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ABSTRACT

Fuzzy Game Theory is a growing field in mathematics, economics, and computer science. In this

paper, we follow the thread of fuzzy logic to the doorstep of social sciences and game theory. We then

examine how fuzzy sets have been applied equilibrium theory of games and discuss some cases where

Nash equilibria can be show to exist, and ultimately a situation where a Nash equilibrium does not arise

unless the game is one of perfect information.
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Preface

The pure mathematician knows that pure mathematics has an

end in itself which is more allied with philosophy.

–Philip Jourdain, in the introduction to Georg Cantor’s

Contributions to the Founding of the Theory of Transfinite Numbers

I am interested in the mathematics which can describe interactions between humans and groups of

humans in the political, sociological, and economics spheres (or social sciences in general). In con-

temporary political science, game theory (called rational choice theory) is king. The assumptions of

rational choice models are, briefly, that human interactions can be modeled by players, whose choices

can be modeled by the game, who have a preference ordering concerning the outcome of those choices,

and that players will act in a way to maximize the utility of the outcome given their behavior. All utility

functions (aka payoff function) from the set of outcomes to the utilities of those outcomes which satisfy

the players preference functions are allowed (Myerson (1997)). A major strength of game theoretical

analysis of social science situations is the flexibility that this model is afforded by allowing agents to

order their preferences, and by giving preferences an order, but not necessarily a particular value. Al-

though like much of mathematics, the foundations of game theory can be stretched ever further into the

past. But the major source of the field was John von Neumann, and Morgenstern and Von Neumann

(1944) marked the arrival of the subject. It has since been a major contribution in areas from economics

(John Nash, Thomas Schelling) to ethical theories (John Rawls, Amartya Sen).

In 1965, Loft Zadeh introduced (Zadeh (1965)) the world to the term fuzzy, as a formalization of

vagueness. The field has been applied with a good deal of success to engineering, with fuzzy control

systems able to do things like cook rice or shift gears in a car with great efficiency. Since fuzzy set
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operators extend the idea of the logical and and or to non-dichotomous systems, behavioral scientists

have asked if there is a way to use fuzzy mathematical models to analyze social systems. The book by

Smithson addresses exactly that question. Suggestions about how this could be done can be found in

the computer science field of natural language processing (Dubois and Prade (1980)).

In modern social science, game theory is the method of making mathematical models. Fuzzy Logic

gives a new tool which on the face seems to apply to this type of modeling as well. Mares (2001) mixes

the concepts in his book discussing coalition games with fuzzy pay-offs (fuzzy expected utility func-

tions), developing the ideas of fuzzy core, fuzzy balancedness, and fuzzy shapely values. Others such as

Smithson and Verkuilen (2006) and Ragin (2000) examine using fuzzy sets in linear statistical models.

Mansur (1995) looks at the application of fuzzy sets to some introductory concepts of microeconomics.
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1 Vagueness

This, of course, is the answer to the old puzzle about the man who went bald. It is supposed that at first he was not bald, that

he lost his hairs one by one, and that in the end he was bald; therefore, it is argued, there must have been one hair the loss of

which converted him into a bald man. This, of course, is absurd. Baldness is a vague conception; some men are certainly

bald, some are certainly not bald, while between them there are men of whom it is not true to say they must be either be bald

or not bald. The law of excluded middle is true when precise symbols are employed, but it is not true when symbols are

vague, as, in fact, all symbols are.

-B. RussellVagueness, 1923

The ship wherein Theseus and the youth of Athens returned [from Crete] had thirty oars, and was preserved by the

Athenians down even to the time of Demetrius Phalereus, for they took away the old planks as they decayed, putting in new

and stronger timber in their place, insomuch that this ship became a standing example among the philosophers, for the

logical question of things that grow; one side holding that the ship remained the same, and the other contending that it was

not the same.

-Plutarch

What is more, there cannot be anything between two contradictories, but of any one subject, one thing must either be

asserted or denied. This is clear if we first define what is truth and what is falsehood. A falsity is a statement of that which is

that it is not, or of that which is not that it is; and a truth is a statement of that which is that it is, or of that which is not that

it is not. Hence, he who states of anything that it is, or that it is not, will either speak truly or speak falsely. But of what is

neither being nor nonbeing it is not said that it is or that it is not.

-AristotleMetaphysics IV

There is a sense in which human languages are vague. Logic, however, is usually presented as being

precise. In the fourth century B.C. Socratic philosopher Eubulides of Miletus discussed the paradox of

the bald man. And Plutarch reported the paradox of the ship of Theseus as coming from Greek legend.

But classic logic, even as formed by Aristotle held that a statement must be either true or false. A man

must be bald or not, a ship must be that sailed by Thesues or a different ship altogether. Thislaw of

excluded middleleft us with a logic which was unable to give expression to the vaguarities of human
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language and the vaguarities of human categorization. Passing over the middle age stoic philosophers

who largely followed in Aristotle’s footsteps, it is important to make mention of Italian Renaissance

philosopher of language, Lorenzo Valla (1407-1457), who felt that each hair made some difference.

John Locke (1632-1704) and Gottfried Leibniz (1646-1716) discussed the question of what sorts of

things formed a natural kind, that is which have a boundary defined by natural law. Although the pair

disagreed on the extent to which boundaries between different things are formed by the human mind,

both agree that borderline cases are a matter of opinion. Alexander Bain (1818-1903) addressed the

question in hisLogic of Relatives(1870), concluding that ’a certain margin must be allowed as indeter-

mined, and open to difference of opinion.’ Williamson (1996)

In the late nineteenth and early twentieth century, the concept of vagueness was reexamined by

various scientists and philosophers. A full account exists in Williamson (1996) of the historical back-

drop of fuzzy theory. Early on, the concept of vagueness was mentioned in order to exclude it. Gottlob

Frege’s (1848-1925) concern that without sharp borders logic rules would be broken were included

in his Grundgesetze der Arithmetik(1893-1903) influenced Bertrand Russell (1872-1970) as well as

Polish philosophers Tadeusz Kotarbinski (1886-1981) and Kazimierz Ajdukiewicz (1890-1963), all of

whom tried to give precise definitions of vagueness. Charles Sanders Peirce (1839-1914) was work-

ing independently of Frege gave a definition of vague in a philosophical dictionary he wrote in 1901.

British philosopher Max Black (1909-1988) based his discussions of vagueness largely on examples of

”‘borderline cases”’. Kotarbinski began using gradedness of truths in writings as early as 1923. Physi-

cian Ludwik Fleck (1896-1961) applied the Poles’ ideas to medical diagnosis.

Karl Menger (1902-1985), formerly of the Vienna circle, generalized metric spaces toward prob-

abilistic concepts, introducing the concept of a triangular norm (T-Norm) in 1942. Menger suggested

in 1951 that an item need not be absolutely an element of a set, but rather there could be a mapping

from the element to the probability that the element is in the set. He was also influenced in a 1951

paper by Henri Poincare (1854-1912) claim that equality is not transitive in the physical reality, as

when we say two objects in the real world are equal, we mean that they are indistinguishable, but that

if one follows a chain of indistinguishable items, one need not say that the first and the last item remain
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indistinguishable. Menger acknowledged the fuzzy sets of Lotfi Zadeh (1921-), but did not explore the

differences between probability sets and fuzzy sets in his work. In the early 1960s, Richard E. Bell-

man (1920-1984), Robert Kalaba (1926-2004), and Zadeh began exploring the concept of fuzzy sets at

RAND Corporation, leading to a joint memorandum in 1964 and a paper in the journalSystems Theory

entitledFuzzy Sets and Systemsin 1965 (Zadeh (1965)).

Now we will depart the historical development of fuzzy sets and fuzzy logic in order that we can

build our theories from the bottom. In this thesis, we will leave open the question of whether vagueness

comes only from linguistic (or human) causes.
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2 Fuzzy Sets and Fuzzy Logic

To understand the mathematical foundations of fuzzy sets and fuzzy logic, we will start our study

with a review of the concepts of universal algebra. This will give us a foundation from which we can

understand the generalizability of fuzzyness, before we look at specific applications. We will then look

at how universal algebra serves as a basis for traditional logic, and then show how those definitions

generalize to fuzzy logic through the concept of fuzzy sets. We will then look at some of the variations

of fuzzy sets, of which we will tend to use the most simple so that its application can be most easily

understood.

