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Preface

What is this book about?

This book is on the theory and on the applications of cooperative games.
We deal with agents exchanging objects, profit centers within firms, political
parties groping for power and many other sorts of “players”.

Cooperative game theory focuses on the question of “who gets how
much”. This question is determined by the two pillars of cooperative game
theory. The first pillar is the coalition function (also called characteristic
function) that describes the economic (sociologic, political) opportunities
open to all possible subgroups of the player set (coalitions). A coalition
function may represent a bargaining situation, a market, an election, a cost-
division problem and many others.

The second pillar is the solution concept applied to coalition functions.
Solutions consist of payoffs attributed to the players. Typically, solutions
can be described in one of two ways. Either we provide a formula or an
algorithm that tells us how to transfer a coalition function into payoff vectors
(formula definition). Or we put down axioms that describe in general terms
how much players should get (axiom definition) — axioms in cooperative
game theory are general rules of division. For example, Pareto efficiency
demands that the worth of the grand coalition (all players taken together)
is to be distributed among the players. According to the axiom of symmetry,
symmetric (not distinguishable but by name) players should obtain the same
payoff.

Ideally, the formula and the axiom definitions coincide. This means that
a solution concept can be expressed by a formula or by a set of axiom and
that both ways are equivalent — they lead to the very same payoff vectors.

As in any book on cooperative game theory, we, too, talk about matching
formulas and axiom definitions. However, we stress applications over theory.
This means that we deal with theoretical concepts only if they are helpful
for the applications that we have in mind. The knowledgeable reader will
excuse us for omitting the von Neumann-Morgenstern sets or the nucleolus.
Instead, the Shapley value and derivatives of the Shapley value take center
stage.

Which applications do we cover?

XIII



Preface 1

We deal with many different institutions that range from markets and elec-
tions to coalition governments and hierarchies. In particular, we consider
the following applications.

• How does the price obtained on markets depend on the relative
scarcity of the traded objects?

• How can we model power and power-over?
• Can we expect unions to be detrimental to employment?
• Will unemployment benefits increase unemployment?
• How can overhead costs be shared?
• How does the number of ministries a party within a government
coalition obtains depend on hte number of seats in parliament?

• Which is the optimal percentage of a house price a real estate agent
asks for himself?

• How many civil servants an economy can be expected to hold?

Sometimes, cooperative game theory and its axioms are exclusively inter-
preted in a normative way. While cooperative game theory has a lot to
offer for normative analyses, most examples covered in this book are best
interpreted in a positive manner.

What about mathematics ... ?

Cooperative game theory need not be too demanding in terms of mathe-
matical sophistication. We explain the mathematical concepts when and
where they are needed. Also, since we have an applied focus, we are more
interested in interpretation and application than in proofs of axiomatization.

Exercises and solutions

The main text is interspersed with questions and problems wherever they
arise. Solutions or hints are given at the end of each chapter. On top, we
add a few exercises without solutions.

Thank you!!

I am happy to thank many people who helped me with this book. Several
generations of students were treated to (i.e., suffered through) continuously
improved versions of this book. Frank Hüttner and Andreas Tutic ... I
also thank my coauthors Andre Casajus, Tobias Hiller and ... for the good
cooperation with high payoffs to everyone. Some generations of Bachelor
and Master students also provided feedback that helped to improve the
manuscript.

Leipzig, September 2013



2 Preface

Harald Wiese



Preface 1

Overview and Pareto efficiency





Part A
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CHAPTER I

Overview

1. Introduction

In this first chapter, we plan to give the reader a good idea of what to ex-
pect in this book. In sections 2 through 4, we briefly introduce the reader to
coalition functions and to solution concepts for coalition functions. Section
6 offers some comments on cooperative game theory versus noncooperative
game theory. Finally, in section 7, we present the subject matters part by
part and chapter by chapter.

2. The players, the coalitions, and the coalition functions

Throughout the book, we deal with a player set N = {1, ..., n} and
the subsets of N which are also called coalitions. Thus, the coalitions of
N := {1, 2, 3} include {1, 2} , {2} , ∅ (the empty set — no players at all) and
N (all players taken together — the grand coalition).

The general idea of cooperative game theory is that

• coalition functions describe the economic, social or political situa-
tion of the agents while

• solution concepts determine the payoffs for all the players from N

taking a coalition function as input.

Thus,

coalition functions

+ solution concepts

yield payoffs.

In the literature, there are two different sorts of coalition functions, with
transferable utility and without transferable utility. We focus on the simpler
case of transferable utility in all parts of the book except the last one. In
the framework of transferable utility, a coalition function v attributes a real
number v (K) to every coalition K ⊆ N. Consider, for example, the gloves
game v for N = {1, 2, 3} where the two players 1 and 2 hold a left glove and
player 3 holds a right glove. The idea behind this game is complementarity
— pairs of gloves have a worth of 1. Thus, the coalition function for our

5



6 I. OVERVIEW

gloves game is given by

v (∅) = 0,

v ({1}) = v ({2}) = v ({3}) = 0,
v ({1, 2}) = 0,

v ({1, 3}) = v ({2, 3}) = 1,
v ({1, 2, 3}) = 1.

Left-glove holders and right-glove holders can stand for the two sides of a
market — demand and supply. For example, the left-glove holders buy right
gloves in order to form pairs.

3. The Shapley value

In our mind, the Shapley value is the most useful solution concept in
cooperative game theory. First of all, it can be applied directly to problems
ranging from bargaining over cost division to power. Applying the Shapley
value to the above gloves game yields the payoffs

Sh1 (v) =
1

6
, Sh2 (v) =

1

6
, Sh3 (v) =

2

3
.

