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ABSTRACT

Fuzzy Game Theory is a growing field in mathematics, economics, and computer science. In this
paper, we follow the thread of fuzzy logic to the doorstep of social sciences and game theory. We then
examine how fuzzy sets have been applied equilibrium theory of games and discuss some cases where
Nash equilibria can be show to exist, and ultimately a situation where a Nash equilibrium does not arise

unless the game is one of perfect information.



Preface

The pure mathematician knows that pure mathematics has an
end in itself which is more allied with philosophy.
—Philip Jourdain, in the introduction to Georg Cantor’s

Contributions to the Founding of the Theory of Transfinite Numbers

| am interested in the mathematics which can describe interactions between humans and groups of
humans in the political, sociological, and economics spheres (or social sciences in general). In con-
temporary political science, game theory (called rational choice theory) is king. The assumptions of
rational choice models are, briefly, that human interactions can be modeled by players, whose choices
can be modeled by the game, who have a preference ordering concerning the outcome of those choices,
and that players will act in a way to maximize the utility of the outcome given their behavior. All utility
functions (aka payfd function) from the set of outcomes to the utilities of those outcomes which satisfy
the players preference functions are allowed (Myerson (1997)). A major strength of game theoretical
analysis of social science situations is the flexibility that this modeffegded by allowing agents to
order their preferences, and by giving preferences an order, but not necessarily a particular value. Al-
though like much of mathematics, the foundations of game theory can be stretched ever further into the
past. But the major source of the field was John von Neumann, and Morgenstern and Von Neumann
(1944) marked the arrival of the subject. It has since been a major contribution in areas from economics

(John Nash, Thomas Schelling) to ethical theories (John Rawls, Amartya Sen).

In 1965, Loft Zadeh introduced (Zadeh (1965)) the world to the term fuzzy, as a formalization of
vagueness. The field has been applied with a good deal of success to engineering, with fuzzy control

systems able to do things like cook rice or shift gears in a car with gfgeieacy. Since fuzzy set



operators extend the idea of the logical and and or to non-dichotomous systems, behavioral scientists
have asked if there is a way to use fuzzy mathematical models to analyze social systems. The book by
Smithson addresses exactly that question. Suggestions about how this could be done can be found in

the computer science field of natural language processing (Dubois and Prade (1980)).

In modern social science, game theory is the method of making mathematical models. Fuzzy Logic
gives a new tool which on the face seems to apply to this type of modeling as well. Mares (2001) mixes
the concepts in his book discussing coalition games with fuzzy faytuzzy expected utility func-
tions), developing the ideas of fuzzy core, fuzzy balancedness, and fuzzy shapely values. Others such as
Smithson and Verkuilen (2006) and Ragin (2000) examine using fuzzy sets in linear statistical models.

Mansur (1995) looks at the application of fuzzy sets to some introductory concepts of microeconomics.



1 Vagueness

This, of course, is the answer to the old puzzle about the man who went bald. It is supposed that at first he was not bald, that
he lost his hairs one by one, and that in the end he was bald; therefore, it is argued, there must have been one hair the loss of
which converted him into a bald man. This, of course, is absurd. Baldness is a vague conception; some men are certainly
bald, some are certainly not bald, while between them there are men of whom it is not true to say they must be either be bald
or not bald. The law of excluded middle is true when precise symbols are employed, but it is not true when symbols are

vague, as, in fact, all symbols are.

-B. RusselVagueness, 1923

The ship wherein Theseus and the youth of Athens returned [from Crete] had thirty oars, and was preserved by the
Athenians down even to the time of Demetrius Phalereus, for they took away the old planks as they decayed, putting in new
and stronger timber in their place, insomuch that this ship became a standing example among the philosophers, for the
logical question of things that grow; one side holding that the ship remained the same, and the other contending that it was

not the same.

-Plutarch

What is more, there cannot be anything between two contradictories, but of any one subject, one thing must either be
asserted or denied. This is clear if we first define what is truth and what is falsehood. A falsity is a statement of that which is
that it is not, or of that which is not that it is; and a truth is a statement of that which is that it is, or of that which is not that

itis not. Hence, he who states of anything that it is, or that it is not, will either speak truly or speak falsely. But of what is
neither being nor nonbeing it is not said that it is or that it is not.

-Aristotle Metaphysics IV

There is a sense in which human languages are vague. Logic, however, is usually presented as being
precise. In the fourth century B.C. Socratic philosopher Eubulides of Miletus discussed the paradox of
the bald man. And Plutarch reported the paradox of the ship of Theseus as coming from Greek legend.
But classic logic, even as formed by Aristotle held that a statement must be either true or false. A man
must be bald or not, a ship must be that sailed by Thesues dfeaedit ship altogether. Thlaw of

excluded middléeft us with a logic which was unable to give expression to the vaguarities of human



language and the vaguarities of human categorization. Passing over the middle age stoic philosophers
who largely followed in Aristotle’s footsteps, it is important to make mention of Italian Renaissance
philosopher of language, Lorenzo Valla (1407-1457), who felt that each hair made senentie.

John Locke (1632-1704) and Gottfried Leibniz (1646-1716) discussed the question of what sorts of
things formed a natural kind, that is which have a boundary defined by natural law. Although the pair
disagreed on the extent to which boundaries betweardnt things are formed by the human mind,

both agree that borderline cases are a matter of opinion. Alexander Bain (1818-1903) addressed the
guestion in hid.ogic of Relative$1870), concluding that 'a certain margin must be allowed as indeter-

mined, and open to ffierence of opinion.” Williamson (1996)

In the late nineteenth and early twentieth century, the concept of vagueness was reexamined by
various scientists and philosophers. A full account exists in Williamson (1996) of the historical back-
drop of fuzzy theory. Early on, the concept of vagueness was mentioned in order to exclude it. Gottlob
Frege’s (1848-1925) concern that without sharp borders logic rules would be broken were included
in his Grundgesetze der Arithmet{£893-1903) influenced Bertrand Russell (1872-1970) as well as
Polish philosophers Tadeusz Kotarbinski (1886-1981) and Kazimierz Ajdukiewicz (1890-1963), all of
whom tried to give precise definitions of vagueness. Charles Sanders Peirce (1839-1914) was work-
ing independently of Frege gave a definition of vague in a philosophical dictionary he wrote in 1901.

British philosopher Max Black (1909-1988) based his discussions of vagueness largely on examples of

”e ”

borderline cases™. Kotarbinski began using gradedness of truths in writings as early as 1923. Physi-

cian Ludwik Fleck (1896-1961) applied the Poles’ ideas to medical diagnosis.

Karl Menger (1902-1985), formerly of the Vienna circle, generalized metric spaces toward prob-
abilistic concepts, introducing the concept of a triangular norm (T-Norm) in 1942. Menger suggested
in 1951 that an item need not be absolutely an element of a set, but rather there could be a mapping
from the element to the probability that the element is in the set. He was also influenced in a 1951
paper by Henri Poincare (1854-1912) claim that equality is not transitive in the physical reality, as
when we say two objects in the real world are equal, we mean that they are indistinguishable, but that

if one follows a chain of indistinguishable items, one need not say that the first and the last item remain



indistinguishable. Menger acknowledged the fuzzy sets of Lotfi Zadeh (1921-), but did not explore the
differences between probability sets and fuzzy sets in his work. In the early 1960s, Richard E. Bell-
man (1920-1984), Robert Kalaba (1926-2004), and Zadeh began exploring the concept of fuzzy sets at
RAND Corporation, leading to a joint memorandum in 1964 and a paper in the jdeyaedms Theory
entitledFuzzy Sets and Systemds 965 (Zadeh (1965)).

Now we will depart the historical development of fuzzy sets and fuzzy logic in order that we can
build our theories from the bottom. In this thesis, we will leave open the question of whether vagueness

comes only from linguistic (or human) causes.