2.1 Universal Algebra

An n-ary relationρ on the setsA1, . . . ,An is specified by giving an ordered n-tuple (a1, . . . ,an) of

elements with each elementai ∈ Ai such that the n-tuple is in the relationρ. In this way, the relationρ

is a subset of the product setA1×· · ·×An. The numbern is called the arity of the relation. We often say

unary instead of 1-ary, binary instead of 2-ary and tertiary instead of 3-ary. For binary relations, we may

often write ”a1ρa2” while for relations of any arity may be written ”(a1, . . . ,an) ∈ ρ” or ” ρ(a1, . . . ,an)”.

A binary relation,ρ, on a setX is complete ifaρB or bρa for everya, b ∈ X, A relation is transitive

if aρb andbρc implies aρc for everya, b, c ∈ X. A relation is reflexive ifaρa for everya ∈ X. a

preference relationis a complete, transitive, reflexive binary relation. A preference relation,-, onX is

continuous if for allk given sequences (ak)i and (bk)i in X that converge toa ∈ X andb ∈ X respectively

such thatak - bk, thena - b. A preference relation-, onR is quasiconcaveif for every b ∈ R the

set {a ∈ R : a - b} is convex. Recall, a set is convex if given two points in the set, a line segment

connecting those points is also in the set.

A function f : A1 −→ A2 is a binary relation such that for eacha1 ∈ A1 there is exactly one

a2 ∈ A2 such that (a1,a2) ∈ f ), and is often written ”‘f (a1) = a2”’. A function f (a1, . . . ,an) ”‘of n
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variables”’ whereai ∈ Ai for all i ∈ {1, . . . ,n} is a function f : A1 × · · · × An −→ B. For eachai ∈ Ai

for i ∈ {1, . . . ,n}, (a1 × · · · × an) ∈ A1 × · · · × An and f ((a1 × · · · × an)) ∈ B. We may omit one set of

brackets from this final expression to simplify our notation.

Definition 2.1.1. An n-aryoperationon the setA is a functionf : An −→ A.

Definition 2.1.2. An algebraA is a pair〈A, F〉 with A a nonempty set andF = 〈 fi : i ∈ I〉 a sequence

of operations onA, whereI is some index set. We callA theuniverseor theunderlying setof A, and the

fi are thefundamentalor basicoperations of the algebra. Thesimilarity typeρ is a functionρ : I −→ ω

such that eachi ∈ I is assigned to the arity offi from the fundamental operations of the algebra.

Often, an algebra〈A, F〉 is written〈A, f1, . . . , fn〉, and the operations are written in descending order

of their arity. So if we denote the order of the domain of a functionf as| f |, then| f1| ≥ · · · ≥ | fn|. With

this notation, we can see thatρ( f ) = | f |. The similarity type is often written simply as a sequence of

arities, i.e.〈| f1| , . . . , | fn|〉.

Definition 2.1.3. A subalgebraof an algebraA = 〈A, F〉 is a subsetB = 〈B,G〉 of A if B forms a

algebra with the operations ofA restricted to the setB, i.e., if for all i ∈ I and for allgi ∈ G, we have

gi = fi �Bρ(i) .

Equality between two algebrasA = 〈A, F〉 andB = 〈B, F〉 requiresA = B and fA = fB for all

f ∈ F. If two algebras have at least the same similarity type, they are called similar. Any intersection

of subalgebras is clearly a subalgebra. So, given any subsetBof A, there is a unique smallest subalgebra

containingB, namely, the subalgebra∩{S : S subalgebra ofA, S ⊃ B}. This is the subset generated by

B and is denoted by〈B〉T or occasionally〈B〉.

Definition 2.1.4. A homomorphismbetween algebrasA = 〈A, F〉 andB = 〈B,G〉 is a functionφ :

A −→ B such that for alli ∈ I the index set for the operations ofA, and alla1, . . . ,an ∈ A, we have:

φ( fi(a1, . . . ,an)) = gi(φ(a1), . . . , φ(an)) for fi ∈ F andgi ∈ G. That is to sat ”φ” preserves all the

operations ofA. Clearly the composition of two homomorphisms is a homomorphism. Ifφ : A −→ B

is an invertible homomorphism, thenφ−1 : A −→ B is also a homomorphism. In this case we callφ an

isomorphism, and we say thatA andB are isomorphic.
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Definition 2.1.5. Let S be any set, letA be a algebra of typeρ, and letσ : S −→ A be a function. we

say that (A, σ) (or informally justA) is a ”free algebra” (of typeρ) on the setS of ”free generators”

if, for every algebraB of type ρ and functionτ : S −→ B, there exists a unique homomorphism

ψ : B −→ A such thatψσ = τ.

S A

B

-σ

?

τ p p p p p
p p�ψ

Note that for any setS and any similarity typeρ, there exists a free algebra of typeρ generated by

S (Sometimes said to be a free algebra onS), and that this free algebra is unique up to isomorphism.

For the following definition, letA be some algebra, whileF is the algebra on the setXn =

{x1, . . . , xn}. Now for any elementsa1, . . . ,an ∈ A there exists a unique homomorphismφ : F −→ A

with φ(xi) = ai for i = 1, . . . ,n. If w ∈ F, thenφ(W) ∈ A, andw is uniquely determined bya1, . . . ,an.

Thus we can define a functionwA(a1, . . . ,an) := φ(w), (note: we may omit the subscriptA). In particu-

lar, if we takeA = F andai = xi for i ∈ 1, . . . ,n, thenφ is the identity andw(x1, . . . , xn) = w.

Definition 2.1.6. A T-word in variables x1, . . . , xn is an element of the free algebra of typeρ on the

setXn = {x1, . . . , xn} of free generators. Aword in the elementsa1, . . . ,an of an algebraA of typeρ is

an elementw(a1, . . . ,an) ∈ A, wherew is aT-word in the variablesx1, . . . , xn. A algebra variableis an

element of the free generating set of a free algebra.

Definition 2.1.7. Any algebra with a similarity typeρ = 〈2,0〉 is a propositional algebra. We may

generally write the algebra as〈X,⇒, F〉. Thepropositional algebra P(X) of the propositional calculus

on the set X of propositional variablesis the free propositional algebra of typeρ on X.

Here we may bridge between what we have been doing and what is easily recognizable to be logic.

In this algebra, X are all free variables. the nullary operationF is often called FALSE and may also be

represented by the integer 0. The binary operation⇒ is sometimes called implication. The operations

¬ (NOT),∨ (AND), ∧ (OR), and⇔ (IFF) can be defined in terms of these two operations as follows:

This determines the form of our algebra of propositions. In ordinary usage, we are interested in

the truth or falsity of a statement, and first the truth and falsity of elements of the propositional algebra
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¬pB p⇒ F
p∨ qB (¬p)⇒ q

p∧ qB ¬(¬p∨ ¬q)
p⇔ qB (p⇒ q) ∧ (q⇒ p).

Table 2.1 operations¬, ∨, ∧, and⇔

P(X). In traditional two-valued logic, we may consider functions (called valuations) which assign to

eachp ∈ P(X) one of two values, 1, or 0 (TRUE or FALSE).

Definition 2.1.8. A valuationof P(X) is a proposition algebra homomorphismv : P(X) −→ {0,1}.

Thus we may say thatp ∈ P(X) is true with respect to vif v(p) = 1 and thatp ∈ P(X) is false with

respect to vif v(p) = 0.

2.2 Introduction to Fuzzy Set Theory

Conceptually we can think of a set as being fuzzy when its elements belong only partly to it. Thus a

fuzzy set Ais given by first specifying a universe of elementsX which are to be discussed and a scale of

truth degrees Land a rule which associates with each elementx of X a valuel from L which represents

the degree to whichx belongs to the fuzzy setA.

So which of these is the fuzzy set? None, in fact, but let’s begin again. First we need to define a

residuated lattice:

Definition 2.2.1. A residuated lattice is an algebraL = 〈L,∧,∨,⊗,→,0,1, 〉 of type 〈2,2,2,2,0,0, 〉

where

i. 0 is the least element and 1 is the greatest element,

ii. 〈L,⊗,1, 〉 is a commutative monoid,⊗ is associative, commutative, and the identityx ⊗ 1 = x

holds.

iii. the adjointness propertyholds, i.e.x ≤ y→ z⇔ x⊗ y ≤ z holds∀x, y, z ∈ L with ≤ the lattice

ordering in L.

We will later call⊗ a t-norm and→ implication.
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A residuated lattice is calledcompleteif L = 〈L,∧,∨,0,1, 〉 is a complete lattice, that is if every

subsetS of L has both a greatest lower bound and a least upper bound. These are denoted by:
∧

S

(meet) and
∨

S (join).