We see that the Shapley value

• distributes the worth of the grand coalition v (N) = 1 among the
three players (Sh1 (v) + Sh2 (v) + Sh3 (v) = 1),

• allots the same payoff to players 1 and 2 because they are “sym-
metric” (Sh1 (v) = Sh2 (v)), and

• awards the lion’s share to player 3 who possesses the scarce resource
of a right glove (Sh3 (v) =

2
3 > 1

6 = Sh2 (v)).

Thus, the Shapley value tells us how market power is reflected by payoffs.
This and many other applications are dealt with in the first part of our book
which concentrates on the Shapley value (and some related concepts such
as the Banzhaf value).

There are several alternative ways to calculate the Shapley value. Let us
denote the payoff to player i by xi. Assume the players 1, 2 and 3 bargain
on how to divide the worth of the grand coalition, v (N) = 1, between them,
i.e., we have

x1 + x2 + x3 = 1. (I.1)

Furthermore, let every player use a “where would you be without me” ar-
gument. In particular, player 3 could issue the following threat to player 1
(and similarly to player 2): “Without me, there would be only two left gloves
and your payoff would be zero rather than x1, i.e., you, player 1, would lose

x1 − 0
without me.”
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Player 1’s counter-threat against player 3 runs as follows: “Without me,
you, player 3 would find yourself in an essentially symmetrical situation
with player 2 (one right-hand glove versus one left-hand glove) and obtain
the payoff 1

2 , i.e., you would lose

x3 −
1

2

without me.”
The Shapley value rests on the premise of equal bargaining power — both

arguments carry the same weight. Thus, the two differences are the same:

x1 − 0︸ ︷︷ ︸
loss to player 1

if player 3 withdraws

= x3 −
1

2︸ ︷︷ ︸
loss to player 3

if player 1 withdraws

. (I.2)

Since we have an analogous threat and an analogous counter-threat between
players 2 (rather than player 1) and 3, we find

1 = x1 + x2 + x3 (eq. I.1)

=

(
x3 −

1

2

)
+

(
x3 −

1

2

)
+ x3 (eq. I.2)

and hence

(x1, x2, x3) =

(
1

6
,
1

6
,
2

3

)
. (I.3)

The Shapley value is easy to handle. This simplicity gives room for addi-
tional structure that may be needed in applications. Thus,

• different players may belong to different groups that work together,
bargain as a group etc.

• any two players may or may not be linked together where the links
stand for communication or cooperation.

We will briefly introduce

Shapley + structure

in this introductory chapter and treat them in some detail in later chapters.

4. The outside option value

Taking up the gloves game again, assume that the glove traders 1 (left
glove) and 3 (right glove) agree to cooperate to form a pair of gloves. We
can express this fact by the partition of N

{{1, 3} , {2}}
where we address {1, 3} and {2} as that partition’s components.

What are the player’s payoffs in such a situation? The first idea might
be to apply the Shapley value to the individual components. In fact, the
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resulting value is known as the AD value (where A stands for Aumann and
D for Dreze) and given by

AD1 (v) = AD3 (v) =
1

2
, AD2 (v) = 0.

More recent developments in cooperative game theory point to the fact that
player 3 should obtain more than 1

2 because he can threaten to join forces
with player 2 rather than player 1. Thus, player 2 is an “outside option” for
player 3.

How can we find the players’ payoffs in that case? First of all, players 1
and 3 will share the value of a glove, i.e., we have

x1 + x3 = 1 (I.4)

and x2 = 0. When 1 and 3 bargain on how to share the payoff of 1, both
players may point out that each of them is necessary to form the component
{1, 3}. Therefore, the gain from leaving player 2 out should be divided
equally where the Shapley value (for the trivial partition {{1, 2, 3}} serves
as a reference point:

x1 − Sh1 (v)︸ ︷︷ ︸
gain for player 1

from forming component {1, 3}

= x3 − Sh3 (v)︸ ︷︷ ︸
gain for player 3

from forming component {1, 3}

.

(I.5)
By

1 = x1 + x3 (eq. I.4)

= [x3 − Sh3 (v) + Sh1 (v)] + x3 (eq. I.5)

= 2x3 −
2

3
+
1

6
(eq. I.3)

we obtain the outside-option value payoffs due to Casajus (2009)

(x1, x2, x3) =

(
3

4
, 0,
1

4

)
.

5. The network value

Instead of considering partitions, we may assume a network of links
between players. A link between two players means that these two players
can communicate or cooperate. The corresponding generalization of the
Shapley value is known as the Myerson value.

Departing fromt the gloves game, we assume that players 1 and 3 are the
productive or powerful players. This is reflected by the coalition function v

given by

v (K) =

{
1, K ⊇ {1, 3}
0, otherwise
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1 2 3

1 2 3

F����� 1. A simple network

Coalitions different from {1, 3} and {1, 2, 3} have the value zero. Without
the network, we should expect the Shapley payoffs

(
1
2 , 0,

1
2

)
:

• Player 2 is unimportant (a null player, as we will say later) and
obtains nothing.

• The two players 1 and 3 are symmetric and share the worth of 1.

However, we assume restrictions in cooperation or communication. In par-
ticular, players 1 and 3 are not directly linked (see the upper part of fig. 1).
Player 2’s role is to link up the productive players 1 and 3. How should he
be rewarded for his linking service?

It is plausible that the payoffs are zero for all players in case of the
network linking only players 1 and 2 (lower part of the figure). After all,
the two productive players cannot cooperate.