2 Fuzzy Sets and Fuzzy Logic

To understand the mathematical foundations of fuzzy sets and fuzzy logic, we will start our study
with a review of the concepts of universal algebra. This will give us a foundation from which we can
understand the generalizability of fuzzyness, before we look at specific applications. We will then look
at how universal algebra serves as a basis for traditional logic, and then show how those definitions
generalize to fuzzy logic through the concept of fuzzy sets. We will then look at some of the variations
of fuzzy sets, of which we will tend to use the most simple so that its application can be most easily

understood.

2.1 Universal Algebra

An n-ary relationp on the setd\, ..., Ay is specified by giving an ordered n-tupk{. .., a,) of
elements with each elemeate A; such that the n-tuple is in the relatipn In this way, the relatiop
is a subset of the product s&t x - - - x A,. The numben s called the arity of the relation. We often say
unary instead of 1-ary, binary instead of 2-ary and tertiary instead of 3-ary. For binary relations, we may
often write "ajpay” while for relations of any arity may be writtendg, ...,an) € p”or "p(as, ..., a)".

A binary relationp, on a seiX is complete ifaoB or bpa for everya, b € X, A relation is transitive
if aob andboc implies aoc for everya, b, ¢ € X. A relation is reflexive ifapa for everya € X. a
preference relations a complete, transitive, reflexive binary relation. A preference relatipan X is
continuous if for alk given sequencesf); and pX); in X that converge ta € X andb € X respectively
such thatak < b¥, thena < b. A preference relatiog, onR is quasiconcavéf for every b € R the
set{a € R : a < b} is convex. Recall, a set is convex if given two points in the set, a line segment
connecting those points is also in the set.

A function f : Ay — Ay is a binary relation such that for eaeh € A; there is exactly one

a, € Ay such that 4y, ay) € f), and is often written "f(a;) = a,”. A function f(az,...,ay) ™of n



variables™ whereg; € A foralli € {1,...,n}is a functionf : A; x--- x A, — B. For eachy € A
forief{l,....n}, (g x---xa) € Ay x---xAyandf((ar x--- x a,)) € B. We may omit one set of

brackets from this final expression to simplify our notation.
Definition 2.1.1. An n-ary operationon the sefA is a functionf : A" — A

Definition 2.1.2. An algebraA is a pair(A, F) with A a nonempty set and = (f; : i € |) a sequence
of operations o\, wherel is some index set. We calltheuniverseor theunderlying sebf A, and the
f; are thefundamentabr basicoperations of the algebra. Themilarity typep is a functiono : | — w

such that eache | is assigned to the arity df from the fundamental operations of the algebra.

Often, an algebréA, F) is written(A, f1,..., fy), and the operations are written in descending order
of their arity. So if we denote the order of the domain of a functias|f|, then|fi| > --- > |f,|. With
this notation, we can see thatf) = |f|. The similarity type is often written simply as a sequence of

arities, i.e(|f1],...,|fal).

Definition 2.1.3. A subalgebraof an algebrad = (A, F) is a subseB = (B,G) of A if B forms a

algebra with the operations éf restricted to the seB, i.e., if for alli € | and for allg; € G, we have

0i = fi Tt

Equality between two algebras = (A,F) andB = (B, F) requiresA = B and fao = fg for all
f € F. If two algebras have at least the same similarity type, they are called similar. Any intersection
of subalgebras is clearly a subalgebra. So, given any sBluffe, there is a unique smallest subalgebra
containingB, namely, the subalgebr&S : S subalgebra of\, S > B}. This is the subset generated by

B and is denoted byB)t or occasionally B).

Definition 2.1.4. A homomorphisnbetween algebra& = (A, F) andB = (B,G) is a functiong :
A — B such that for all € | the index set for the operations Af and allay, ..., a, € A, we have:
o(fi(as,...,an) = gi(d(ar),....d(an)) for fi € F andg; € G. That is to sat @” preserves all the
operations ofA. Clearly the composition of two homomorphisms is a homomorphis@.: lA — B
is an invertible homomorphism, then' : A — B is also a homomorphism. In this case we gadin

isomorphism, and we say thatandB are isomorphic.



Definition 2.1.5. Let S be any set, leA be a algebra of type, and leto- : S — A be a function. we
say that A, o) (or informally justA) is a "free algebra” (of typ@) on the sefS of "free generators”
if, for every algebraB of type p and functionr : S — B, there exists a unique homomorphism

Y : B — A such thayo = 7.

w

Note that for any se® and any similarity type, there exists a free algebra of typgenerated by
S (Sometimes said to be a free algebraS)nand that this free algebra is unique up to isomorphism.

For the following definition, letA be some algebra, whil& is the algebra on the se, =
{X1,...,%}. Now for any elements,...,a, € A there exists a unique homomorphigm F — A
with ¢(x) = a fori = 1,...,n. If we F, theng(W) € A, andw is uniquely determined bgy, ..., an.
Thus we can define a functiam(ag, .. ., an) := ¢(wW), (note: we may omit the subscrif). In particu-

lar, if we takeA = F anda; = x; fori € 1,...,n, theng is the identity andv(xa, .. ., X,) = W.

Definition 2.1.6. A T-word in variables x, ..., X, is an element of the free algebra of typ®n the
setX, = {X1,..., Xn} Of free generators. Avord in the elementsy, ..., a, of an algebraA of typep is
an elementv(ay, ..., ayn) € A, wherewis aT-word in the variablesy, .. ., X,. A algebra variables an

element of the free generating set of a free algebra.

Definition 2.1.7. Any algebra with a similarity type = (2,0) is a propositional algebra We may
generally write the algebra &X, =, F). Thepropositional algebra EX) of the propositional calculus

on the set X of propositional variablésthe free propositional algebra of typen X.

Here we may bridge between what we have been doing and what is easily recognizable to be logic.
In this algebra, X are all free variables. the nullary operakdn often called FALSE and may also be
represented by the integer 0. The binary operatiois sometimes called implication. The operations

- (NOT), v (AND), A (OR), ande (IFF) can be defined in terms of these two operations as follows:

This determines the form of our algebra of propositions. In ordinary usage, we are interested in

the truth or falsity of a statement, and first the truth and falsity of elements of the propositional algebra



p=p=>F
pvag:=(-p)=dq
PAQ:=—(-pV Q)
peqg=(pP=>09A@=p.

Table 2.1 operations, v, A, ande

P(X). In traditional two-valued logic, we may consider functions (called valuations) which assign to

eachp € P(X) one of two values, 1, or 0 (TRUE or FALSE).

Definition 2.1.8. A valuationof P(X) is a proposition algebra homomorphism P(X) — {0, 1}.
Thus we may say that € P(X) is true with respect to ¥f v(p) = 1 and thatp € P(X) is false with

respect to vf v(p) = 0.

2.2 Introduction to Fuzzy Set Theory

Conceptually we can think of a set as being fuzzy when its elements belong only partly to it. Thus a
fuzzy set As given by first specifying a universe of elemeKits/hich are to be discussed and a scale of
truth degrees land a rule which associates with each elemesitX a valuel from L which represents
the degree to whick belongs to the fuzzy s&t.

So which of these is the fuzzy set? None, in fact, but let’s begin again. First we need to define a

residuated lattice

Definition 2.2.1. A residuated lattice is an algebka= (L, A, Vv,®,—,0,1,) of type(2,2,2,2,0,0,)

where
i. Oisthe least element and 1 is the greatest element,

i. (L,®,1,)is acommutative monoid is associative, commutative, and the identitp 1 = X

holds.

iii. the adjointness propertholds, i.e.x<y — z& x®Yy < zholdsVYx,y, z € L with < the lattice

ordering in L.

We will later call® a t-norm and— implication.
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A residuated lattice is calledompleteif L = (L, A, V,0,1,) is a complete lattice, that is if every
subsetS of L has both a greatest lower bound and a least upper bound. These are denagtefl by:
(meet) andy S (join).

