero-normalized and balanced.

Proof. According to Theorem 11.6 we can find k ∈ N, β1, . . . , βk > 0 and
zero-normalized balanced games w1, . . . , wk such that v =

∑k
r=1 βrwr.

Consider now a flow situation with k arcs, where for each r ∈ {1, . . . , k}
the capacity restriction of arc lr is given by βr and the control game of lr is
wr. It can be easily seen that the flow game corresponding to the described
flow situation is the game v.

Combining Theorems 11.5 and 11.7 we obtain

Corollary 11.8. Let v ∈MCN be non-negative and zero-normalized. Then
v is balanced if and only if v is a flow game corresponding to a flow situation
in which all control games are zero-normalized and balanced.

11.2 Convex multichoice games

A game v ∈MCN is called convex if

v (s ∧ t) + v (s ∨ t) ≥ v(s) + v(t) (11.9)

for all s, t ∈ MN . Here (s ∧ t)i := min {si, ti} and (s ∨ t)i := max {si, ti}
for all i ∈ N .

For a convex game v ∈MCN it holds that

v (s+ t) − v(s) ≥ v (s+ t) − v (s) (11.10)

for all s, s, t ∈ MN satisfying s ≤ s, si = si for all i ∈ car(t) and s + t ∈
MN . This can be obtained by putting s and s + t in the roles of s and t,
respectively, in expression (11.9). In fact, every game satisfying expression
(11.10) is convex.

In the following we denote the class of convex multichoice games with
player set N by CMCN . For these games we can say more about the
relation between the core and the Weber set.

Theorem 11.9. Let v ∈ CMCN . Then W (v) ⊂ C(v).

Proof. Note that convexity of both C(v) and W (v) implies that it suffices
to prove that wσ ∈ C(v) for all σ ∈ Ξ(v). So, let σ ∈ Ξ(v). Efficiency
of wσ follows immediately from the definition of this game. That wσ is
level increase rational follows straightfordwardly when we use expression
(11.10). Now let s ∈ MN . The ordering σ induces an admissible ordering
σ′ : {(i, j) | i ∈ N, j ∈ {1, . . . , si}} →

{
1, . . . ,

∑
i∈N si

}
in an obvious way.
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Since sσ′,σ′((i,j)) ≤ sσ,σ((i,j)) for all i ∈ N and j ∈ {1, . . . , si}, the convexity
of v implies wσ′

ij ≤ wσ
ij for all i ∈ N and j ∈ {1, . . . , si}. Hence,

∑

i∈N

si∑

j=0

wσ
ij ≥

∑

i∈N

si∑

j=0

wσ′

ij = v(s).

We conclude that wσ ∈ C(v).

In contrast with convex crisp games for which C(v) = W (v) holds (cf.
Theorem 4.9(v)), the converse of Theorem 11.9 is not true for convex
multichoice games. We provide an example of a game v ∈ CMCN with
W (v) ⊂ C(v), W (v) 6= C(v).

Example 11.10. Let v ∈ CMC{1,2} with m = (2, 1) and v ((1, 0)) =
v ((2, 0)) = v ((0, 1)) = 0, v ((1, 1)) = 2 and v ((2, 1)) = 3. There are three
marginal vectors,

w1 =

[
0 0
3 ∗

]
, w2 =

[
0 1
2 ∗

]
, w3 =

[
2 1
0 ∗

]
.

Some calculation shows that C(v) = co {w1, w2, w3, x}, where x =

[
3 0
0 ∗

]
.

We see that x /∈ co {w1, w2, w3} = W (v).

The core element x in Example 11.10 seems to be too large: note that
w3 is weakly smaller than x and w3 is still in the core C(v). This inspires
the following

Definition 11.11. For a game v ∈ MCN the set Cmin(v) of minimal

core elements is defined as follows

{x ∈ C(v) | @y ∈ C(v) s.t. y 6= x and y is weakly smaller than x} .

Now we can formulate

Theorem 11.12. Let v ∈ CMCN . Then W (v) = co (Cmin(v)).

Proof. We start by proving that all marginal vectors are minimal core
elements. Let σ ∈ Ξ(v). Then wσ ∈ C(v) (cf. Theorem 11.9). Suppose
y ∈ C(v) is such that y 6= wσ and y is weakly smaller than wσ. Let i ∈ N

and j ∈ M+
i be such that Y

(
jei
)
<
∑j

l=1 w
σ
il and consider t := sσ,σ((i,j)).

Then

Y (t) =
∑

k∈N

Y
(
tke

k
)
<
∑

k∈N

tk∑

l=0

wσ
kl = v(t), (11.11)

where the inequality follows from the fact that ti = j and the last equality
follows from the definitions of t and wσ. Now (11.11) implies that y /∈ C(v).
Hence, we see that wσ ∈ Cmin(v). This immediately implies that
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W (v) ⊂ co (Cmin(v)) . (11.12)

Now let x be a minimal core element. We prove that x ∈ W (v). Ac-
cording to Theorem 10.19 we can find a payoff vector y ∈ W (v) that is
weakly smaller than x. Using (11.12) we see that y ∈ co (Cmin(v)) ⊂ C(v).
Since x is minimal we may conclude that x = y ∈ W (v). Hence, W (v) =
co (Cmin(v)).