Starting with the upper network and assuming that the link between
players 2 and 3 can be formed (or dissolved) by mutual consent only, the
removal of this link should harm both players equally:

x2 − 0︸ ︷︷ ︸
loss to player 2
if link is removed

= x3 − 0︸ ︷︷ ︸
loss to player 3
if link is removed

. (I.6)

Recognizing the symmetry between players 1 and 3 in the upper network
(both are productive and both need player 2 to realize their productive
potential), we obain

1 = x1 + x2 + x3

= x3 + x2 + x3 (symmetry)

= x3 + x3 + x3 (eq. I.6)

and hence

(x1, x2, x3) =

(
1

3
,
1

3
,
1

3

)
.
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6. Cooperative and noncooperative game theories

It is sometimes suggested that non-cooperative game theory is more
fundamental than cooperative game theory. Indeed, from an economic or
sociological point of view, cooperative game theory seems odd in that it does
not model people who ”act”, ”know about things”, or ”have preferences”.
In cooperative game theory, people just get payoffs. Cooperative game the-
ory is payoff-centered game theory. Noncooperative game theory (which
turns around strategies and equilibria) could be termed action-centered or
strategy-centered. Of course, non-cooperative game theory’s strength does
not come without a cost. The modeller is forced to specify in detail (se-
quences of) actions, knowledge and preferences. More often than not, these
details cannot be obtained by the modeller. Cooperative game theory is
better at providing a bird’s eye view.

On the other hand, cooperative game theory is more demanding in terms
of interpretation. It is the modeler’s task to imagine a story behind a coali-
tion function or to translate a story into a coalition function. Also, while
cooperative game theory yields payoffs, these payoffs often suggest actions.

While the two theories rely on very different methods, they get close for
two different reasons. Imagine a cooperative solution concept that produces
certain payoffs for the players. One can ask the question whether a nonco-
operative model exists that leads to the same payoffs. This is the so-called
Nash program. Of course, the inverse is also possible. Take a noncooperative
model that leads to certain payoffs in equilibrium. Is there a cooperative
model that also produces these payoffs?

Second, for some applications, mixtures of noncooperative and coopera-
tive models prove quite useful. The first part of the model is noncooperative
and the last cooperative. In this book, we will employ mixed models several
times.

7. This book

7.1. Overview. I finally decided on the following order of parts and
chapters:

• The present part consists of this introductory chapter and a chapter
on Pareto efficiency. In that chapter, we present a wide range
of microeconomic models through the lens of the Pareto principle
which is one the most welknown cooperative solution concepts.

• Part B is a careful and slow introduction into cooperative game
theory. In particular, chapter III uses the gloves game as the leading
example to explain the workings of the Shapley value and the core,
arguably the two main cooperative concepts. Many other games
are presented in chapter IV which also defines general properties of
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coalition functions. Chapter V is more technical and considers the
vector space of coalition functions. The results obtained are used
in chapter VI where three different axiomatizations of the Shapley
value are presented and discussed. Also, the Banzhaf value gets a
short treatment.

• Parts C and ?? introduce additional structure on the player set.
Part C deals with partitional values based on the Shapley value such
as the AD value, the union value and the outside-option values.
— Chapter VII deals with partitions where the players within a
component share the component’s worth while outside options
are taken into account. For example, we consider the power
of parties within government coalitions. Here some political
parties work together to create power. The outside options
concern other parties with which alternative government coali-
tions could have been formed.

— Working togehter to create worth is the reason for forming
components in chapter VII. In contrast, forming bargaining
groups is the topic treated in chapter VIII. Unions are a prime
example.

— In chapter ??, we present an application that rests on dealing
with worth-creating components (firms) and bargaining com-
ponents (unions) at the same time. We consider the question
of how unions and unemployment benefits influence emoploy-
ment.

• Part ?? concentrates on networks and the Myerson value (chapter
??). Applications concern the Granovetter thesis (that weak links
are more important than strong links) in chapter ?? and hierarchies
within firms in chapter ??.

• Part ?? deviates from the previous parts in that some players’
payoffs are given from the outset. We show that we can tackle
two different topis with this approach. Chapter ?? analyzes the
size and setup of the public sector in an economy while chapter ??
deals with a real-estate agent who decides on his fees.

• While the first five parts of the book deal with the payoffs obtain-
able by players who produce or bargain, part ?? shifts attention to
payoffs that players obtain for reasons of solidarity (chapter ??) or
by force (chapter ??).

• Players in parts B to ?? are atomic (indivisible). Part ?? is con-
cerned with quite diverse models where players work part-time
(chapter ??) or “grow” in the sense of growth theory (chapter ??)
or in the sense of evolutionary theory (chapter ??). We work with
non-atomic agents who form a continuum.
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• Finally, part ?? turns to non-transferable utility. We examine the
allocation of goods within the Edgeworth box (chapter ??) and also
present the Nash bargaining solution (chapter ??).

7.2. Alternative paths through the book. The careful reader goes
through the book in the above order. However, different "pick and choose"
options present themselves.

• The classical path: parts B and ??
Arguably, every economist worth his salt should know the Shap-

ley value, the core, the Banzhaf solution, the core for an exchange
economy and the Nash bargaining solution. If that is all you want,
stick to the classical path.

• The structured path: parts B, C and ??
If you are interested in applications involving partitions and

networks, you may choose to restrict attention to chapters III and
VI within part B before turning to Shapley values where players
are structured in some way or other. Chapters VII, VIII, and ??

present the basic theory with some applications while chapters ??,
??, and ?? put additional flesh on these models.

• The innovative path: parts ??, ??, and ??
Knowledgeable readers may well get bored with most chapters

in this book. May-be, some chapters in the innovative path will
grab their attention?



CHAPTER II

Pareto optimality in microeconomics

Although the Pareto principle belongs to cooperative game theory, it
sheds an interesting light on many different models in microeconomics. We
consider bargaining between consumers, producers, countries in interna-
tional trade, and bargaining in the context of public goods and externalities.
We can also subsume profit maximization and household theory under this
heading. It turns out that it suffices to consider three different cases with
many subcases:

• equality of marginal rates of substitution
• equality of marginal rates of transformation and
• equality of marginal rate of substitution and marginal rate of trans-
formation

Thus, we consider a wide range of microeconomic topics through the lens of
Pareto optimality.

1. Introduction: Pareto improvements

Economists are somewhat restricted when it comes to judgements on
the relative advantages of economic situations. The reason is that ordinal
utility does not allow for comparison of the utilities of different people.