Taking a big step ahead, a fuzzy set is a mapping X — L for X a set and. a residuated
lattice. A complete residuated lattice with= {0, 1} is the same propositional algebra as before. In
using a generalized residuated lattice, operations like meet (AND), join (OR), and implication can be
generalized. This generalization allows us to talk about fuzzy logic, which will be introduced in the
following section. We will later mentiotypesof fuzzy sets to discuss an extension of the concept
where the underlying set of the residuated lattice is itself fuzzy. Another way of denoting a fuzzy set is
as a pair, one from the universal set, and one from the residuated lattice. In some cases, we may also
talk about a fuzzy set based upon some crisp)X§etuch that for each subsetXf we want to define a

degree of belonging. We will denote this b§(X) € (P(X), L), whereP(X) is the powerset oK.

2.3 fuzzy logic

The subject of fuzzy logic generalizes traditional logic. In depth reviews of the algebraic basis of
fuzzy logic include Gerla (2001), Cignoli et al. (1999), Nguyen (1999), and Hjek (2001) In all forms
of logic, our main objective is often to discover whether or not a statement (or formula) is true.

In classic logic, we take the evaluation of a formula of 0 to mean that the formula is false, while
an evaluation of 1 means that the formula is true. We then evaluate our connectives, and —

according to the following tables:

- v io 1
01 0|0 1
1/0 111 1
Table 2.2 NOT operation Table 2.3 OR operation
A0 1 -0 1
0/0 O 0|1 O
110 1 111 1
Table 2.4 AND operation Table 2.5 implication

To talk about a logic, it is important to talk about the connectives between the elements. We can

compare fuzzy logic to classical logic if we consider t-norms, t-conorms, and fuzzy implication to be
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analogous to AND, OR and classic implication. For simplicity, we will use the sé{ [@ith the usual

lattice ordering as the image of our fuzzy mappings rather than a more general residuated lattice.

Definition 2.3.1. A T-normis a binary operatioft : [0, 1] x [0, 1] — [0, 1] with the following proper-

ties:
i. Commutativity:T(a,b) = T(b, a)

ii. Monotonicity: T(a,b) < T(c,d)ifa<candb<d

iii. Associativity: T(a, T(b,c)) = T(T(a,b), )

iv. 0isthe null elementT(a,0)=0

v. listheidentity elemeniff(a, 1) =a
Definition 2.3.2. A t-norm is calledArchimedearif 0 and 1 are its only idempotent elements.
Definition 2.3.3. An Archimedean t-norm is callestrict if O is its only nilpotent element.

Notice that a T-norm generalizes a triangle norm in a metric space iit (agt) < T(a, 1)+ T(b, 1)
foralla, b e [0, 1].

It can be seen how the T-norm conforms to our idea of an AND operator, since monotonicity
requires a conjointer with a ’'less true’ proposition to be ’less true.” Associativity and commutativity
are included, and the last two properties state that truth values 0 and 1 correspond to 'false’ and 'true,
respectively.

Just as OR in traditional logic is in some sense dual to AND, T-conorms are dual to T-norms.
Definition 2.3.4. A T-conormcan be defined by (a, b) = =T (-a, —=b)

This, of course, generalizes De Morgan’s laws.

It follows that a T-conorm satisfies dual properties to T-norms, namely:
i. Commutativity: 1(a,b) = L(b,a)
ii. Monotonicity: L(a,b) <; L(c,d) if a<;candb <;d;

iii. Associativity: L(a, L(b,c)) = L(L(a,b),0);
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iv. Nullelement:L(a,1)=1
v. Identity element:L(a,0) = a

The T-conorm is used to represent intersection in fuzzy set theory.
There are dierent fuzzy logics that have been developed usifigmint T-norms and T-conorms.

The following T-norms and T-conorms are often used:

Tmin(@ b) = min{a, b} lmaf@b) = maxa, b}

TLuka(& b) max0,a+b-1} L ka(@b) = minfa+b,1}

Tprod@ b) = a-b lsum(@ab) = a+b-a-b
a ifb=1 a ifb=0

T_1(a,b) = b, ifa=1 1i(@b) = b, ifa=0
0, else 1, else

The first T-norm and T-conorm are used most often, as they are simple and have some special
properties (see below). The third T-norm and the corresponding T-conorm derive from probability
theory.

Furthermore, the following relationships hold for any T-norm:

Toi(@b) < T(ab) < Tmin(ab) _ .
In other words, every T-norm lies between the drastic T-

lmad@b) < L(ab) < L.i(ab).
norm (Tjsub¢-Ysubg¢) and the minimum T-norm (Tisub¢ ysap¢,). Conversely, every T-conorm lies

between maximum T-conorm and the drastic T-conorm.
We have discussed T-norms corresponding to AND, and T-conorms corresponding to OR. Fuzzy
implication and fuzzy negation can be discussed in terms of T-norms, and will complete the connectives

necessary to make statements in fuzzy logic.

Theorem 2.3.5.For any continuous t-norm, there is a unique operatien y such that for alk,y, z €
[0,1], we haveT(x,2) <y < z < (X =Y). This operation is called the residuum, and is defined

by(x = y) = maXzT(x,2) <y}.

The proof may be found in Hjek (2001)
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Definition 2.3.7. A fuzzy implication is a maps~: [0, 1] x [0, 1] — [0, 1] such that

~ ol
=)
=l

This residuum operator is the same as the implication operator in a residuated lattice.

Definition 2.3.6. A negationis a nonincresing function, such thav(0) = 1 andv(1) = 0. A negation
can be generated by a t-norm quite simply. Given a t-n@rm({y : T(x,y) = O} is a negation.

As usual, implication can be generated from an OR argument. Here gdrconormy a negation,
X—=y=1(1(X),Y)

So asin classic logic, fuzzy logic uses a free propositional algebra, but uses these connectives rather

than the classic connectives.

Definition 2.3.8. A fuzzy valuatioof P(X) is a proposition algebra homomorphismP(X) — [0, 1].
Thus we may say that € P(X) is true with respect to ¥f v(p) = 1 and thatp € P(X) is false with
respect to \f v(p) = 0.
Another interesting non-classic logic is three-valued Lukasiewicz logic. For three-valued Lukasiewicz
logic, the sef of formulas is the same as in classical two-valued logic, however the truth evaluations

are diferent, mapping into,Q, 1 instead of 01

0|1
uju
10
Table 2.6 NOT operation Table 2.7 OR operation
- |0 u 1
0|1 1 1
ull 1 wu
10 u 1
Table 2.8 AND operation Table 2.9 implication

Fuzzy logic uses a residuated lattice for its truth set, but usually the closed inted/il@sed in

particular.
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In both of these the law of excluded middle fails, and thus fuzzy logic is not a Boolean Algebra.
However fuzzy logic is a generalization of three-valued Lukasiewicz logic. In fact, we may state

the following theorem about the similarity between the two.

Theorem 2.3.9. The propositional calculus for three-valued Lukasiewicz logic and the propositional

calculus for fuzzy logic are the same.

Proof. For simplicity we will use [Q1] for the truth degree set of fuzzy logic.
Truth evaluations are mappindsfrom F the set of formulas into the set of truth values satisfying:

AUA V) =A(u) A AV), A(uV v) = A(u) Vv AV), AV) = AV),Yu,veF.

Two formulas are equivalent if and only if they have the same values for all truth valuations. So we
need that two formulas have the same value for all truth valuations in1g fidand only if they have

the same values for all truth valuations if€u, 1}.