Taking a big step ahead, a fuzzy set is a mappingA : X → L for X a set andL a residuated

lattice. A complete residuated lattice withL = {0,1} is the same propositional algebra as before. In

using a generalized residuated lattice, operations like meet (AND), join (OR), and implication can be

generalized. This generalization allows us to talk about fuzzy logic, which will be introduced in the

following section. We will later mentiontypesof fuzzy sets to discuss an extension of the concept

where the underlying set of the residuated lattice is itself fuzzy. Another way of denoting a fuzzy set is

as a pair, one from the universal set, and one from the residuated lattice. In some cases, we may also

talk about a fuzzy set based upon some crisp set,X, such that for each subset ofX, we want to define a

degree of belonging. We will denote this by,L(X) ∈ (P(X),L ), whereP(X) is the powerset ofX.

2.3 fuzzy logic

The subject of fuzzy logic generalizes traditional logic. In depth reviews of the algebraic basis of

fuzzy logic include Gerla (2001), Cignoli et al. (1999), Nguyen (1999), and Hjek (2001) In all forms

of logic, our main objective is often to discover whether or not a statement (or formula) is true.

In classic logic, we take the evaluation of a formula of 0 to mean that the formula is false, while

an evaluation of 1 means that the formula is true. We then evaluate our connectives∨, ¬, ∧, and→

according to the following tables:

¬

0 1
1 0

Table 2.2 NOT operation

∨ 0 1
0 0 1
1 1 1

Table 2.3 OR operation
∧ 0 1
0 0 0
1 0 1

Table 2.4 AND operation

→ 0 1
0 1 0
1 1 1

Table 2.5 implication

To talk about a logic, it is important to talk about the connectives between the elements. We can

compare fuzzy logic to classical logic if we consider t-norms, t-conorms, and fuzzy implication to be
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analogous to AND, OR and classic implication. For simplicity, we will use the set [0,1] with the usual

lattice ordering as the image of our fuzzy mappings rather than a more general residuated lattice.

Definition 2.3.1. A T-normis a binary operationT : [0,1] × [0,1]→ [0,1] with the following proper-

ties:

i. Commutativity:T(a,b) = T(b,a)

ii. Monotonicity: T(a,b) ≤ T(c,d) if a ≤ c andb ≤ d

iii. Associativity: T(a,T(b, c)) = T(T(a,b), c)

iv. 0 is the null element:T(a,0) = 0

v. 1 is the identity element:T(a,1) = a

Definition 2.3.2. A t-norm is calledArchimedeanif 0 and 1 are its only idempotent elements.

Definition 2.3.3. An Archimedean t-norm is calledstrict if 0 is its only nilpotent element.

Notice that a T-norm generalizes a triangle norm in a metric space in thatT(a,b) ≤ T(a,1)+T(b,1)

for all a, b ∈ [0,1].

It can be seen how the T-norm conforms to our idea of an AND operator, since monotonicity

requires a conjointer with a ’less true’ proposition to be ’less true.’ Associativity and commutativity

are included, and the last two properties state that truth values 0 and 1 correspond to ’false’ and ’true,’

respectively.

Just as OR in traditional logic is in some sense dual to AND, T-conorms are dual to T-norms.

Definition 2.3.4. A T-conormcan be defined by⊥(a,b) = ¬T(¬a,¬b)

This, of course, generalizes De Morgan’s laws.

It follows that a T-conorm satisfies dual properties to T-norms, namely:

i. Commutativity:⊥(a,b) = ⊥(b,a)

ii. Monotonicity: ⊥(a,b) ≤;⊥(c,d) if a ≤; c andb ≤; d;

iii. Associativity: ⊥(a,⊥(b, c)) = ⊥(⊥(a,b), c);
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iv. Null element:⊥(a,1) = 1

v. Identity element:⊥(a,0) = a

The T-conorm is used to represent intersection in fuzzy set theory.

There are different fuzzy logics that have been developed using different T-norms and T-conorms.

The following T-norms and T-conorms are often used:

>min(a,b) = min{a,b} ⊥max(a,b) = max{a,b}

>Luka(a,b) = max{0,a+ b− 1} ⊥Luka(a,b) = min{a+ b,1}

>prod(a,b) = a · b ⊥sum(a,b) = a+ b− a · b

>−1(a,b) =


a, if b = 1

b, if a = 1

0, else

⊥−1(a,b) =


a, if b = 0

b, if a = 0

1, else
The first T-norm and T-conorm are used most often, as they are simple and have some special

properties (see below). The third T-norm and the corresponding T-conorm derive from probability

theory.

Furthermore, the following relationships hold for any T-norm:

>−1(a,b) ≤ >(a,b) ≤ >min(a,b)

⊥max(a,b) ≤ ⊥(a,b) ≤ ⊥−1(a,b).
In other words, every T-norm lies between the drastic T-

norm (T¡sub¿-1¡/sub¿) and the minimum T-norm (T¡sub¿min¡/sub¿). Conversely, every T-conorm lies

between maximum T-conorm and the drastic T-conorm.

We have discussed T-norms corresponding to AND, and T-conorms corresponding to OR. Fuzzy

implication and fuzzy negation can be discussed in terms of T-norms, and will complete the connectives

necessary to make statements in fuzzy logic.

Theorem 2.3.5.For any continuous t-norm, there is a unique operationx⇒ y such that for allx, y, z ∈

[0,1], we haveT(x, z) ≤ y ⇐⇒ z ≤ (x ⇒ y). This operation is called the residuum, and is defined

by(x⇒ y) = max{z|T(x, z) ≤ y}.

The proof may be found in Hjek (2001)
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Definition 2.3.7. A fuzzy implication is a map,→: [0,1] × [0,1] −→ [0,1] such that

→ 0 1
0 1 0
1 1 1

This residuum operator is the same as the implication operator in a residuated lattice.

Definition 2.3.6. A negationis a nonincresing function,ν, such thatν(0) = 1 andν(1) = 0. A negation

can be generated by a t-norm quite simply. Given a t-norm,T, ∧{y : T(x, y) = 0} is a negation.

As usual, implication can be generated from an OR argument. Here, for⊥ a T-conorm,ν a negation,

x→ y ≡ ⊥(ν(x), y).

So as in classic logic, fuzzy logic uses a free propositional algebra, but uses these connectives rather

than the classic connectives.

Definition 2.3.8. A fuzzy valuationof P(X) is a proposition algebra homomorphismv : P(X) −→ [0,1].

Thus we may say thatp ∈ P(X) is true with respect to vif v(p) = 1 and thatp ∈ P(X) is false with

respect to vif v(p) = 0.

Another interesting non-classic logic is three-valued Lukasiewicz logic. For three-valued Lukasiewicz

logic, the setF of formulas is the same as in classical two-valued logic, however the truth evaluations

are different, mapping into 0,u,1 instead of 0,1

¬

0 1
u u
1 0

Table 2.6 NOT operation

∨ 0 u 1
0 0 u 1
u u u 1
1 1 1 1

Table 2.7 OR operation
∧ 0 u 1
0 0 0 0
u 0 u u
1 0 u 1

Table 2.8 AND operation

→ 0 u 1
0 1 1 1
u 1 1 u
1 0 u 1

Table 2.9 implication

Fuzzy logic uses a residuated lattice for its truth set, but usually the closed interval [0,1] is used in

particular.
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In both of these the law of excluded middle fails, and thus fuzzy logic is not a Boolean Algebra.

However fuzzy logic is a generalization of three-valued Lukasiewicz logic. In fact, we may state

the following theorem about the similarity between the two.

Theorem 2.3.9.The propositional calculus for three-valued Lukasiewicz logic and the propositional

calculus for fuzzy logic are the same.

Proof. For simplicity we will use [0,1] for the truth degree set of fuzzy logic.

Truth evaluations are mappingsA from F the set of formulas into the set of truth values satisfying:

A(u∧ v) = A(u) ∧ A(v),A(u∨ v) = A(u) ∨ A(v),A(v′) = A(v)′,∀u, v ∈ F.

Two formulas are equivalent if and only if they have the same values for all truth valuations. So we

need that two formulas have the same value for all truth valuations into [0,1] if and only if they have

the same values for all truth valuations into{0,u,1}.