However, situations can be ranked with the concepts provided by Vil-
fredo Pareto (Italian sociologue, 1848-1923). Situation 1 is called a Pareto
superior to situation 2 if no individual is worse off in the first than in the
second while at least one individual is strictly better off. Then, the move
from situation 2 to 1 is called a Pareto improvement. Situations are called
Pareto efficient, Pareto optimal or just efficient if Pareto improvements are
not possible.

E������� II.1. a) Is the redistribution of wealth a Pareto improvement
if it reduces social inequality?

b) Can a situation be efficient if one individual possesses everything?

This chapter rests on the premise that bargaining leads to an efficient
outcome under ideal conditions. As long as Pareto improvements are avail-
able, there is no reason (so one could argue) not to “cash in” on them.

13



14 II. PARETO OPTIMALITY IN MICROECONOMICS

2. Identical marginal rates of substitution

2.1. Exchange Edgeworth box and marginal rate of substitu-

tion. We consider agents or households that consume bundles of goods. A
distribution of such bundles among all households is called an allocation.
In a two-agent two-good environment, allocations can be visualized via the
Edgeworth box. Exchange Edgeworth boxes also allow to depict preferences
by the use of indifference curves.

The analysis of bargaining between consumers in an exchange Edgeworth
box is due to Francis Ysidro Edgeworth (1845-1926). Edgeworth’s (1881)
book bears the beautiful title “Mathematical Psychics”. Fig. 1 represents
the exchange Edgeworth box for goods 1 and 2 and individuals A and B.
The exchange Edgeworth box exhibits two points of origin, one for individual
A (bottom-left corner) and another one for individual B (top right).

Every point in the box denotes an allocation: how much of each good
belongs to which individual. One possible allocation is the (initial) endow-
ment ω =

(
ωA, ωB

)
. Individual A possesses an endowment ωA =

(
ωA1 , ω

A
2

)
,

i.e., ωA1 units of good 1 and ωA2 units of good 2. Similarly, individual B has
an endowment ωB =

(
ωB1 , ω

B
2

)
.

All allocations
(
xA, xB

)
with

• xA =
(
xA1 , x

A
2

)
for individual A and

• xB =
(
xB1 , x

B
2

)
for individual B

that can be represented in an Edgeworth box with initial endowment ω fulfill

xA1 + xB1 = ωA1 + ωB1 and

xA2 + xB2 = ωA2 + ωB2 .

E������� II.2. Do the two individuals in fig. 1 possess the same quan-
tities of good 1, i.e., do we have ωA1 = ωB1 ?

E������� II.3. Interpret the length and the breadth of the Edgeworth
box!

Seen from the respective points of origin, the Edgeworth box depicts the
two individuals’ preferences via indifference curves. Refer to fig. 1 when you
work on the following exercise.

E������� II.4. Which bundles of goods does individual A prefer to his
endowment? Which allocations do both individuals prefer to their endow-

ments?

The two indifference curves in fig. 1, crossing at the endowment point,
form the so-called exchange lens which represents those allocations that are
Pareto improvements to the endowment point. A Pareto efficient allocation
is achieved if no further improvement is possible. Then, no individual can be
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A

B

Ax1

Ax2

Bx2

indifference
curveB

indifference
curveA

Bx1

exchangelens

A
1ω

B
1ω

B
2ωA

2ω

F����� 1. The exchange Edgeworth box

made better off without making the other worse off. Oftentimes, we imagine
that individuals achieve a Pareto efficient point by a series of exchanges. As
long as a Pareto optimum has not been reached, they will try to improve
their lots.

Finally, we turn to the equality of the marginal rates of substitution.

Graphically, the marginal rate of substitution MRS =
∣∣∣dx2dx1

∣∣∣ is the absolute
value of an indifference’s slope. If one additional unit of good 1 is consumed
while good 2’s consumption reduces by MRS units, the consumer stays
indifferent. We could also say: MRS measures the willingness to pay for
one additional unit of good 1 in terms of good 2.

2.2. Equality of the marginal rates of substitution. Consider,
now, an exchange economy with two individuals A and B where the marginal
rate of substitution of individual A is smaller than that of individual B:

(3 =)

∣∣∣∣
dxA2
dxA1

∣∣∣∣ =MRSA < MRSB =

∣∣∣∣
dxB2
dxB1

∣∣∣∣ (= 5)

We can show that this situation allows Pareto improvements. Individual A is
prepared to give up a small amount of good 1 in exchange for at least MRSA

units (3, for example) of good 2. If individual B obtains a small amount of
good 1, he is prepared to give up MRSB (5, for example) or less units of
good 2. Thus, if A gives one unit of good 1 to B, by MRSA < MRSB

individual B can offer more of good 2 in exchange than individual A would
require for compensation. The two agents might agree on 4 units so that
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A

B

Ax1

Ax2

Bx2

Bx1

contract curve

good 1

good 1

good 2 good 2

F����� 2. The contract curve

both of them would be better off. Thus, the above inequality signals the
possibility of mutually beneficial trade.

Differently put, Pareto optimality requires the equality of the marginal
rates of substitution for any two agents A and B and any pair of goods 1
and 2. The locus of all Pareto optima in the Edgeworth box is called the
contract curve or exchange curve (see fig. 2).

E������� II.5. Two consumers meet on an exchange market with two
goods. Both have the utility function U (x1, x2) = x1x2. Consumer A’s

endowment is (10, 90), consumer B’s is (90, 10).

a) Depict the endowments in the Edgeworth box!

b) Find the contract curve and draw it!

c) Find the best bundle that consumer B can achieve through exchange!

d) Draw the Pareto improvement (exchange lens) and the Pareto-efficient

Pareto improvements!

e) Sketch the utility frontier!