Let IT := Ilx01)0,u,1 the Cartesian product with, A,” defined componentwise. If two truth
valuations front into IT differ on an element, then these functions followed by the projectidhiofo
one of the copies d, u, 1} differ on an element. Likewise if two valuations frdfinto {0, u, 1} differ
on an element, then these two functions followed by any lattice embeddi@guytl} into [0, 1] differ

on that element. There is a lattice embeddind.]0- IT given byy — {yy}x where

0 ify<x
Yx=qu ify=x
1 ify>x

If two truth valuations fromF into [0, 1] differ on an element, then these two functions followed by
this embedding of [OL] into IT will differ on that element. Thus the truth values defined by the lat-
tices{0,u, 1}, [0, 1], andII all induce the same equivalence relationferand hence yield the same

propositional calculus. m|

The result of this is that if you want to check whether two expressions connexdiizgy sets with
V, A, are equivalent in fuzzy set theory, you only need to check equality between the expressions in

Lukasiewicz logic, a rather pedestriah@lculations at worst.
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2.3.1 Types of fuzzy sets

Starting from our original definition of a fuzzy set as a mapping X — L with L a residuated
lattice,L =<(L, A, V,0,1,), we may letL be a fuzzy set. That is, we can define the membership of each
item from X in our fuzzy sefA as a degree to which it takes a certain value. This is what is catigzba
2 fuzzy set. A type 3 or type 4 fuzzy set may be defined by following this procedure further. A type 2
fuzzy set can be useful in mixing, for instance, probability theory with an arbitrary fuzzy set, where for
some element € X, we might say that the probability to whichis an element oA is .5 with is very
likely, say to a degree a8. That is to say that if you think that there are an equal number of red and
blue balls in a bag, but you are not absolutely sure, you can say define two functions to describe the
situation, one associating to each ball the probability that it will be red, and another the likelihood that
that probability will be correct. Up to this point when we have discussed fuzzy sets, we have meant

fuzzy sets of the first type. We will continue with this convention in the rest of this thesis.
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3 Applications

3.1 Thinking with fuzzy sets

Fuzzy sets and fuzzy logic is appealing when one steps back from the bivalent tenancies of mathe-
matical ideas to the world of blurred boundaries that exists in many of the sciences and social sciences.
Any definition of an object that depends on a description using linguistic hedges, their is an opening

for the type of vagueness discussed in chapter 1.

In the social science, it is often the case that theories are made with vague terms. For instance,
consider the statement that, ™A genocide or politicide is a sustained policy by states or their agents, or,
in civil wars, by either of the contending authorities that results in the deaths of a substantial portion
of a communal or political group.” Goldstone et al. (2000) The linguistic hedgesusfainedand
substantialrequire the reader to understand the sentence to mean that the duration of the policy and
portion of a group in the situation are only vaguely presented, but the definition may still be applicable.
Here, defining the importance of the situation in terms of a fuzzy set is appropriate. However, there

have been other ways of dealing with this situation. Let us briefly discuss probability as one of these.

3.2 Differences and similarities to probability

3.2.1 Fuzzy Measures

Before we discuss the applications of fuzzy sets and fuzzy logic to thinking in social sciences, let us
first briefly discuss fuzzy measure theory in order to tease apart one conception of fuzzy thinking from
probabilistic thinking. Fuzzy measures were first introduced by Sugeno in 1974 (Sugeno (1974), and
have since grown into a formidable aspect of fuzzy set theory. For an in depth introduction into fuzzy

measure theory, see Wang and Klir (1993). First, let us remind ourselves about probability theory.
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Definition 3.2.1. In probability, we considerandomexperiments to be experiments whose outcomes
cannot be predicted with certainty. Teample spacef a random experiment is a $tthat includes

all possible outcomes of the experiment; the sample space plays the role of the universal set when
modeling the experiment. Arobability measurgor distribution) P : Q — [0, 1] for a random
experiment with a sample spagkis a real-valued function defined on the collection of events that

satisfies:
i. P(X) > 0 for any evenX with P(2) = 0, andP(2) = 1 (boundary requirements)

i. P(Uia A) = ZicP(A) for {A 1 1 € 1} a set of countable, pairwise disjoint events (countable

additivity)

Property 1 defines the boundaries of the measure of the probability of an event to be 0 and 1, as
opposed to 0 and 100, simply by convention. In general,B@) = 0 and the function be countably
additive are all that is required for a function to benaasure Now, an interpretation of a probability
measure should be fairly familiar. Given an outcome of a random experiment denoted aX aasnt
probability P(X), one could say that, for example, if the random experiment is repediates, one

could "expect™ eventX to be the outcomaP(X) times.

In some situations, however, the randomness of probability measures is not appropriate for dealing
with uncertainty. Fuzzy measures are a more generalized type of measure, which may deal with uncer-

tainty in a diferent way.

Definition 3.2.2. Given a setX and a nonempty famil{ of subsets ofX, and a residuated lattice

L =(L,A,V,0,1,), afuzzy measuren (X, €) is a functiong : € — L such that:
i. g(@) =0 andg(X) = 1 (boundary condition);
ii. forall A,Be G, if AC Btheng(A) < g(B) (monotonicity);

iii. for any increasing sequend®, c Ay C ... In G, if U2, A € €, then lim_. 9(A) = 9(Ui2, A)

(continuity from below);

iv. for any decreasing sequendg > Ax O ... In €, if N2, A € €, then lim_. 9(A) = 9(N2; A)

(continuity from above);
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Here, as usual, out sétis often taken to be [A].

3.2.2 possibility theory

Possibility theory traces back to Zadeh (1975) and is covered in depth by Dubois and Prade (1988),
and is a diferent usage of possibility than that of modal logic. To understand possibility theory, we
will start with a evidence theory, which is based on two dual nonadditive measures: belief measures

and plausibility measures.

Definition 3.2.3. Given a universal (in our case finite) ¥t a belief measurds a functionBel :

P(X) — L whereP(X) is the power set oK andL is the usual residuated lattide,= (L, A, Vv, 0, 1, ),

such thaBel(2) = 0 andBel(X) = 1, andBel(J]; A}) > 2 Bel(Aj) -3 <k BellAj N A +2 <kt BEA] N AN A)-
..+ (-1)™1BelN", A) for all possible families{A)) of subsets oiX. Due to this inequality, belief
measures are callediperadditive If X is infinity, the functionBel is required to beontinuous from

above

Definition 3.2.4. Associated with each belief measure iplausibility measuralefined by the equa-

tion PIA = 1 - BeI(AT) where A is the complement of,, for all A € X. Thus an definition of
plausibility measures independent of belief measures would be, a plausibility measure is a function
Pl : £(X) — L such thaPl(2) = 0 andPI(X) = 1, andPI(NL; A) < 3 PI(A}) - X<« PI(A; U AW +

2j<k<l PIAJUANA) — ... + (-1)™LPI(UN, A) for all possible families(A;) of subsets oK. Due

to this inequality, belief measures are calgedbadditive If X is infinity, the functionBel is required to

becontinuous from below

Immediate consequences of super- and subadditivity are tmatif2, A, = A, andA; = A,
Bel(A) + Bel(A) < 1 andPI(A) + PI(A) > 1.
Now before we discuss an interpretation of belief and plausibility measures, we must introduce a

function which while not itself being a fuzzy measure, can charact&gtandPI.

Definition 3.2.5. A basic probability assignmeiig a functionm : £(X) — L such tham(@) = 0 and
Zaepx) MA) = 1.

An interpretation om(A) for A € P(X) is thatm(A) is the proportion to which all available and rel-

evant evidence supports the claim that an elemetlnélongs to the sék in particular. Here nothing
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is implied for subset® C A, whose basic probability assignment must be expressed by another value,
m(B). Notice that this is very dlierent from probability, namely, it is not necessary tméX) = 1, it is
not necessary th& ¢ B imply thatm(A) < m(B), and there is no necessary relationship betwa@y)
and m(K). In fact, m(X) is the proportion to which the evidence supports the claim that an element is

equally likely to be in any of the subsets Xf

In order to understand belief and plausibility measures, it is important to note that a belief mea-
sure and a plausibility measure are uniquely determinechbwhere for allA € P(X), Bel(A) =
2.geca M(B), andPI(A) = Y gans2c M(B). The reverse direction is also possibtemay be determined
from Bel (and dually fromPl) by m(A) = ¥ gga(-1)*"®Bel(B). Thus one of the thredel, PI, orm,

is suficient to determine the other two.