Let Π := Πx∈(0,1)0,u,1 the Cartesian product with∨,∧,′ defined componentwise. If two truth

valuations fromF intoΠ differ on an element, then these functions followed by the projection ofΠ into

one of the copies of{0,u,1} differ on an element. Likewise if two valuations fromF into {0,u,1} differ

on an element, then these two functions followed by any lattice embedding of{0,u,1} into [0,1] differ

on that element. There is a lattice embedding [0,1]→ Π given byy→ {yx}x where

yx =



0 if y < x

u if y = x

1 if y > x

If two truth valuations fromF into [0,1] differ on an element, then these two functions followed by

this embedding of [0,1] into Π will differ on that element. Thus the truth values defined by the lat-

tices {0,u,1}, [0,1], andΠ all induce the same equivalence relation onF, and hence yield the same

propositional calculus. �

The result of this is that if you want to check whether two expressions connectingn fuzzy sets with

∨,∧,′ are equivalent in fuzzy set theory, you only need to check equality between the expressions in

Lukasiewicz logic, a rather pedestrian 3n calculations at worst.
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2.3.1 Types of fuzzy sets

Starting from our original definition of a fuzzy set as a mappingA : X → L with L a residuated

lattice,L = 〈L,∧,∨,0,1, 〉, we may letL be a fuzzy set. That is, we can define the membership of each

item fromX in our fuzzy setA as a degree to which it takes a certain value. This is what is called atype

2 fuzzy set. A type 3 or type 4 fuzzy set may be defined by following this procedure further. A type 2

fuzzy set can be useful in mixing, for instance, probability theory with an arbitrary fuzzy set, where for

some elementx ∈ X, we might say that the probability to whichx is an element ofA is .5 with is very

likely, say to a degree of.8. That is to say that if you think that there are an equal number of red and

blue balls in a bag, but you are not absolutely sure, you can say define two functions to describe the

situation, one associating to each ball the probability that it will be red, and another the likelihood that

that probability will be correct. Up to this point when we have discussed fuzzy sets, we have meant

fuzzy sets of the first type. We will continue with this convention in the rest of this thesis.
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3 Applications

3.1 Thinking with fuzzy sets

Fuzzy sets and fuzzy logic is appealing when one steps back from the bivalent tenancies of mathe-

matical ideas to the world of blurred boundaries that exists in many of the sciences and social sciences.

Any definition of an object that depends on a description using linguistic hedges, their is an opening

for the type of vagueness discussed in chapter 1.

In the social science, it is often the case that theories are made with vague terms. For instance,

consider the statement that, ”‘A genocide or politicide is a sustained policy by states or their agents, or,

in civil wars, by either of the contending authorities that results in the deaths of a substantial portion

of a communal or political group.”’ Goldstone et al. (2000) The linguistic hedges ofsustainedand

substantialrequire the reader to understand the sentence to mean that the duration of the policy and

portion of a group in the situation are only vaguely presented, but the definition may still be applicable.

Here, defining the importance of the situation in terms of a fuzzy set is appropriate. However, there

have been other ways of dealing with this situation. Let us briefly discuss probability as one of these.

3.2 Differences and similarities to probability

3.2.1 Fuzzy Measures

Before we discuss the applications of fuzzy sets and fuzzy logic to thinking in social sciences, let us

first briefly discuss fuzzy measure theory in order to tease apart one conception of fuzzy thinking from

probabilistic thinking. Fuzzy measures were first introduced by Sugeno in 1974 (Sugeno (1974), and

have since grown into a formidable aspect of fuzzy set theory. For an in depth introduction into fuzzy

measure theory, see Wang and Klir (1993). First, let us remind ourselves about probability theory.
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Definition 3.2.1. In probability, we considerrandomexperiments to be experiments whose outcomes

cannot be predicted with certainty. Thesample spaceof a random experiment is a setΩ that includes

all possible outcomes of the experiment; the sample space plays the role of the universal set when

modeling the experiment. Aprobability measure(or distribution) P : Ω −→ [0,1] for a random

experiment with a sample spaceΩ is a real-valued function defined on the collection of events that

satisfies:

i. P(X) ≥ 0 for any eventX with P(∅) = 0, andP(Ω) = 1 (boundary requirements)

ii. P
(⋃

i∈I Ai
)
= Σi∈I P(Ai) for {Ai : i ∈ I } a set of countable, pairwise disjoint events (countable

additivity)

Property 1 defines the boundaries of the measure of the probability of an event to be 0 and 1, as

opposed to 0 and 100, simply by convention. In general, thatP(∅) = 0 and the function be countably

additive are all that is required for a function to be ameasure. Now, an interpretation of a probability

measure should be fairly familiar. Given an outcome of a random experiment denoted as eventX has

probability P(X), one could say that, for example, if the random experiment is repeatedn times, one

could ”‘expect”’ eventX to be the outcomenP(X) times.

In some situations, however, the randomness of probability measures is not appropriate for dealing

with uncertainty. Fuzzy measures are a more generalized type of measure, which may deal with uncer-

tainty in a different way.

Definition 3.2.2. Given a setX and a nonempty familyC of subsets ofX, and a residuated lattice

L = 〈L,∧,∨,0,1, 〉, a fuzzy measureon 〈X,C〉 is a functiong : C −→ L such that:

i. g(∅) = 0 andg(X) = 1 (boundary condition);

ii. for all A, B ∈ C, if A ⊆ B theng(A) ≤ g(B) (monotonicity);

iii. for any increasing sequenceA1 ⊂ A2 ⊂ . . . in C, if
⋃∞

i=1 Ai ∈ C, then limi→∞ g(Ai) = g(
⋃∞

i=1 Ai)

(continuity from below);

iv. for any decreasing sequenceA1 ⊃ A2 ⊃ . . . in C, if
⋂∞

i=1 Ai ∈ C, then limi→∞ g(Ai) = g(
⋂∞

i=1 Ai)

(continuity from above);
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Here, as usual, out setL is often taken to be [0,1].

3.2.2 possibility theory

Possibility theory traces back to Zadeh (1975) and is covered in depth by Dubois and Prade (1988),

and is a different usage of possibility than that of modal logic. To understand possibility theory, we

will start with a evidence theory, which is based on two dual nonadditive measures: belief measures

and plausibility measures.

Definition 3.2.3. Given a universal (in our case finite) setX, a belief measureis a functionBel :

P(X) −→ L whereP(X) is the power set ofX andL is the usual residuated lattice,L = 〈L,∧,∨,0,1, 〉,

such thatBel(∅) = 0 andBel(X) = 1, andBel(
⋃n

i=1 Ai) ≥
∑

j Bel(A j)−
∑

j<k Bel(A j
⋂

Ak)+
∑

j<k<l Bel(A j
⋂

Ak
⋂

Al)−

. . . + (−1)n+1Bel(
⋂n

i=1 Ai) for all possible families,〈Ai〉 of subsets ofX. Due to this inequality, belief

measures are calledsuperadditive. If X is infinity, the functionBel is required to becontinuous from

above.

Definition 3.2.4. Associated with each belief measure is aplausibility measuredefined by the equa-

tion PlA = 1 − Bel(Ā) where Ā is the complement ofA, for all A ∈ X. Thus an definition of

plausibility measures independent of belief measures would be, a plausibility measure is a function

Pl : P(X) −→ L such thatPl(∅) = 0 andPl(X) = 1, andPl(
⋂n

i=1 Ai) ≤
∑

j Pl(A j)−
∑

j<k Pl(A j
⋃

Ak)+∑
j<k<l Pl(A j

⋃
Ak
⋂

Al) − . . . + (−1)n+1Pl(
⋃n

i=1 Ai) for all possible families,〈Ai〉 of subsets ofX. Due

to this inequality, belief measures are calledsubadditive. If X is infinity, the functionBel is required to

becontinuous from below.

Immediate consequences of super- and subadditivity are that ifn = 2, A1 = A, and A2 = Ā,

Bel(A) + Bel(Ā) ≤ 1 andPl(A) + Pl(Ā) ≥ 1.

Now before we discuss an interpretation of belief and plausibility measures, we must introduce a

function which while not itself being a fuzzy measure, can characterizeBelandPl.

Definition 3.2.5. A basic probability assignmentis a functionm : P(X) −→ L such thatm(∅) = 0 and∑
A∈P(X) m(A) = 1.

An interpretation ofm(A) for A ∈ P(X) is thatm(A) is the proportion to which all available and rel-

evant evidence supports the claim that an element ofX belongs to the setA in particular. Here nothing



19

is implied for subsetsB ⊆ A, whose basic probability assignment must be expressed by another value,

m(B). Notice that this is very different from probability, namely, it is not necessary thatm(X) = 1, it is

not necessary thatA ⊆ B imply thatm(A) ≤ m(B), and there is no necessary relationship betweenm(A)

andm(Ā). In fact,m(X) is the proportion to which the evidence supports the claim that an element is

equally likely to be in any of the subsets ofX.

In order to understand belief and plausibility measures, it is important to note that a belief mea-

sure and a plausibility measure are uniquely determined bym, where for allA ∈ P(X), Bel(A) =∑
B|B⊆A m(B), andPl(A) =

∑
B|A∩B,∅m(B). The reverse direction is also possible,mmay be determined

from Bel (and dually fromPl) by m(A) =
∑

B|B⊆A(−1)|A−B|Bel(B). Thus one of the three,Bel, Pl, or m,

is sufficient to determine the other two.