2.3. Production Edgeworth box. The exchange Edgeworth box looks
at two consumers that consume two goods and have preferences indicated by
their indifference curves. Similarly, the production Edgeworth box is con-
cerned with two producers that employ two factors of production where the
production technology is reflected in isoquants. Consider the example of fig.
3. You see two families of isoquants, one for output A and one for output B

(turn the book by 180 degrees). The breadth indicates the amount of factor
1 and the height the amount of factor 2. Every point inside that box shows
how the inputs 1 and 2 are allocated to produce the outputs A and B.
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The quantities produced are indicated by the isoquants and the numbers
associated with them. Consider, for example, points E and F. They both
use the same input tuple (x1, x2) (the overall use of both factors), but the
output is different, (7, 5) in case of point E and (7, 3) in case of point F .

The marginal rate of technical substitution MRTS =
∣∣dC
dL

∣∣ is the slope of
an isoquant and gives an answer to this question: If we increase the input of
labor L by one unit, by how many units can the use of capital C be reduced
so that we still produce the same output. The MRTS can be interpreted as
the marginal willingness to pay for an additional unit of labor in terms of
capital. If two producers 1 and 2 produce goods 1 and 2, respectively, with
inputs labor and capital, both can increase their production as long as the
marginal rates of technical substitution differ. For example, point E is not
efficient.

Thus, Pareto efficiency means
∣∣∣∣
dC1
dL1

∣∣∣∣ =MRTS1
!
=MRTS2 =

∣∣∣∣
dC2
dL2

∣∣∣∣

so that the marginal willingness to pay for input factors are the same.

2.4. Two markets — one factory. The third subcase under the head-
ing “equality of the marginal willingness to pay” concerns a firm that pro-
duces in one factory but supplies two markets 1 and 2. The idea is to consider
the marginal revenue MR = dR

dxi
as the monetary marginal willingness to

pay for selling one extra unit of good i. How much can a firm pay for the
sale of one additional unit?



18 II. PARETO OPTIMALITY IN MICROECONOMICS

Thus, the marginal revenue is a marginal rate of substitution
∣∣∣ dRdxi

∣∣∣. The
role of the denominator good is taken over by good 1 or 2, respectively, while
the nominator good is “money” (revenue). Now, profit maximization by a
firm selling on two markets 1 and 2 implies

∣∣∣∣
dR

dx1

∣∣∣∣ =MR1
!
=MR2 =

∣∣∣∣
dR

dx2

∣∣∣∣

which we can show by contradiction. AssumeMR1 < MR2. The monopolist
can transfer one unit from market 1 to market 2. Revenue and profit (we
have not changed total output x1 + x2) increases by MR2 −MR1.

2.5. Two firms (cartel). The monetary marginal willingness to pay
for producing and selling one extra unit of good y is a marginal rate of
substitution where the denominator good is good 1 or 2 while the nominator
good represents “money” (profit). Two cartelists 1 and 2 producing the
quantities x1 and x2, respectively, maximize their joint profit

Π1,2 (x1, x2) = Π1 (x1, x2) + Π2 (x1, x2)

by obeying the first-order conditions

∂Π1,2
∂x1

!
= 0

!
=

∂Π1,2
∂x2

so that their marginal rates of substitution are the same when profit is
understood as joint profit. If ∂Π1,2

∂x2
were higher than ∂Π1,2

∂x1
the cartel could

increase profits by shifting the production of one unit from firm 1 to firm 2.

3. Identical marginal rates of transformation

3.1. Marginal rate of transformation. The marginal rate of substi-
tution tells us how much of good 2 an agent is willing to give up if given an
extra unit of good 1. In contrast, the marginal rate of transformation MRT

informs about the harsh realities of life: how many units of good 2 have to
be given up if one extra unit of good 1 is to be consumed or used. Differ-
ently put, the marginal rate of substitution is a willingness to pay while the
marginal rate of transformation can be seen as a marginal opportunity cost.

The production Edgeworth box introduced above can be used to derive
the marginal rate of transformation. If the marginal rates of technical sub-
stitutions are equal, we have found an efficient point. The locus of all these
points is called the production curve and shown in fig. 4.

A production function associates one specific output with a tuple of
inputs. The Edgeworth box shows how to associate a set of two outputs
with a tuple of inputs. This set can be read from the isoquants. Referring
again to fig. 4, the points (9, 5) and (11, 3) belong to this set. In that manner,
a transformation curve (also known as production-possibility frontier) can
be derived from a production curve. For an illustration, consider fig. 5.
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Now, the marginal marginal rate of transformation can be defined as the
absolute value of the slope of a transformation curve. With respect to the

transformation curve depicted abovewe writeMRT =
∣∣∣dyBdyA

∣∣∣
transformation curve

.

3.2. Two factories — one market. While the marginal revenue can
be understood as the monetary marginal willingness to pay for selling, the
marginal cost MC = dC

dy can be seen as the monetary marginal opportunity
cost of production. How much money (the second good) must the producer
forgo in order to produce an extra unit of y (the first good)? Thus, the
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margincal cost can be seen as a special case of the marginal rate of trans-
formation.

Similar to section 2.4, we argue that MC1 < MC2 leaves room for an
improvement: A transfer of one unit of production from the (marginally!)
more expensive factory 2 to the cheaper factory 1, decreases cost, and in-
creases profit, by MC2 −MC1. Therefore, a firm supplying a market from
two factories (or a cartel in case of homogeneous goods), obeys the equality

MC1
!
=MC2.

The cartel also makes clear that Pareto improvements and Pareto optimality
have to be defined relative to a specific group of agents. While the cartel
solution (maximizing the sum of profits) can be optimal for the producers,
it is not for the economy as a whole because the sum of producers’ and
consumers’ (!) rent may well be below the welfare optimum.