Now based on the relationship betwaamandBel, we may say thaBel(A) represents the total evi-
dence or belief that the element belongétas well as subsets & while thePI(A) represents the total
evidence or belief that an element belongs to a set which intersects in some waly Whias a belief
measure captures the idea of belief in that our degree of belief in some statement or of some answer
Ato a question is equal to the sum of degrees to which we evidence supports any statement or answer
which is more specific thaA, and, of course, the degree to which the evidence supports exacig
the other hand a plausibility measure captures the idea of plausibility in that the degree of plausibility of
some statement or answ&1to a question is equal to the sum of the degrees to which evidence supports
any set in which we are unable to determine how much more or less valid a statement independent of
A is to some subset dk as well as the degrees to which evidence supports any statement or answer

which is more specific thaA, and, again, the degree to which the evidence supports exactly

With this interpretation, it is obvious th&(A) > Bel(A) for all A € P(X).

Definition 3.2.6. Every elemeniA € P(X) for whichm(A) > 0 is sometimes calledfacal element of
m because the evidence suppdktsThus we may define ody of evidencas a paik, m) whereg is

a set of focal elements amdlis the associated basic probability assignmeatal ignorancds the case
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wherem(X) = 1, and hencen(A) = 0 for all A # X. This also implies thaBel(X) = 1, andBel(A) = 0
for all A # X, while PI(@) = 0 andP(A) = 1 for all A # X.

3.3 Fuzzy Relation

We can generalize relations to fuzzy relations the same way we generalized sets to fuzzy sets.
Recall, a binary relation on a sitis a subset oK x X. Thus we could identify a relatiom, with
its characteristic functiorg(:,-) : x x X — {0, 1} where a pair, X,y) € X x X is in p if and only if

p(xy) =1.

Definition 3.3.1. A fuzzy relationp on a setX is a functionp : X x X — L with L a residuated
lattice.

With this definition, a fuzzy relatiom : X x X — [0, 1], may be said to be continuous just as any
function into a Euclidean space is continuous.

It may be interesting to define some properties for fuzzy relationsp lbet a fuzzy relation on a

setX, and letx,y,ze X. Thenp is:
i. totally reflexiveif rho(x, xX) = 1;
ii. totally non-reflexivef rho(x, x) = 0;
iii. symmetridf p(x,y) = p(y, X);
iv. f-transitiveif p(x,y) < p(y, X) andp(y, 2) < p(zy) thenp(X, 2) < p(z X);
v. A-transitiveif p(X,y) A p(x, 2) < p(X, 2) with < the lattice ordering irt.;
vi. completdf p(x,y) + p(y, X) = 1.

Billot (1992) maintains that reflexivity under this definition is not necessary as in this definition as

if an arbitrary does not place any importance in the comparison, they may @loyo, 1]. In many

cases Nguyen (1999), what we here call "totally reflexive™ is called merely "reflexive™. Nguyen

(1999), Zadeh (1975). and Dubois and Prade (1980) all utilize some versigtrahsitivity, while
f-transitivity is used by Billot (1992). The reason forfféring definitions of transitivity is that-

transitivity maintains the irrelevance of independent alternatives.
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We will concentrate on which are-transitive. Note, this is the case if the degree to which two
elements are related is greater than the join of the degree to which each element is related to some other
element. IXxAy = minx, y then this says that if a relation is transitive, then an item is at least as similar

to another item as the minimum of the similarity between either of the items and any other item.

Definition 3.3.2. A fuzzy relation is afuzzy indfference relationif it is symmetric, A-transitive, and

not totally non-reflexive.

3.3.1 fuzzy preference relation

One of the themes of this paper is to discuss each definition by the story the idea behind the de-
finition needs to tell. If we wish to state a preference between two objects, we may not wish for
that preference to be crisp. It may be important to consider the degree to which one object is pre-
ferred over another. For instance, consider the preferergdsetween values for some country of
having an exclusive trade agreement with Lichtenstein,with Andorra, ra, and with the United
Kingdom, ryk. Perhaps an agreement with the UK is locally preferred to an agreement with Andorra,
< (tuk,TA) 23 (ta, TUK). Perhapss (1, 7a) =< (ta, 7L) = @. If @ € (0, 1], then we say that a country
would be locally but actively indierent of the relative values of agreements with Andorra and Licht-
enstein. That is to say that the country can see that the two agreements have merit and that the merit of
each is diterent from the other, but that the country does not particularly prefer an agreement with one
to the other. On the other handif= 0, the agent cannot particularly compare the two, perhaps their
is not enough information, and the decision makers of a country do not know enough about the two to
know the values of such an agreement. Or perhaps the country is completely uninterested in trading
with either country. Thus we will not require preference relations to be reflexive, but we will require

that they not be totally non-reflexive.

Definition 3.3.3. A fuzzy preference relatiois a fuzzy relation that is not totally non-reflexive;
transitive

The concept of belief functions and plausibility functions can easily be adapted to be the image of
fuzzy sets, be they fuzzy preference relations, fuzzy equivalence relations, or another fuzzy mapping.
Later in this thesis, | will suggest using belief functions to define fuzzy preference relations. For more

on how fuzzy sets might be encoded based in any of these theories, see Klir and Yuan (1995).
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4 Game Theory

In games of strategy or chance, such as chess or poker, we might talk about a strategy set as a sort
of how-to book, which describes how to bet or what move to make, given the entire history of bets,
moves, and cards the player has seen in the game. The goal of this book would be to guarantee each
player the highest expected pdlyde it a checkmate or large winnings. If the book were complete
enough, it would not be necessary to play the game, as at each stage of the game, there would be a page
which dictated the subsequent move. Each player would be able to submit their strategy and instantly
receive their winnings or forced to pay out their losses. In games of chance, the expected earnings
and losses could also be calculated, again based on the strategy outlined in each player's book. Game
theory is the tool by which we might understand and model games, foreseeing outcomes based on the
rules themselves, rather than based on actually playing the game.

With this in mind, social scientists have attempted to draw parallels between games and real human
situations, and have claimed that certain political or social events have happened because essentially
the actors are playing some game and this outcome is parallel to some fortuitotisipalye game.

These fortuitous payfts generally correspond to equilibria in the game, a central concept to game
theory | will discuss shortly. Thus a social scientist can define some game which models the choices
and preferences of the parties involved in the situation being studied, and guarantee that their theorems

are logically consistent with their set of assumptions.

4.1 crisp games

Considering situations witiN players, we will use strategy sefs, = {Z1,...,2N}, to describe
all different strategies possible for the players. Each strategy will result in some consedUence,
{K1,...,Kn}. For each player, there is a preference relatiga (<1, ..., 3N}, defined componentwise

on the seK. Given those consequences, pdyare doled out from a patfeset,IT = {IIy, ..., IIN}. A
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vector of consequence functior= {0i,...,9dn}, then associates with each strategy a consequence,
g:zX— K,

Often our strategy set will be restricted to being a compact and convex sulietécall compact
means closed and bounded. Doing this forces our strategies to be similar to a finite set in that we can
make statements about its boundaries and we know that it has an upper and lower bound. For strategies
of games, boundedness is sensible because although a strategy may include a dense set within a range
of values, one should not expect a player to have an infinitely great amount of some resource to apply.
Occasionally forcing strategy sets to be closed reduces their applicability to some game, although taking
the closure of an open strategy set will often still give the researcher a clear view of the game, with the
possibility of removing the points of closure after the analysis is complete.

The preference relation is defined to be a complete, transitive, and reflexive binary relation. Often,
a vector of utility functionsid = {us,...,un} : ¥ — II then associates a payovith each strategy a
paydf by u;(oi) = 7 with o € % andr; € IT; such that forx, y € %, X 55 y if an only if uj(x) > ui(y).