Now based on the relationship betweenmandBel, we may say thatBel(A) represents the total evi-

dence or belief that the element belongs toA as well as subsets ofA, while thePl(A) represents the total

evidence or belief that an element belongs to a set which intersects in some way withA. Thus a belief

measure captures the idea of belief in that our degree of belief in some statement or of some answer

A to a question is equal to the sum of degrees to which we evidence supports any statement or answer

which is more specific thanA, and, of course, the degree to which the evidence supports exactlyA. On

the other hand a plausibility measure captures the idea of plausibility in that the degree of plausibility of

some statement or answerA to a question is equal to the sum of the degrees to which evidence supports

any set in which we are unable to determine how much more or less valid a statement independent of

A is to some subset ofA as well as the degrees to which evidence supports any statement or answer

which is more specific thanA, and, again, the degree to which the evidence supports exactlyA.

With this interpretation, it is obvious thatPl(A) ≥ Bel(A) for all A ∈ P(X).

Definition 3.2.6. Every elementA ∈ P(X) for which m(A) > 0 is sometimes called afocal element of

mbecause the evidence supportsA. Thus we may define abody of evidenceas a pair〈F,m〉 whereF is

a set of focal elements andm is the associated basic probability assignment.Total ignoranceis the case
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wherem(X) = 1, and hencem(A) = 0 for all A , X. This also implies thatBel(X) = 1, andBel(A) = 0

for all A , X, while Pl(∅) = 0 andP(A) = 1 for all A , X.

3.3 Fuzzy Relation

We can generalize relations to fuzzy relations the same way we generalized sets to fuzzy sets.

Recall, a binary relation on a setX is a subset ofX × X. Thus we could identify a relation,ρ, with

its characteristic function,ρ(·, ·) : x × X −→ {0,1} where a pair, (x, y) ∈ X × X is in ρ if and only if

ρ(x, y) = 1.

Definition 3.3.1. A fuzzy relation, ρ on a setX is a functionρ : X × X −→ L with L a residuated

lattice.

With this definition, a fuzzy relation,ρ : X × X −→ [0,1], may be said to be continuous just as any

function into a Euclidean space is continuous.

It may be interesting to define some properties for fuzzy relations. Letρ be a fuzzy relation on a

setX, and letx, y, z ∈ X. Thenρ is:

i. totally reflexiveif rho(x, x) = 1;

ii. totally non-reflexiveif rho(x, x) = 0;

iii. symmetricif ρ(x, y) = ρ(y, x);

iv. f -transitiveif ρ(x, y) - ρ(y, x) andρ(y, z) - ρ(z, y) thenρ(x, z) - ρ(z, x);

v. ∧-transitiveif ρ(x, y) ∧ ρ(x, z) ≤ ρ(x, z) with ≤ the lattice ordering inL ;

vi. completeif ρ(x, y) + ρ(y, x) = 1.

Billot (1992) maintains that reflexivity under this definition is not necessary as in this definition as

if an arbitrary does not place any importance in the comparison, they may allowρ ∈ [0,1]. In many

cases Nguyen (1999), what we here call ”‘totally reflexive”’ is called merely ”‘reflexive”’. Nguyen

(1999), Zadeh (1975). and Dubois and Prade (1980) all utilize some version of∧-transitivity, while

f -transitivity is used by Billot (1992). The reason for differing definitions of transitivity is thatf -

transitivity maintains the irrelevance of independent alternatives.
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We will concentrate on which are∧-transitive. Note, this is the case if the degree to which two

elements are related is greater than the join of the degree to which each element is related to some other

element. Ifx∧y = min x, y then this says that if a relation is transitive, then an item is at least as similar

to another item as the minimum of the similarity between either of the items and any other item.

Definition 3.3.2. A fuzzy relation is afuzzy indifference relationif it is symmetric,∧-transitive, and

not totally non-reflexive.

3.3.1 fuzzy preference relation

One of the themes of this paper is to discuss each definition by the story the idea behind the de-

finition needs to tell. If we wish to state a preference between two objects, we may not wish for

that preference to be crisp. It may be important to consider the degree to which one object is pre-

ferred over another. For instance, consider the preferences,-, between values for some country of

having an exclusive trade agreement with Lichtenstein,τL, with Andorra,τA, and with the United

Kingdom,τUK . Perhaps an agreement with the UK is locally preferred to an agreement with Andorra,

- (τUK , τA) ≥- (τA, τUK). Perhaps- (τL, τA) =- (τA, τL) = α. If α ∈ (0,1], then we say that a country

would be locally but actively indifferent of the relative values of agreements with Andorra and Licht-

enstein. That is to say that the country can see that the two agreements have merit and that the merit of

each is different from the other, but that the country does not particularly prefer an agreement with one

to the other. On the other hand, ifα = 0, the agent cannot particularly compare the two, perhaps their

is not enough information, and the decision makers of a country do not know enough about the two to

know the values of such an agreement. Or perhaps the country is completely uninterested in trading

with either country. Thus we will not require preference relations to be reflexive, but we will require

that they not be totally non-reflexive.

Definition 3.3.3. A fuzzy preference relationis a fuzzy relation that is not totally non-reflexive,∧-

transitive

The concept of belief functions and plausibility functions can easily be adapted to be the image of

fuzzy sets, be they fuzzy preference relations, fuzzy equivalence relations, or another fuzzy mapping.

Later in this thesis, I will suggest using belief functions to define fuzzy preference relations. For more

on how fuzzy sets might be encoded based in any of these theories, see Klir and Yuan (1995).
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4 Game Theory

In games of strategy or chance, such as chess or poker, we might talk about a strategy set as a sort

of how-to book, which describes how to bet or what move to make, given the entire history of bets,

moves, and cards the player has seen in the game. The goal of this book would be to guarantee each

player the highest expected payoff, be it a checkmate or large winnings. If the book were complete

enough, it would not be necessary to play the game, as at each stage of the game, there would be a page

which dictated the subsequent move. Each player would be able to submit their strategy and instantly

receive their winnings or forced to pay out their losses. In games of chance, the expected earnings

and losses could also be calculated, again based on the strategy outlined in each player’s book. Game

theory is the tool by which we might understand and model games, foreseeing outcomes based on the

rules themselves, rather than based on actually playing the game.

With this in mind, social scientists have attempted to draw parallels between games and real human

situations, and have claimed that certain political or social events have happened because essentially

the actors are playing some game and this outcome is parallel to some fortuitous payoff in the game.

These fortuitous payoffs generally correspond to equilibria in the game, a central concept to game

theory I will discuss shortly. Thus a social scientist can define some game which models the choices

and preferences of the parties involved in the situation being studied, and guarantee that their theorems

are logically consistent with their set of assumptions.

4.1 crisp games

Considering situations withN players, we will use strategy sets,Σ = {Σ1, . . . ,ΣN}, to describe

all different strategies possible for the players. Each strategy will result in some consequence,K =

{K1, . . . ,KN}. For each player, there is a preference relation,-= {-1, . . . ,-N}, defined componentwise

on the setK. Given those consequences, payoffs are doled out from a payoff set,Π = {Π1, . . . ,ΠN}. A
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vector of consequence functions,~g = {g1, . . . ,gN}, then associates with each strategy a consequence,

gi : Σ −→ Ki .

Often our strategy set will be restricted to being a compact and convex subset ofRn. Recall compact

means closed and bounded. Doing this forces our strategies to be similar to a finite set in that we can

make statements about its boundaries and we know that it has an upper and lower bound. For strategies

of games, boundedness is sensible because although a strategy may include a dense set within a range

of values, one should not expect a player to have an infinitely great amount of some resource to apply.

Occasionally forcing strategy sets to be closed reduces their applicability to some game, although taking

the closure of an open strategy set will often still give the researcher a clear view of the game, with the

possibility of removing the points of closure after the analysis is complete.

The preference relation is defined to be a complete, transitive, and reflexive binary relation. Often,

a vector of utility functions,~u = {u1, . . . ,uN} : Σ −→ Π then associates a payoff with each strategy a

payoff by ui(σi) = πi with σi ∈ Σi andπi ∈ Πi such that forx, y ∈ Σi , x -i y if an only if ui(x) ≥ ui(y).

We will discuss games as sets,{N,Σ,K, ~g,-}, letting us specify the number of players, the choices

of strategies for each player, the consequences for each player given the strategies of all players, and an

ordering of the preferences of each player on those consequences. Notice that preferences are defined

independent of the consequences of the strategies for another player.Πi can be any possible strategy.