3.3. Bargaining between countries (international trade). David
Ricardo (1772—1823) has shown that international trade is profitable as long
as the rates of transformation between any two countries are different. Let
us consider the classic example of England and Portugal producing wine (W )
and cloth (Cl). Suppose that the marginal rates of transformation differ:

4 =MRTP =

∣∣∣∣
dW

dCl

∣∣∣∣
P

>

∣∣∣∣
dW

dCl

∣∣∣∣
E

=MRTE = 2.

In that case, international trade is Pareto-improving. Indeed, let England
produce another unit of cloth Cl that it exports to Portugal. England’s
production of wine reduces by MRTE = 2 gallons. Portugal, that imports
one unit of cloth, reduces the cloth production and can produce additional
MRTP = 4 units of wine. Therefore, if England obtains 3 gallons of wine
in exchange for the one unit of cloth it gives to Portugal, both countries are
better off.

Ricardo’s theorem is known under the heading of “comparative cost
advantage”. It seems that “differing marginal rates of transformation” might
be a better name. However, you take my word that the marginal rate of
transformation equals the ratio of the marginal costs (when factor prices are
given),

MRT =

∣∣∣∣
dW

dCl

∣∣∣∣ =
MCCl

MCW
,

so that we have Ricardo’s result in the form it is usually presented: As long
as the comparative costs (more precise: the ratio of marginal costs) between
two goods differ, international trade is worthwhile for both countries.

Thus, Pareto optimality requires the equality of the marginal oppor-
tunity costs between any two goods produced in any two countries. The
economists before Ricardo clearly saw that absolute cost advantages make



4. EQUALITY BETWEEN MRS AND MRT 21

international trade profitable. If England can produce cloth cheaper than
Portugal while Portugal can produce wine cheaper than England, we have

MCE
Cl < MCP

Cl and

MCE
W > MCP

W

so that England should produce more cloth and Portugal should produce
more wine. Ricardo observed that for the implied division of labor to be
profitable, it is sufficient that the ratio of the marginal costs differ:

MCE
Cl

MCE
W

<
MCP

Cl

MCP
W

.

Do you see that this inequality follows from the two inequalities above, but
not vice versa?

4. Equality between marginal rate of substitution and marginal

rate of transformation

4.1. Base case. Imagine two goods consumed at a marginal rate of
substitutionMRS and produced at a marginal rate of transformationMRT .
We now show that optimality also implies MRS = MRT. Assume, to the
contrary, that the marginal rate of substitution (for a consumer) is lower
than the marginal rate of transformation (for a producer):

MRS =

∣∣∣∣
dx2
dx1

∣∣∣∣
indifference curve

<

∣∣∣∣
dx2
dx1

∣∣∣∣
transformation curve

=MRT.

If the producer reduces the production of good 1 by one unit, he can increase
the production of good 2 by MRT units. The consumer has to renounce the
one unit of good 1, and he needs at leastMRS units of good 2 to make up for
this. By MRT > MRS the additional production of good 2 (come about
by producing one unit less of good 1) more than suffices to compensate
the consumer. Thus, the inequality of marginal rate of substitution and
marginal rate of transformation points to a Pareto-inefficient situation.

4.2. Perfect competition. We want to apply the formula

MRS
!
=MRT

to the case of perfect competition. For the output space, we have the profit-
maximizing condition

p
!
=MC.

We have derived “price equals marginal cost” by forming the derivative of
profit π (y) = py − c (y) with respect to y and setting this derivative equal
to zero.

We can link the two formulae by letting good 2 be money with price 1.
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• Then, the marginal rate of substitution tells us the consumer’s mon-
etary marginal willingness to pay for one additional unit of good 1.
Cum grano salis, the price can be taken to measure this willingness
to pay for the marginal consumer (the last consumer prepared to
buy the good).

• The marginal rate of transformation is the amount of money one
has to forgo for producing one additional unit of good 1, i.e., the
marginal cost.

Therefore, we obtain

price = marginal willingness to pay
!
= marginal cost.

In a similar fashion, we can argue for inputs. Let x be the amount of an
input and y = f (x) the amount of an output. The marginal value product
MVP = pdydx is the product of output price p and marginal product dy

dx .
It can be understood as the monetary marginal willingness to pay for the
factor use. The factor price w can be perceived as the monetary marginal
opportunity cost of employing the factor. Thus, we obtain

marginal value product
!
= factor price

which is the optimization condition for a price taker on both the input and
the output market. Just consider the profit function π (x) = pf (x) − wx,

form the derivative ... .

4.3. Cournot monopoly. A trivial violation of Pareto optimality en-
sues if a single agent acts in a non-optimal fashion. Just consider con-
sumer and producer as a single person. For the Cournot monopolist, the

MRS
!
=MRT formula can be rephrased as the equality between

• the monetary marginal willingness to pay for selling — this is the
marginal revenue MR = dR

dy (see above p. 17) — and
• the monetary marginal opportunity cost of production, the mar-
ginal cost MC = dC

dy (p. 19).

4.4. Household optimum. A second violation of efficiency concerns
the consuming household. It “produces” goods by using his income to buy
them, m = p1x1 + p2x2 in case of two goods.

E������� II.6. The prices of two goods 1 and 2 are p1 = 6 and p2 = 2,

respectively. If the household consumes one additional unit of good 1, how

many units of good 2 does he have to renounce?

The exercise helps us understand that the marginal rate of transforma-
tion is the price ratio,

MRT =
p1
p2

,



4. EQUALITY BETWEEN MRS AND MRT 23

that we also know under the heading of “marginal opportunity cost”. (Al-
ternatively, consider the transformation function x2 = f (x1) =

m
p2
− p1

p2
x1.).

Seen this way, MRS
!
=MRT is nothing but the famous condition for house-

hold optimality.

4.5. External effects and the Coase theorem.

4.5.1. External effects and bargaining. The famous Coase theorem can

also be interpreted as an instance ofMRS
!
=MRT.We present this example

in some detail.
External effects are said to be present if consumption or production

activities are influenced positively or negatively while no compensation is
paid for this influence. Environmental issues are often discussed in terms
of negative externalities. Also, the increase of production exerts a negative
influence on other firms that try to sell subsitutes. Reciprocal effects exist
between beekeepers and apple planters.