Note that Theorem 11.12 implies that for a convex crisp game the core
coincides with the Weber set. The converse of Theorem 11.12 also holds,
as shown in

Theorem 11.13. Let v ∈ MCN with W (v) = co (Cmin(v)). Then v ∈
CMCN .

Proof. Let s, t ∈ MN . Clearly, there is an order σ that is admissible for v
and that has the property that there exist k, l with 0 ≤ k ≤ l ≤∑i∈N mi

such that s ∧ t = sσ,k and s ∨ t = sσ,l. Note that for the corresponding
marginal vector wσ we have that wσ ∈ co (Cmin(v)) ⊂ C(v). Using this we
see

v(s) + v(t) ≤
∑

i∈N

si∑

j=1

wσ
ij +

∑

i∈N

ti∑

j=1

wσ
ij

=
∑

i∈N

(s∧t)i∑

j=1

wσ
ij +

∑

i∈N

(s∨t)i∑

j=1

wσ
ij

= v (s ∧ t) + v (s ∨ t) ,

where the last equality follows from the definition of wσ. Hence, v is convex.

From Theorems 11.12 and 11.13 we immediately obtain

Corollary 11.14. Let v ∈MCN . Then v ∈ CMCN if and only if W (v) =
co (Cmin(v)).

With respect to stable sets of convex multichoice games we have the next
result.

Theorem 11.15. Let v ∈ CMCN . Then C(v) is the unique stable set.

Proof. Using Corollary 11.14 we see that C(v) 6= ∅. Hence, it follows from
Theorem 10.7 that C(v) = DC(v). So, by Theorem 10.10(ii) we know that
it suffices to prove that C(v) is a stable set.

Internal stability of C(v) is obvious. To show external stability, let x ∈
I(v) \ C(v). We construct z ∈ C(v) that dominates x. First we choose
s ∈ MN

0 such that

|car(s)|−1
(v(s) −X(s)) = max

t∈MN
0

|car(t)|−1
(v(t) −X(t)) .
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Since x /∈ C(v) it holds that

∣∣car(s)−1
∣∣ (v(s) −X(s)) > 0. (11.13)

Now, let σ be an order that is admissible for v with the property that
there exists k such that s = sσ,k. Then (cf. Theorem 11.9) the corresponding
marginal vector wσ is an element of C(v) and, moreover, it holds that∑

i∈N

∑si

j=1 w
σ
ij = v(s). For notational convenience we set y := wσ. We

define the payoff vector z by zij = xij if i ∈ car(s) and 2 ≤ j ≤ si,

zij = xi1 + |car(s)|−1
(v(s) −X(s)) if i ∈ car(s) and j = 1, zij = yij if

i /∈ car(s) or i ∈ car(s) and j > si; zi0 = 0.
Using the fact that x, y ∈ I(v) and recalling (11.13), it can be easily seen

that z is level increase rational. Further, Z(m) = X(s) + (v(s) −X(s)) +
(Y (m) − Y (s)) = v(s) + (v(m) − v(s)) = v(m), where the second equal-
ity follows from the way we choose y. This shows that z is also ef-
ficient and, hence, z ∈ I(v). Since Z(s) = v(s) and Zisi

= Xisi
+

|car(s)|−1
(v(s) −X(s)) > Xisi

for all i ∈ car(s), it holds that z doms x.
The only thing that is left to prove is z ∈ C(v). So, let t ∈ MN

0 . We
distinguish two cases.

(a) If car(t) ∩ car(s) = ∅, then Z(t) = Y (t) ≥ v(t) since y ∈ C(v).
(b) If car(t) ∩ car(s) 6= ∅, then

Z(s ∧ t) = (Z −X) (s ∧ t) +X (s ∧ t) (11.14)

= |car(s) ∩ car(t)| . |car(s)|−1
(v(s) −X(s)) +X (s ∧ t)

≥ v(s ∧ t) −X (s ∧ t) +X (s ∧ t) = v (s ∧ t) ,

where the inequality follows from (11.13). Hence,

Z(t) =
∑

i∈N

si∧ti∑

j=1

zij +
∑

i∈N :ti>si

ti∑

j=si+1

yij (11.15)

= Z (s ∧ t) +
∑

i∈N

si∨ti∑

j=1

yij −
∑

i∈N :si≥ti

si∑

j=1

yij −
∑

i∈N :si<ti

si∑

j=1

yij

= Z (s ∧ t) + Y (s ∨ t) − Y (s)

≥ v (s ∧ t) + v (s ∨ t) − v(s),

where the last equality follows from (11.14) and the fact that y ∈ C(v) is
such that Y (s) = v(s). Using convexity of v, we see that the last expression
in (11.15) is larger or equal of v(t). This completes the proof of the theorem.
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