We will discuss games as sefbl, %, K, g, <}, letting us specify the number of players, the choices
of strategies for each player, the consequences for each player given the strategies of all players, and an
ordering of the preferences of each player on those consequences. Notice that preferences are defined
independent of the consequences of the strategies for another dlayem be any possible strategy.
This means that a strategy must be defined for every possible eventuality of the game, even if that
eventuality would never occur given the rest of the strategy. For instance, it will tell a chess player
playing black how to play various variations of the Sicilian Defense, even if it first tells the player to
respond to an opening of e4 with e5, preferring the Ruy Lopez opening.

Often situations are modeled by games to show that some set of strategies by the players is more
likely than others. One reason that a strategy would be more likely is that given some a strategy for all

other players, no one player would secure for themself a greateftggychanging their strategy.

Definition 4.1.1. for someN-player game{N, X, K, g, 5}, with X the set of strategy profile§] set of
paydf profiles,d : ¥ — K the utility function, a strategy profile;” = {07, ..., oy} is aNash equilib-
riumifforall i € {1,..., N}, there exists no strate@y # X such thati ({7, ..., X |, %, X 1, ... 24 )) S
gi({Z1, .. 2D

This is the basic equilibrium condition, and has been the most explored equilibrium in Game The-
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ory. Another way of formulating a Nash equilibrium is by defining a best-response function. A best-
response function is a function that takes as its input the strategy of all of the opponents of some player

and outputs the one or more strategies which will give the player the highedt.payo

Definition 4.1.2. In a N-player game, given a strategy et {1, ..., XN}, and a consequence function
for playeri, g abest-response functias a functionB; : {Z1,...,Zi_1, Zi+1,..., 2N} — i such that
B ={oi€Zi:di(oL....01-1,0i0i:1,...,0N) 3 Gi(01,...,0i-1,0],0i11,...,0n) for allo} € Zj}

We can define Nash equilibria in terms of best-response functions.

Lemma 4.1.3. for someN-player game{N, X, K, g, <}, with X the set of strategy profiles set of
consequenceg : ¥ — K the vector of consequence functions, agd (<1,...,3n) the set of
preference relations for each player, a strategy prefiles {07, ..., oy} is aNash equilibriumf and

only if for all best-response function$B — 1,...,Bn}, oi € Bi((o1,...,0i-1,Fi+1,...,0n) for all

ie{l,...,N}

To explore these concepts further, we will need some concepts from topology.

Definition 4.1.4. A preference relationg;, over a setX, with |X| = n, is quasiconcave on Xf for

everyx' = {x;

1o Xah € X, the set{XxinX; : (X,..., X" 1, X, X\ 1., X3) S (X],..., %)} is convex.

One of the most famous results in Game theory is John Nash’s 1951 proof of the existence of Nash
equilibria in N-player games given certain conditions. His proof used the Kakutani fixed point theorem,
which gives conditions on a function such as the best-response function so that there exists some value

o ={o],...,o\} such thab'i* € Bi((a'*i, s O O g ,0",‘\1) forallie{1,...,N}.

Theorem 4.1.5. Kakutani’s fixed point theorem Lext be a compact convex subset®f and letf :
X — X be a set-valued function such that for alke X, the setf(x) is nonempty and convex and
the graph off is closed (for all sequencégs,} and{y,} such thaty, € f(x,) for all n, x, — X, and
Yn — Y, we havey € f(X), then there exists a fixed poikrt € X such thatx* € f(x*).

Using fixed point theorems gives a situation that is invariant over repeated applications of a map-
ping. In this case, we will find that we may continue to apply the best-response function, but we will
reach a particular state which no player has a profitable deviation as defined by the response function.

Now we can state and prove a theorem about the existence of Nash equilibria.
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Theorem 4.1.6. For someN-player game{N, X, K, g, <}, a Nash equilibrium exists if for all €
{1,...,N} the set; of strategies for playeris a nonempty compact, convex subseR8f and each

preference relatiors; is continuous and quasiconcave.

Proof. DefineB : £ — X by B(o)) = IIiBi(01,...,0i-1,04+1,...,onN) forall i € {1,..., N} whereB;
is the best response function for playeMNotice Bi(c1, ..., 0i-1, Tis1, . . ., ON) IS NONEMPLY SINCE;
is continuous and; is compact. AlsoBj(o1,...,0i-1,0i+1,...,0nN) iS convex by the definition of the
guasiconcavity ok; onZX;. Also, B has a closed graph by the closednesg Motice, this is equivalent
to saying that for sequences of strategies,P»,... andQq, Qo, ..., whereP, — P andQ, — Q
that if for all n, Q, € B(Py), thenQ € P. Thus, Kakutani's fixed point theorem applies dddhas a
fixed point. So by our lemma, this fixed point is a Nash equilibrium of the game.

In the case of two player games, a certain number of examples are illustrative of the properties
required for a game to have a Nash equilibrium. The games in the next sections are given in the form
of a matrix, with the choices for player 1 at the top and for player 2 along the side, and thisgaya
given pair of choices given as the corresponding ordered pair such that (x,y) implies that player 1 gets a
paydt of x, and player 2 gets a paffmf y. Each players preferences are here to get a higher numbered

paydf.

4.1.1 Bach or Stravinsky (Battle of the Sexes)

The game classically known as the Battle of the Sexes or more recently dubbed Bach or Stravinsky
involves two players who would like to coordinate their actions so that both end up at the same venue for
arendez-vous. Itis a case where a game has two Nash-Equilibria, since given the choice of one player,
the other will want to chose the same composer, that is the best response function will recommend the

same composer as the other player.

| Bach  Stravinsky
Bach| (5,6) (0,0)
Stravinskyy| (0,0) (6,5)

Table 4.1 Bach or Stravinsky
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4.1.2 Matching Pennies

Matching pennies is the classic zero-sum game, which means that the two players have antisym-
metric paydts. In this game, both players have a penny, which they conceal from their opponent. The
they simultaneously show their opponent their penny, having placed it heads up or tails up. Player 1
gets a point if the pennies match, while player 2 receives a point if the pennies do not match. This
example shows a case where their is no Nash equilibrium. In this case, this is because the preference
relation is not quasiconcave.

\ Heads Tails
Heads| (1,-1) (-1,1)
Tails | (-1,1) (L-1)

Table 4.2 Matching Pennies

4.1.3 Prisoner’'s Dilemma

The most famous game is perhaps the Prisoner’s Dilemma. In contemporary literature, it first arose
in work at RAND Corporation such as that of Flood (1952). Its application was popularized largely
by Schelling (1960). It has also been very popular in a repeated form (Axelrod (1985)) where one
can study concepts like learning and reputation. Borges et al. (1997) used fuzzy rules to study this
repeated or iterated prisoner’s dilemma. Many stories have been told to describe situations where this
arises. Perhaps the most interesting (if not compelling) is in the situation of an arms race. In this
telling, one would hope that the two players (countries) cooperate and halt production or dismantle
their arms. However if one country does so, the best response function tells the other to get themselves
an advantage by defecting (and building a large enough arsenal to destroy their opponent or at least to
force the opponent into a weak bargaining position). Thus if neither player trusts the other, they will
both defect, the unique Nash equilibrium, even though that position ifiinceat (Pareto optimal).

| Cooperate Defect
Cooperate| (5,5) (8,1)
Defect| (1,8) (3,3)

Table 4.3 Matching Pennies
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4.2 fuzzy games

We saw before that sets can be turned into fuzzy sets and relations can be turned into fuzzy relations.
Thus, it seems to create a fuzzy game, we have many choices. Each choice stems fierard diory
about how the game is to be played. Song and Kandel (1999) examines a variation on the prisoner’s
dilemma where the degree to which the player wishes to help or harm his partner is fuzzy. Garagic
and Cruz (2003) uses a fuzzy fixed-point theorem to show that certain fuzzy matrix games have a Nash
equilibrium. Another way of making a game fuzzy is explored by Arfi (2006) where outcomes of a
variation of the prisoner’s dilemma are broken down into finite, discrete values based on finite, discrete
levels of cooperation and defection. Another work, Nishizaki and Sakawa (2001) explores cooperative
fuzzy games as a method of conflict resolution and concentrates on numerical solutions to such game.
In our case, we will start with looking at a simple fuzzy game by utilizing a fuzzy preference relation.
In this case, we might say that the degree to which a player prefers a given object over another is
fuzzy. One way to do this, is to relate each outcome by the degree of belief that it is better than another

outcome. In this case, we need to define a new type of best-response function.