Consider a situation where A pollutes the environment doing harm to B.
In a very famous and influential paper, Coase (1960) argues that economists
have seen environmental and similar problems in a misguided way.

First of all, externalities are a “reciprocal problem”. By this Coase
means that restraining A from polluting harms A (and benefits B). Accord-
ing to Coase, the question to be decided is whether the harm done to B

(suffering the polluting) is greater or smaller than the harm done to A (by
stopping A’s polluting activities).

Second, many problems resulting from externalities stem from missing
property rights. Agent A may not be in a position to sell or buy the right
to pollute from B simply because property exists for cars and real estate
but not for air, water or quietness. Coase suggests that the agents A and B

bargaing about the externality. If, for example, A has the right to pollute
(i.e., is not liable for the damage cause by him), B can give him some money
so that A reduce his harmful (to B) activity. If B has the right not to suffer
any pollution (i.e., A is liable), A could approach B and offer some money in
order to pursue some of the activity benefitting him. Coase assumes (as we
have done in this chapter) that the two parties bargain about the externality
so as to obtain a Pareto-efficient outcome.

The Nobel prize winner (of 1991) presents a startling thesis: the ex-
ternality (the pollution etc.) is independent on the initial distribution of
property rights. This thesis is also known as the invariance hypothesis.

4.5.2. Straying cattle. Coase (1960) discusses the example of a cattle
raiser and a crop farmer who possess adjoining land. The cattle regularly
destroys part of the farmer’s crop. In particular, consider the following table:
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number of steers marginal profit marginal crop loss

1 4 1
2 3 2
3 2 3
4 1 4

The cattle raiser’s marginal profit from steers is a decreasing function
of the number of steers while the marginal crop loss increases. Let us begin
with the case where the cattle raiser is liable. He can pay the farmer up to
4 (thousand Euros) for allowing him to have one cattle destroy crop. Since
the farmer’s compensating variation is 1, the two can easily agree on a price
of 2 or 3.

The farmer and cattle raiser will also agree to have a second steer roam
the fields, for a price of 212 . However, there are no gains from trade to be had
for the third steer. The willingness to pay of 2 is below the compensation
money of 3.

If the cattle raiser is not liable, the farmer has to pay for reducing the
number of steers from 4 to 3. A Pareto improvement can be have for any
price between 1 and 4. Also, the farmer will convince the cattle raiser to
take the third steer, but not the second one, off the field.

Thus, Coase seems to have a good point — irrespective of the property
rights (the liability question), the number of steers and the amount of crop
damaged is the same.

The reason for the validity (so far) of the Coase theorem is the fact
that forgone profits are losses and forgone losses are profits. Therefore, the
numbers used in the comparisons are the same.

It is about time to tell the reader why we talk about the Coase theorem

in the MRS
!
= MRT section. From the cartel example, we are familiar

with the idea of finding a Pareto optimum by looking at joint profits. We
interpret the cattle raiser’s marginal profit as the (hypothetical) joint firm’s
willingness to pay for another steer and the marginal crop loss incurred by
the farmer as the joint firm’s marginal opportunity cost for that extra steer.

We close this section by throwing in two caveats:

• If consumers are involved, the distribution of property rights has
income effects. Then, Coase’s theorem does not hold any more (see
Varian 2010, chapter 31).

• More important is the objection raised by Wegehenkel (1980). The
distribution of property rights determine who pays whom. Thus,
if the property rights were to change from non-liability to liability,
cattle raising becomes a less profitable business while growing crops
is more worthwhile as before. In the medium run, agents will move
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to the profitable occupations with effects on the crop losses (the
sign is not clear a priori).

4.6. Public goods. Public goods are defined by non-rivalry in con-
sumption. While an apple can be eaten only once, the consumption of a
public good by one individual does not reduce the consumption possibilities
by others. Often-cited examples include street lamps or national defence.

Consider two individualsA andB who consume a private good x (quanti-
ties xA and xB, respectively) and a public good G. The optimality condition
is

MRSA +MRSB

=

∣∣∣∣
dxA

dG

∣∣∣∣

indifference curve

+

∣∣∣∣
dxB

dG

∣∣∣∣

indifference curve

!
=

∣∣∣∣∣
d
(
xA + xB

)

dG

∣∣∣∣∣

transformation curve

=MRT.

Assume that this condition is not fulfilled. For example, let the marginal
rate of transformation be smaller than the sum of the marginal rates of
substitution. Then, it is a good idea to produce one additional unit of the
public good. The two consumers need to forgo MRT units of the private
good. However, they are prepared to give up MRSA +MRSB units of the
private good in exchange for one additional unit of the public good. Thus,
they can give up more than they need to. Assuming monotonicity, the two
consumers are better off than before and the starting point (inequality) does
not characterize a Pareto optimum.

Once more, we can assume that good x is the numéraire good (money
with price 1). Then, the optimality condition simplifies and Pareto efficiency
requires that the sum of the marginal willingness’ to pay equals the marginal
cost of the public good.

E������� II.7. In a small town, there live 200 people i = 1, ..., 200 with

identical preferences. Person i’s utility function is Ui (xi,G) = xi +
√
G,

where xi is the quantity of the private good and G the quantity of the public

good. The prices are px = 1 and pG = 10, respectively. Find the Pareto-

optimal quantity of the public good.

Thus, by the non-rivalry inconsumption, we do not quite get a subrule

of MRS
!
=MRT but something similar.