This means that a strategy must be defined for every possible eventuality of the game, even if that

eventuality would never occur given the rest of the strategy. For instance, it will tell a chess player

playing black how to play various variations of the Sicilian Defense, even if it first tells the player to

respond to an opening of e4 with e5, preferring the Ruy Lopez opening.

Often situations are modeled by games to show that some set of strategies by the players is more

likely than others. One reason that a strategy would be more likely is that given some a strategy for all

other players, no one player would secure for themself a greater payoff by changing their strategy.

Definition 4.1.1. for someN-player game,{N,Σ,K, ~g,-}, with Σ the set of strategy profiles,Π set of

payoff profiles,~u : Σ −→ K the utility function, a strategy profile,σ∗ = {σ∗1, . . . , σ
∗
N} is aNash equilib-

rium if for all i ∈ {1, . . . ,N}, there exists no strategyΣi , Σ
∗
i such thatgi({Σ∗1, . . . ,Σ

∗
i−1,Σi ,Σ

∗
i+1, . . . ,Σ

∗
N}) -i

gi({Σ∗1, . . . ,Σ
∗
N})

This is the basic equilibrium condition, and has been the most explored equilibrium in Game The-
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ory. Another way of formulating a Nash equilibrium is by defining a best-response function. A best-

response function is a function that takes as its input the strategy of all of the opponents of some player

and outputs the one or more strategies which will give the player the highest payoff.

Definition 4.1.2. In a N-player game, given a strategy setΣ = {Σ1, . . . ,ΣN}, and a consequence function

for playeri, gi a best-response functionis a functionBi : {Σ1, . . . ,Σi−1,Σi+1, . . . ,ΣN} −→ Σi such that

Bi = {σi ∈ Σi : gi(σ1, . . . , σi−1, σiσi+1, . . . , σN) - gi(σ1, . . . , σi−1, σ
∗
i , σi+1, . . . , σN) for allσ∗i ∈ Σi}

We can define Nash equilibria in terms of best-response functions.

Lemma 4.1.3. for someN-player game,{N,Σ,K, ~g,-}, with Σ the set of strategy profiles,K set of

consequences,~g : Σ −→ K the vector of consequence functions, and-= (-1, . . . ,-N) the set of

preference relations for each player, a strategy profile,σ∗ = {σ∗1, . . . , σ
∗
N} is aNash equilibriumif and

only if for all best-response functions,{B − 1, . . . , BN}, σi ∈ Bi((σ1, . . . , σi−1, σi+1, . . . , σN) for all

i ∈ {1, . . . ,N}

To explore these concepts further, we will need some concepts from topology.

Definition 4.1.4. A preference relation,-i , over a set,X, with |X| = n, is quasiconcave on Xi if for

everyx∗ = {x∗1, . . . , x
∗
n} ∈ X, the set,{xi inXi : (x∗1, . . . , x

∗
i−1, xi , x∗i+1, . . . , x

∗
n) - (x∗1, . . . , x

∗
n)} is convex.

One of the most famous results in Game theory is John Nash’s 1951 proof of the existence of Nash

equilibria in N-player games given certain conditions. His proof used the Kakutani fixed point theorem,

which gives conditions on a function such as the best-response function so that there exists some value

σ∗ = {σ∗1, . . . , σ
∗
N} such thatσ∗i ∈ Bi((σ∗1, . . . , σ

∗
i−1, σ

∗
i+1, . . . , σ

∗
N) for all i ∈ {1, . . . ,N}.

Theorem 4.1.5.Kakutani’s fixed point theorem LetX be a compact convex subset ofRn and let f :

x −→ X be a set-valued function such that for allx ∈ X, the setf (x) is nonempty and convex and

the graph off is closed (for all sequences{xn} and{yn} such thatyn ∈ f (xn) for all n, xn −→ x, and

yn −→ y, we havey ∈ f (x), then there exists a fixed pointx∗ ∈ X such thatx∗ ∈ f (x∗).

Using fixed point theorems gives a situation that is invariant over repeated applications of a map-

ping. In this case, we will find that we may continue to apply the best-response function, but we will

reach a particular state which no player has a profitable deviation as defined by the response function.

Now we can state and prove a theorem about the existence of Nash equilibria.
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Theorem 4.1.6. For someN-player game,{N,Σ,K, ~g,-}, a Nash equilibrium exists if for alli ∈

{1, . . . ,N} the setΣi of strategies for playeri is a nonempty compact, convex subset ofRn, and each

preference relation,-i is continuous and quasiconcave.

Proof. DefineB : Σ −→ Σ by B(σ) = Πi Bi(σ1, . . . , σi−1, σi+1, . . . , σN) for all i ∈ {1, . . . ,N} whereBi

is the best response function for playeri. Notice Bi(σ1, . . . , σi−1, σi+1, . . . , σN) is nonempty since-i

is continuous andΣi is compact. Also,Bi(σ1, . . . , σi−1, σi+1, . . . , σN) is convex by the definition of the

quasiconcavity of-i onΣi . Also, B has a closed graph by the closedness of~g. Notice, this is equivalent

to saying that for sequences of strategies,P1,P2, . . . andQ1,Q2, . . ., wherePn −→ P andQn −→ Q

that if for all n, Qn ∈ B(Pn), thenQ ∈ P. Thus, Kakutani’s fixed point theorem applies andB has a

fixed point. So by our lemma, this fixed point is a Nash equilibrium of the game.

In the case of two player games, a certain number of examples are illustrative of the properties

required for a game to have a Nash equilibrium. The games in the next sections are given in the form

of a matrix, with the choices for player 1 at the top and for player 2 along the side, and the payoffs for a

given pair of choices given as the corresponding ordered pair such that (x,y) implies that player 1 gets a

payoff of x, and player 2 gets a payoff of y. Each players preferences are here to get a higher numbered

payoff.

4.1.1 Bach or Stravinsky (Battle of the Sexes)

The game classically known as the Battle of the Sexes or more recently dubbed Bach or Stravinsky

involves two players who would like to coordinate their actions so that both end up at the same venue for

a rendez-vous. It is a case where a game has two Nash-Equilibria, since given the choice of one player,

the other will want to chose the same composer, that is the best response function will recommend the

same composer as the other player.

Bach Stravinsky
Bach (5,6) (0,0)

Stravinskyy (0,0) (6,5)

Table 4.1 Bach or Stravinsky
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4.1.2 Matching Pennies

Matching pennies is the classic zero-sum game, which means that the two players have antisym-

metric payoffs. In this game, both players have a penny, which they conceal from their opponent. The

they simultaneously show their opponent their penny, having placed it heads up or tails up. Player 1

gets a point if the pennies match, while player 2 receives a point if the pennies do not match. This

example shows a case where their is no Nash equilibrium. In this case, this is because the preference

relation is not quasiconcave.

Heads Tails
Heads (1,-1) (-1,1)

Tails (-1,1) (1,-1)

Table 4.2 Matching Pennies

4.1.3 Prisoner’s Dilemma

The most famous game is perhaps the Prisoner’s Dilemma. In contemporary literature, it first arose

in work at RAND Corporation such as that of Flood (1952). Its application was popularized largely

by Schelling (1960). It has also been very popular in a repeated form (Axelrod (1985)) where one

can study concepts like learning and reputation. Borges et al. (1997) used fuzzy rules to study this

repeated or iterated prisoner’s dilemma. Many stories have been told to describe situations where this

arises. Perhaps the most interesting (if not compelling) is in the situation of an arms race. In this

telling, one would hope that the two players (countries) cooperate and halt production or dismantle

their arms. However if one country does so, the best response function tells the other to get themselves

an advantage by defecting (and building a large enough arsenal to destroy their opponent or at least to

force the opponent into a weak bargaining position). Thus if neither player trusts the other, they will

both defect, the unique Nash equilibrium, even though that position is not efficient (Pareto optimal).

Cooperate Defect
Cooperate (5,5) (8,1)

Defect (1,8) (3,3)

Table 4.3 Matching Pennies
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4.2 fuzzy games

We saw before that sets can be turned into fuzzy sets and relations can be turned into fuzzy relations.

Thus, it seems to create a fuzzy game, we have many choices. Each choice stems from a different story

about how the game is to be played. Song and Kandel (1999) examines a variation on the prisoner’s

dilemma where the degree to which the player wishes to help or harm his partner is fuzzy. Garagic

and Cruz (2003) uses a fuzzy fixed-point theorem to show that certain fuzzy matrix games have a Nash

equilibrium. Another way of making a game fuzzy is explored by Arfi (2006) where outcomes of a

variation of the prisoner’s dilemma are broken down into finite, discrete values based on finite, discrete

levels of cooperation and defection. Another work, Nishizaki and Sakawa (2001) explores cooperative

fuzzy games as a method of conflict resolution and concentrates on numerical solutions to such game.