Definition 4.2.1. In a N-player game with fuzzy preference relatiaf, given a strategy se€X =
{Z1,...,ZN}, and a consequence function for playeg; a fuzzy preference relation best-response
functionis a functionB; : {X1,...,2n} — Zj such thatBj(c1,...,onN) = {07 € Zi : (01,...,0N)
(01,...,01_1, 0%, 0941, ...,0N)}

The fuzzy preference relation best-response function is obviously non-empty. In this case, our

previous proof of the existence of Nash equilibria can still hold so long as certain conditions hold:
Definition 4.2.2. A fuzzy preference relatiors;, over a setX, with |X| = n, is fuzzy quasiconcave on
X; if for every x* = {x],..., X3} € X, the set{xinX; ;3 ((X],.... X 1, X, X'\ 1, ---» X)) (X}, ..., X)) =%
(O X0)s (K, -+ X, X0 X g5 -+ > XB))} IS convex.

Theorem 4.2.3.For a fuzzy preference relatiog, on anN-player game{N, X, K, g, <}, a Nash equi-

librium exists if for alli € {1, ..., N} the se&; of strategies for playdris a nonempty compact, convex

subset ofR", and for each preference relatiag,

i. <is continuous;
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ii. <isfuzzy quasiconcave.

The proof follows exactly as before.

Clearly, this conception of fuzzy games amounts to reducing fuzzy preferences to crisp preferences.
Another very similar construction called an equilibrium solution with respect to the degree of attain-
ment of the aggregated fuzzy goal is discussed in Nishizaki and Sakawa (2001). There work concen-
trates on computational methods for finding such solutions. We turn to a more sophisticated conception
of a fuzzy game, and define a Nash equilibrium concept based upon it. A generalized version of this is
due to Butnariu (1979). Exploring this work will give us another example of the importance of fixed
points in analyzing equilibria in game theory. As Butnariu’s formulation is more general than that of
some other games found in more recent research, including that of Nishizaki and Sakawa, examples
and ideas discussed in that work could be adapted to Butnariu’s concept. However, we will mention an
example from Butnariu’s work which shows that fuzzy beliefs about a players opponents can allow us

to explore interesting games that allowing for only fuzzy preference relations among outcomes misses.

4.2.1 Butnariu's Game

To start, we will explore the concept of fuzzy topology and of a fuzzy fixed point theorem.

Definition 4.2.4. A fuzzy correspondena a setX is a mappingR : X — L(X) where£L(X) is the
fuzzy set based on the powersetf We may examine the membership functiag), of the fuzzy
subsetA € L(X). For a fuzzy correspondenci(-), on X, we useRy to denote the fuzzy subset of
X x X which has a membership functiofx, y) for any (x,y) € X x X. We noteM(X) the set of fuzzy

correspondences o

Definition 4.2.5. Now, given a fuzzy correspondenié) on X, a fixed point,x* € X, is an element

such that for allk € X, r(x*, X*) > r(x*, X).

Definition 4.2.6. We say that a fuzzy subsé¥,e £(X), is convexf and only if its membership function
is concave, ie for alf € [0, 1] and for all ,y) € X x X, we havea(gx+ (1 — q)y) > mina(x), a(y).
Remember that topological vector spageX, is a vector space with continuous vector addition and

scalar multiplication. Such a topological spacklaisdoyf-separatedf for any x € X, the intersection
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of all the closed neighborhoods Hfis the single elemerii}. Such a space iscally convexf for all

X € X, every neighborhood of is convex.

Definition 4.2.7. A fuzzy correspondenci(-) is convexif for the topological vector spack, locally
Hausdoff-separated an@ C X such thaiC is nonempty, compact and convex, the fuzzy subet
L(X) is a convex fuzzy subset of. R(-) is closed if and only if the membership functiarfy, -) is
upper semicontinuous.

Now, following the lead of Butnariu (1979) and Heilpern (1981), we present a fixed point theorem

in a fuzzy universe:

Theorem 4.2.8.Butnariu’s generalized fuzzy fixed point theorem Ka real locally convex, Housdfbr
separated, topological vector spae and any nhonempty, compact, convex subSet, X, if R(}) is a
convex fuzzy correspondence closedinthenR(-) has a fixed point irC.

The proof can be found in Billot (1992), and is an adaption of the one given in Butnariu (1979) and
Butnariu (1978). It is dferent from the theorem and proof given by Heilpern (1981), which requires
that the fuzzy correspondence be, ffeet, a fuzzy contraction mapping on an appropriately defined
fuzzy metric. Notice that Butnariu’s theorem is valid for any topological structure, including metric
spaces which are used in the fuzzy fixed point theorem of Song and Kandel (1999). If we Xestrict
subset of a Euclidean space and the fuzzy correspondence is a nonempty point to set function, we have
Kakutani’s fixed point theorem.

We also need to impose some patrticular characteristics on our fuzzy discourse. We willldenote
as the universe of objects being discussed. as beforg dadJ, a(x) is the membership level of The
product of two fuzzy subset#, and B with membership level functionsy(-) andb(-) respectively, is
defined by &x b](x) = a(y) x b(2) for x = (y,2) € U and fax b](x) = 0 else. We will define a particular
product of membership levels of fuzzy subsets where for fuzzy relationg,— BandS: B — C,
and ,y) € A, we haveS o R(X,2) = SUpR(x,Yy) X S(y,2) : ye U for (x,2) e U, So R(x,2) = 0 else.

Now, again, we return to the stories that are told to explain why grouping of mathematical structures
models some sort of game. Again we will consitlieperson games. In this game, all players first gather
and exchange information about what they will do, based on whatever logic they wish to employ. Then

all the players are cuttbfrom communication with each other to some degree (possibly completely).
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At this point, each player knows the choices of strategies that other players have. They can then define
for themselves a vector of fuzzy sets which express the degree to which they believe the other players
might choose some strategy. The players will also be unsure about whether any given outcome is

preferable to another.

i. X={Z1,...,Zn} Will be the set of strategies. We will require each playeio have only a finite
number of strategies from which to choose from, indexed by the funai{dn,soZ; is a vector

of strategies withn(i) elements.

ii. For each playeri, we will define thestrategic arrangemerus a se; € [0, 1]"® such thaty; =
H?ﬂ)lYij, E?S)lYij =1, WhereYij is the percent of time playérchooses actiof. LetY = IIYY;.

This allows the players to choose mixed strategies, and allows the set of strategies to be convex.
iii. For each playeri, we defineg € L(ITicnY;) and for allw = (w4, ...,wy) € IienYi, as abelief
levelof the strategic choicer evaluated by player i. That is to say that each player evaluates the

degree to which they believe that the other players will play each of their possible stragegies.

is a belief function as defined earlier.

iv. We will be considerings = (Ai,w) € L((ITjen-iYj) X Yj) as astrategic conceptiofor player i.
Here,A is the belief of player in the strategic arrangements of the other players, and is a fuzzy
subset of the set of all of the possible strategies of the other players AHengresents playeis

belief in the strategies that would be chosen by the other players givenpllagsw;.

v. We also want it to be the case that fare L(ITjen-iYj) andA; # @ then there existsA, w;) €
L(ITjen-iYj) x ;) such thag[A](wi) # 0. Thus no matter what the others might do, no player

will be unable to formulate a strategy.