In our case, we will start with looking at a simple fuzzy game by utilizing a fuzzy preference relation.

In this case, we might say that the degree to which a player prefers a given object over another is

fuzzy. One way to do this, is to relate each outcome by the degree of belief that it is better than another

outcome. In this case, we need to define a new type of best-response function.

Definition 4.2.1. In a N-player game with fuzzy preference relation,-, given a strategy setΣ =

{Σ1, . . . ,ΣN}, and a consequence function for playeri, gi a fuzzy preference relation best-response

function is a functionBi : {Σ1, . . . ,ΣN} −→ Σi such thatBi(σ1, . . . , σN) = {σ∗i ∈ Σi : (σ1, . . . , σN) -

(σ1, . . . , σi−1, σi∗, σi+1, . . . , σN)}

The fuzzy preference relation best-response function is obviously non-empty. In this case, our

previous proof of the existence of Nash equilibria can still hold so long as certain conditions hold:

Definition 4.2.2. A fuzzy preference relation,-i , over a set,X, with |X| = n, is fuzzy quasiconcave on

Xi if for every x∗ = {x∗1, . . . , x
∗
n} ∈ X, the set,{xi inXi :- ((x∗1, . . . , x

∗
i−1, xi , x∗i+1, . . . , x

∗
n), (x∗1, . . . , x

∗
n)) ≥-

((x∗1, . . . , x
∗
n), (x∗1, . . . , x

∗
i−1, xi , x∗i+1, . . . , x

∗
n))} is convex.

Theorem 4.2.3.For a fuzzy preference relation,-, on anN-player game,{N,Σ,K, ~g,-}, a Nash equi-

librium exists if for all i ∈ {1, . . . ,N} the setΣi of strategies for playeri is a nonempty compact, convex

subset ofRn, and for each preference relation,-i ,

i. - is continuous;
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ii. - is fuzzy quasiconcave.

The proof follows exactly as before.

Clearly, this conception of fuzzy games amounts to reducing fuzzy preferences to crisp preferences.

Another very similar construction called an equilibrium solution with respect to the degree of attain-

ment of the aggregated fuzzy goal is discussed in Nishizaki and Sakawa (2001). There work concen-

trates on computational methods for finding such solutions. We turn to a more sophisticated conception

of a fuzzy game, and define a Nash equilibrium concept based upon it. A generalized version of this is

due to Butnariu (1979). Exploring this work will give us another example of the importance of fixed

points in analyzing equilibria in game theory. As Butnariu’s formulation is more general than that of

some other games found in more recent research, including that of Nishizaki and Sakawa, examples

and ideas discussed in that work could be adapted to Butnariu’s concept. However, we will mention an

example from Butnariu’s work which shows that fuzzy beliefs about a players opponents can allow us

to explore interesting games that allowing for only fuzzy preference relations among outcomes misses.

4.2.1 Butnariu’s Game

To start, we will explore the concept of fuzzy topology and of a fuzzy fixed point theorem.

Definition 4.2.4. A fuzzy correspondenceon a setX is a mappingR : X −→ L(X) whereL(X) is the

fuzzy set based on the powerset ofX. We may examine the membership function,a(·), of the fuzzy

subsetA ∈ L(X). For a fuzzy correspondence,R(·), on X, we useRX to denote the fuzzy subset of

X × X which has a membership functionr(x, y) for any (x, y) ∈ X × X. We noteM(X) the set of fuzzy

correspondences onX.

Definition 4.2.5. Now, given a fuzzy correspondenceR(·) on X, a fixed point,x∗ ∈ X, is an element

such that for allx ∈ X, r(x∗, x∗) ≥ r(x∗, x).

Definition 4.2.6. We say that a fuzzy subset,A ∈ L(X), isconvexif and only if its membership function

is concave, ie for allq ∈ [0,1] and for all (x, y) ∈ X × X, we havea(qx+ (1− q)y) ≥ mina(x),a(y).

Remember that atopological vector space, X, is a vector space with continuous vector addition and

scalar multiplication. Such a topological space isHausdorff-separatedif for any x ∈ X, the intersection
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of all the closed neighborhoods ofX is the single element{x}. Such a space islocally convexif for all

x ∈ X, every neighborhood ofx is convex.

Definition 4.2.7. A fuzzy correspondenceR(·) is convexif for the topological vector spaceX, locally

Hausdorff-separated andC ⊆ X such thatC is nonempty, compact and convex, the fuzzy subsetRx ∈

L(X) is a convex fuzzy subset ofX. R(·) is closed if and only if the membership function,r(x, ·) is

upper semicontinuous.

Now, following the lead of Butnariu (1979) and Heilpern (1981), we present a fixed point theorem

in a fuzzy universe:

Theorem 4.2.8.Butnariu’s generalized fuzzy fixed point theorem ForX a real locally convex, Housdorff-

separated, topological vector space,X, and any nonempty, compact, convex subset,C ∈ X, if R(·) is a

convex fuzzy correspondence closed inC, thenR(·) has a fixed point inC.

The proof can be found in Billot (1992), and is an adaption of the one given in Butnariu (1979) and

Butnariu (1978). It is different from the theorem and proof given by Heilpern (1981), which requires

that the fuzzy correspondence be, in effect, a fuzzy contraction mapping on an appropriately defined

fuzzy metric. Notice that Butnariu’s theorem is valid for any topological structure, including metric

spaces which are used in the fuzzy fixed point theorem of Song and Kandel (1999). If we restrictX to a

subset of a Euclidean space and the fuzzy correspondence is a nonempty point to set function, we have

Kakutani’s fixed point theorem.

We also need to impose some particular characteristics on our fuzzy discourse. We will denoteU

as the universe of objects being discussed. as before, forx ∈ U, a(x) is the membership level ofx. The

product of two fuzzy subsets,A andB with membership level functions,a(·) andb(·) respectively, is

defined by [a×b](x) = a(y)×b(z) for x = (y, z) ∈ U and [a×b](x) = 0 else. We will define a particular

product of membership levels of fuzzy subsets where for fuzzy relations,R : A −→ B andS : B −→ C,

and (x, y) ∈ A, we haveS ◦ R(x, z) = supR(x, y) × S(y, z) : y ∈ U for (x, z) ∈ U, S ◦ R(x, z) = 0 else.

Now, again, we return to the stories that are told to explain why grouping of mathematical structures

models some sort of game. Again we will considerN-person games. In this game, all players first gather

and exchange information about what they will do, based on whatever logic they wish to employ. Then

all the players are cut off from communication with each other to some degree (possibly completely).
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At this point, each player knows the choices of strategies that other players have. They can then define

for themselves a vector of fuzzy sets which express the degree to which they believe the other players

might choose some strategy. The players will also be unsure about whether any given outcome is

preferable to another.

i. Σ = {Σ1, . . . ,ΣN} will be the set of strategies. We will require each player,i, to have only a finite

number of strategies from which to choose from, indexed by the function,n(i). soΣi is a vector

of strategies withn(i) elements.

ii. For each player,i, we will define thestrategic arrangementas a setYi ∈ [0,1]n(i) such thatYi =

Π
n(i)
j=1Y j

i , Σn(i)
j=1Y j

i = 1, whereY j
i is the percent of time playeri chooses actionj. Let Y = ΠN

i=1Yi .

This allows the players to choose mixed strategies, and allows the set of strategies to be convex.

iii. For each player,i, we defineei ∈ L(Πi∈NYi) and for allw = (w1, . . . ,wN) ∈ Πi∈NYi , as abelief

levelof the strategic choicew evaluated by player i. That is to say that each player evaluates the

degree to which they believe that the other players will play each of their possible strategies.ei

is a belief function as defined earlier.

iv. We will be consideringsi = (Ai ,wi) ∈ L((Π j∈N−iYj) × Yi) as astrategic conceptionfor player i.

Here,Ai is the belief of playeri in the strategic arrangements of the other players, and is a fuzzy

subset of the set of all of the possible strategies of the other players. HereAi represents playeri’s

belief in the strategies that would be chosen by the other players given thati playswi .

v. We also want it to be the case that forAi ∈ L(Π j∈N−iYj) andAi , ∅ then there exists (Ai ,wi) ∈

L(Π j∈N−iYj) × Yi) such thatei [Ai ](wi) , 0. Thus no matter what the others might do, no player

will be unable to formulate a strategy.

Definition 4.2.9. A play in this game is a vector~s = (s1, . . . , sN) such thatsi ∈ L(Π j∈N−iYj) × Yi .