Definition 4.2.9. A play in this game is a vectos = (Si,..., Sy) such thats € L(ITjen-iYj) X ;.
Fors = (Ai,w) € L(ITjen-iYj) x Yi) ands’ = (A", W) € L(ITjen-iY)) X Yi), S is abetter strategic
conceptiorthans' if and only if g[A](w) > e[A’](W). sis socially preferredto s* if 5 is a better

strategic conception thasi for all i € N.

Definition 4.2.10. A possible solutiorof a game of this type is a plag; = (s],...,sy), wheres’ =
(A7, W) such that for any other plag,= (s1...., Sn), With 5 = (A7, wi), &[ATT(W) > &[AT(wW).
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Thus a possible solution corresponds intuitively with equilibrium points of non-fuzzy games in that
it is marked by its advantage in terms of a preference relation. In games of this type, an equilibrium

point is a refinement of this concept.

Definition 4.2.11. An Nash equilibriunof a game of this type is a possible solutish= (s, ..., ),
wheres’ = (A’,w") such thata(wy, ..., Wi_1, Wi;1,...,Wn) = 1if wj = wi for anyi € N —i and
a' (W, ..., Wi—1, Wit1,...,Wn) = O elsewhere.

The additional condition, often calletn-constraining collaboratiomplies that player expect a
strategyw; from playerj only when playerj intends on playing that strategy. Thus a Nash equilibrium
arises after uncertainty in the belief of the moves of the other players is removed.

We will now compute two new fuzzy preference relations:

Definition 4.2.12. Theindividual fuzzy preferenaef a playei is the fuzzy relatiork; (-, -) on L(WxW)
whereW = ITjenYj X Y such thaEi(s, s°) = [6[AT(W)) A e[AT(Wi)] X ITjen-gi&i[A](W)).
This individual fuzzy preference now takes into account what the other players would believe about

the degree of possibility of playégoing against their expectations.

Definition 4.2.13. The social preference relatioiis a fuzzy relationE(:,-) on L(W x W) such that
Es(s s*) = ienEi(s s°) forall (s, 8°) e Wx W.

Now we may state and prove the main theorems presented original® Byihariu79)

Theorem 4.2.14.Let s" be a play of a game of this type, with = (A", w). If A" # @, for all i, then

S" is a possible solution if and only & is a fixed point inEg(-, -).

Lemma 4.2.15. There is nd such that ifs" is a fixed point inEs(-, -), then fors’ = (A", w;), we have
a[Al(w)) = 0.

It leaves to be understood whether any useful equilibrium concepts can be defined and shown to
exist if the strategic choices are fuzzy. We remember that a Nash equilibrium arises wheni for all
jeN A = A].‘. We would call this game a game with perfect information. However, the preference
relations remain possibly fuzzy, and we have reduced out fuzzy game to the fuzzy preference relation
game discussed earlier. This suggests that the players may approach a Nash equilibrium in a fuzzy

game of this type as they exchange more information about their full range of strategic conceptions.
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4.2.2 Example

Let us look at an example of an application of his formulation and equilibrium concept in political
science based on that provided by Butnariu (1979). For simplification, we can look at two players
named 1 and 2. In this game, the two players are interested in defining their military investments vis-
a-vis each other. Here we are looking at only the international level game in Putnam’s two level game
concept, ignoring completely the influence of national bodies such as special interests and legislatures.
For the purposes of this game, we will say that military investments perceived by opponents serve as
a deterrence for escalating of military conflict between the states. The two states then have as goals
both the reduction of intensity of conflict and the minimization of economic energy put into military

investments toward that ends.

We can easily arrange this situation so that it fits in the conditions defining Butnariu’s game. First,
letXy = 2'{, e Zﬁ(k) be diferent strategies of military investment for pIakePerhapQ{ is missile de-
fense,Z'; is increased naval sizﬁg is greater nuclear capabilities, and so on. Note that this set is crisp,
and the players are allowed to chose as strategic arrangements mixed strategies which amount to invest-
ing a certain amount of a budget in any of various strategies until the budget is used up. In the course
of relations between the two players, each players can exchange information and (possibly) make guar-
antees about their future actions. From these exchanges, each player can decide what they believe to
be the value of their actions basing these values on their beliefs about how their opponent values the
actions available to them. Normalizing each players budget, we can denote a strategic arrangement by
Y, € [0,1]"®. We notice that the set of degrees of belief of play@r the plausibility of each of their
opponents strategigs™ defines a fuzzy set. We may denote these belie§ by £(ITienY;). Fuzzy
pairs, @x, Wk) € (Y_k x Yi) are strategic conceptions, where given pldyehoosesvy, A i is a fuzzy
set representing play&is level of belief that his opponent will play any given strategy gikermooses
wik. We will also let it be the case that for any set of information exchanged, each player can form a
strategic conception as a reply to his beliefs about the other players actions, ie that the fifth condition

is satisfied.

This example, then, clearly defines a fuzzy game of the type Butnariu described. Thus we can say



33

that two strategic conceptions of the game can be made, and one can be preferable to the other if its
belief level is more believable. Each player will examine to what degree they believe their opponent
will do something advantageous given they act in a way that most closely approaches what they believe
is advantageous to them. We will again be able to define a possible solution as before, a condition
where both players find their play to be advantageous compared with any other conception. It is not
clear exactly what these possible solutions will look like in terms of the military investments of the
players without making explicit the belief functions and strategies available, but our theory shows
that the possible solutions do arise as fixed points of fuzzy correspondences. So if given a chance to
play multiple games, we may expect the players to eventually discover a stable solution by iteration,
a stable play, which represents a possible solution. This is by no means a necessary outcome, as the
eistence of a fixed point does not imply that it will arise in a finite number of iterations of our fuzzy
corespondence. Butnarius definition of an equilibrium point is also meaningful here, as it is a possible
solution where the uncertainty of each players beliefs in the actions of the other players is removed.
In this case, it means that it is a possible solution where the military apparatus of the opponent is
openly observed, perhaps by cameras or UN appointed monitors. Butnariu’s work, then, suggests that
it is these solutions that are the most stable. It is not, of course, surprising that reducing uncertainty
provides stability. Unfortunately, most of the work in fuzzy game theory has not brought us closer to
examining games with fuzzy beliefs, only fuzzy goals. A return to Butnariu’s work, then, may allow

us to reexamine what it is about fuzzyness that makes it so attractive to game theory.
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5 Conclusion

In this paper we have defined fuzzy sets an looked at a couple ways they have been used, eventu-
ally discussing the topic of fuzzy games. We concentrated especially on Buthariu's game because it
encompasses the more detailed work of other authors, and also because the example Butnariu’s game
provides is particularly seductive to those interested in social science. In particular, Butnariu examines
fuzzyness in social beings (people, societies, etc.) beliefs about the actions of social beings, including
themselves. It is true that Butnariu’s game suggests that to a certain degree, more information brings
more stability to games, a fact that is well known both in the study of theoretical games of a crisp type
(although not universally), as well as intuitively and in social practice (again exceptions do exist). An
exploration of social events with an eye to their formulation in the terms of Butnariu’s game has not
been seen, although parallel formulations do exist, and suggest that Butnariu’s theorems would hold
true in the real world. In this paper, | did not discuss the nature of the fuzzy correspondences which
would give rise to possible solutions of Butnariu’s game, and in future work, both a discussion of that
nature, and an exploration of what would make that correspondence easily definable in terms of real
world processes would be important. This would allow us to compare the mechanisms which make
Butnariu’s theorems work mathematically with the mechanisms which govern social processes in the
real world. This type of comparison, along with an honest assessment of how all the theorems of game
theory speak to actual causal mechanisms in the real world applications social science is so keen on,
is perhaps the next important movement in the philosophy of social science. | personally hope to see
more work on the meanings of the applications of game theory to social science. Why does game
theory model human behaivior? What mathematical tools can we use to help us better make those
models? Butnariu’s game shows that game theory is still relevant if we release our formulations from
the constraints of crisp sets, and where fuzzy sets better model a situation than crisp sets, the existance

of a maturing field of fuzzy game theory will give social scientists the tools to more often move in that



direction.
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