For si = (Ai ,wi) ∈ L(Π j∈N−iYj) × Yi) and s∗i = (A∗i ,w
∗
i ) ∈ L(Π j∈N−iYj) × Yi), si is a better strategic

conceptionthans∗i if and only if ei [Ai ](wi) > ei [A∗i ](w
∗
i ). s is socially preferredto s∗ if si is a better

strategic conception thans∗i for all i ∈ N.

Definition 4.2.10. A possible solutionof a game of this type is a play,s∗ = (s∗1, . . . , s
∗
N), wheres∗i =

(A∗i ,w
∗
i ) such that for any other play,s= (s1, . . . , sN), with si = (A∗i ,wi), ei [A∗i ](w

∗
i ) ≥ ei [A∗i ](wi).
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Thus a possible solution corresponds intuitively with equilibrium points of non-fuzzy games in that

it is marked by its advantage in terms of a preference relation. In games of this type, an equilibrium

point is a refinement of this concept.

Definition 4.2.11. An Nash equilibriumof a game of this type is a possible solution,s∗ = (s∗1, . . . , s
∗
N),

wheres∗i = (A∗i ,w
∗
i ) such thata∗i (w1, . . . ,wi−1,wi+1, . . . ,wN) = 1 if wi = w∗i for any i ∈ N − i and

a∗i (w1, . . . ,wi−1,wi+1, . . . ,wN) = 0 elsewhere.

The additional condition, often callednon-constraining collaborationimplies that playeri expect a

strategyw j from player j only when playerj intends on playing that strategy. Thus a Nash equilibrium

arises after uncertainty in the belief of the moves of the other players is removed.

We will now compute two new fuzzy preference relations:

Definition 4.2.12.Theindividual fuzzy preferenceof a playeri is the fuzzy relationEi(·, ·) onL(W×W)

whereW = Π j∈NYj × Y such thatEi(s, s∗) = [ei [Ai ](w∗i ) ∧ ei [Ai ](wi)] × Π j∈N−{i}ej [A j ](w∗j ).

This individual fuzzy preference now takes into account what the other players would believe about

the degree of possibility of playeri going against their expectations.

Definition 4.2.13. The social preference relationis a fuzzy relationE(·, ·) on L(W × W) such that

Es(s, s∗) = Πi∈NEi(s, s∗) for all (s, s∗) ∈W×W.

Now we may state and prove the main theorems presented originally by (?, Butnariu79)

Theorem 4.2.14.Let s∗ be a play of a game of this type, withs∗i = (A∗i ,w
∗
i ). If A∗i , ∅, for all i, then

s∗ is a possible solution if and only ifs∗ is a fixed point inEs(·, ·).

Lemma 4.2.15.There is noi such that ifs∗ is a fixed point inEs(·, ·), then fors∗i = (A∗i ,w
∗
i ), we have

ei [A∗i ](w
∗
i ) = 0.

It leaves to be understood whether any useful equilibrium concepts can be defined and shown to

exist if the strategic choices are fuzzy. We remember that a Nash equilibrium arises when for alli,

j ∈ N, A∗i = A∗j . We would call this game a game with perfect information. However, the preference

relations remain possibly fuzzy, and we have reduced out fuzzy game to the fuzzy preference relation

game discussed earlier. This suggests that the players may approach a Nash equilibrium in a fuzzy

game of this type as they exchange more information about their full range of strategic conceptions.
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4.2.2 Example

Let us look at an example of an application of his formulation and equilibrium concept in political

science based on that provided by Butnariu (1979). For simplification, we can look at two players

named 1 and 2. In this game, the two players are interested in defining their military investments vis-

a-vis each other. Here we are looking at only the international level game in Putnam’s two level game

concept, ignoring completely the influence of national bodies such as special interests and legislatures.

For the purposes of this game, we will say that military investments perceived by opponents serve as

a deterrence for escalating of military conflict between the states. The two states then have as goals

both the reduction of intensity of conflict and the minimization of economic energy put into military

investments toward that ends.

We can easily arrange this situation so that it fits in the conditions defining Butnariu’s game. First,

letΣk = Σ
k
1, . . . ,Σ

k
n(k) be different strategies of military investment for playerk. PerhapsΣk

1 is missile de-

fense,Σk
2 is increased naval size,Σk

3 is greater nuclear capabilities, and so on. Note that this set is crisp,

and the players are allowed to chose as strategic arrangements mixed strategies which amount to invest-

ing a certain amount of a budget in any of various strategies until the budget is used up. In the course

of relations between the two players, each players can exchange information and (possibly) make guar-

antees about their future actions. From these exchanges, each player can decide what they believe to

be the value of their actions basing these values on their beliefs about how their opponent values the

actions available to them. Normalizing each players budget, we can denote a strategic arrangement by

Yk ∈ [0,1]n(k). We notice that the set of degrees of belief of playerk in the plausibility of each of their

opponents strategiesΣ−k defines a fuzzy set. We may denote these belief byei ∈ L(Πi∈NYi). Fuzzy

pairs, (Ak,wk) ∈ (Y−k × Yk) are strategic conceptions, where given playerk chooseswk, A−k is a fuzzy

set representing playerk’s level of belief that his opponent will play any given strategy givenk chooses

wk. We will also let it be the case that for any set of information exchanged, each player can form a

strategic conception as a reply to his beliefs about the other players actions, ie that the fifth condition

is satisfied.

This example, then, clearly defines a fuzzy game of the type Butnariu described. Thus we can say
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that two strategic conceptions of the game can be made, and one can be preferable to the other if its

belief level is more believable. Each player will examine to what degree they believe their opponent

will do something advantageous given they act in a way that most closely approaches what they believe

is advantageous to them. We will again be able to define a possible solution as before, a condition

where both players find their play to be advantageous compared with any other conception. It is not

clear exactly what these possible solutions will look like in terms of the military investments of the

players without making explicit the belief functions and strategies available, but our theory shows

that the possible solutions do arise as fixed points of fuzzy correspondences. So if given a chance to

play multiple games, we may expect the players to eventually discover a stable solution by iteration,

a stable play, which represents a possible solution. This is by no means a necessary outcome, as the

eistence of a fixed point does not imply that it will arise in a finite number of iterations of our fuzzy

corespondence. Butnarius definition of an equilibrium point is also meaningful here, as it is a possible

solution where the uncertainty of each players beliefs in the actions of the other players is removed.

In this case, it means that it is a possible solution where the military apparatus of the opponent is

openly observed, perhaps by cameras or UN appointed monitors. Butnariu’s work, then, suggests that

it is these solutions that are the most stable. It is not, of course, surprising that reducing uncertainty

provides stability. Unfortunately, most of the work in fuzzy game theory has not brought us closer to

examining games with fuzzy beliefs, only fuzzy goals. A return to Butnariu’s work, then, may allow

us to reexamine what it is about fuzzyness that makes it so attractive to game theory.
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5 Conclusion

In this paper we have defined fuzzy sets an looked at a couple ways they have been used, eventu-

ally discussing the topic of fuzzy games. We concentrated especially on Butnariu’s game because it

encompasses the more detailed work of other authors, and also because the example Butnariu’s game

provides is particularly seductive to those interested in social science. In particular, Butnariu examines

fuzzyness in social beings (people, societies, etc.) beliefs about the actions of social beings, including

themselves. It is true that Butnariu’s game suggests that to a certain degree, more information brings

more stability to games, a fact that is well known both in the study of theoretical games of a crisp type

(although not universally), as well as intuitively and in social practice (again exceptions do exist). An

exploration of social events with an eye to their formulation in the terms of Butnariu’s game has not

been seen, although parallel formulations do exist, and suggest that Butnariu’s theorems would hold

true in the real world. In this paper, I did not discuss the nature of the fuzzy correspondences which

would give rise to possible solutions of Butnariu’s game, and in future work, both a discussion of that

nature, and an exploration of what would make that correspondence easily definable in terms of real

world processes would be important. This would allow us to compare the mechanisms which make

Butnariu’s theorems work mathematically with the mechanisms which govern social processes in the

real world. This type of comparison, along with an honest assessment of how all the theorems of game

theory speak to actual causal mechanisms in the real world applications social science is so keen on,

is perhaps the next important movement in the philosophy of social science. I personally hope to see

more work on the meanings of the applications of game theory to social science. Why does game

theory model human behaivior? What mathematical tools can we use to help us better make those

models? Butnariu’s game shows that game theory is still relevant if we release our formulations from

the constraints of crisp sets, and where fuzzy sets better model a situation than crisp sets, the existance

of a maturing field of fuzzy game theory will give social scientists the tools to more often move in that
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direction.
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