5. Topics and literature

The main topics in this chapter are

• Pareto efficiency
• Pareto improvement
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• exchange Edgeworth box
• contract curve
• exchange lense
• core
• international trade
• external effects
• quantity cartel
• public goods
• first-degree price discrimination

We recommend the textbook by

6. Solutions

Exercise II.1

a) A redistribution that reduces inequality will harm the rich. Therefore,
such a redistribution is not a Pareto improvement.
b) Yes. It is not possible to improve the lot of the have-nots without harming
the individual who possesses everything.
Exercise II.2

No, obviously ωA1 is much larger than ωB1 .

Exercise II.3

The length of the exchange Edgeworth box represents the units of good 1
to be divided between the two individuals, i.e., the sum of their endowment
of good 1. Similarly, the breadth of the Edgeworth box is ωA2+ ωB2 .
Exercise II.4

Individual A prefers all those bundels xA that lie to the right and above
the indifference curve that crosses his endowment point. The allocations
preferred by both individuals are those in the hatched part of fig. 1.
Exercise II.5

a) See fig. 6,
b) xA1 = xA2 ,

c) (70, 70) .
d) The exchange lens is dotted in fig. 6. The Pareto efficient Pareto im-
provements are represented by the contract curve within this lens.
e) The utility frontier is downward sloping and given by UB (UA) =

(
100−√UA

)2
.

Exercise II.6

If the household consumers one additional unit of good 1, he has to pay
Euro 6. Therefore, he has to renounce 3 units of good 2 that also cost Euro
6 = Euro 2 times 3.
Exercise II.7
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F����� 6. The answer to parts a) and d)

The marginal rate of transformation

∣∣∣∣
d(
∑200

i=1 xi)
dG

∣∣∣∣ equals
pG
px
= 10

1 = 10.

The marginal rate of substitution for inhabitant i is
∣∣∣∣
dxi

dG

∣∣∣∣

indifference curve

=
MUG
MUxi

=

1
2
√
G

1
=

1

2
√
G

.

Applying the optimality condition yields

200 · 1

2
√
G

!
= 10

and hence G = 100.
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7. Further exercises without solutions

AgentA has preferences on (x1, x2), that can be represented by uA(xA1 , x
A
2 ) =

xA1 . Agent B has preferences, which are represented by the utility function
uB(xB1 , x

B
2 ) = xB2 . Agent A starts with ωA1 = ωA2 = 5, and B has the initial

endowment ωB1 = 4, ω
B
2 = 6.

(a) Draw the Edgeworth box, including
— ω,
— an indifference curve for each agent through ω!

(b) Is (xA1 , x
A
2 , x

B
1 , x

B
2 ) = (6, 0, 3, 11) a Pareto-improvement compared

to the initial allocation?
(c) Find the contract curve!

The Shapley value and the core



Part B

The Shapley value and the core



The second part of our course explains some important basic concepts.
Chapter III introduces Pareto efficiency, the Shapley value and the core for
a simple game, the gloves game. We present many examples of cooperative
games in chapter IV. Games can be understood as vectors — this is the point
of view we mention in the following chapter and discuss in detail in chapter
V. We then deal with the axiomatization of the Shapley value in chapter VI.
In that chapter, the Banzhaft index also gets a brief treatment. Partitions
and networks have no role to play in this part of the book.



CHAPTER III

The gloves game

1. Introduction

This chapter lies the groundwork in cooperative game theory. First of
all, section 2 familiarizes the reader with the player set N (the set of all
players), subsets of N (that we also call coalitions) and the set of coalitions
for a player set N .

We then use the specific example of gloves games to introduce the con-
cept of a coalition function in section 3. As in most part of the book, we
focus on transferable utility where v attaches a real number to every coali-
tion. Thus, v (K) is the worth or the “utility sum” created by the members
from K. The basic idea is to distribute v (K) or v (N) among the members
from K or N , respectively. Thus, the utility is “transferable”.

Transferability is a serious assumption and does not work well in every
model. Transferable utility is justfied if utility can be measured in terms of
money and if the agents are risk neutral. We will need non-transferable util-
ity for the analysis of exchange within an Edgeworth box (part ??, chapter
??).

Section 4 is devoted to a technical point. We define zero payoff vec-
tors (everybody gets nothing) and zero coalition functions (every coalition
creates nothing). We then turn to the main topic of cooperative game the-
ory: solution concepts. We present a general definition in section 5 before
presenting four specific examples:

(1) Most solution concepts presented in this book obey Pareto effi-
ciency — we introduce this central concept in section 6. An efficient
payoff vector is feasible (the players can afford it) and cannot be
blocked by the player set N (it is not possible to improve upon that
vector).

(2) A well-known subset of efficient payoff vectors is called the core
(presented in section 7). A payoff vector from the core cannot be
blocked by the player set N nor by any subset of N. The core for
coalition functions has first been defined by Gillies (1959). Shubik
(1981, S. 299) mentions that Lloyd Shapley proposes this concept
as early as 1953 in unpublished lecture notes. In contrast to Pareto
efficiency and the core, the rank-order values and the Shapley value

31
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are point-valued solution concepts — for every coalition function,
they spit out exactly one payoff vector.

(3) In order to prepare the reader for the Shapley value, we introduce
the ρ-value in section 8. Its idea is to order the players (for example,
player 2 first, then player 3 and player 1 last) and attribute to each
player his marginal contribution — by how much does the worth of
the coalition increase because this particular player joined.

(4) Shapley’s (1953) article is famous for pioneering the twofold ap-
proach of algorithm and axioms. The algorithmic definition of the
Shapley value (which is a mean of the ρ-values for all different or-
ders ρ) can be found in section 9 while section 10 introduces the
axiomatic definition. The equivalence of these two approaches will
be shown much later, in chapter VI.

2. Coalitions

All players together are assembled in the player set N . More often than
not, we have N = {1, ..., n} with n ∈ N. Any subset K of N , K ⊆ N , is
called a coalition. Two coalitions stand out:

• N itself is called the grand coalition.
• The empty set, denoted by ∅, is a subset of every player set N — it
stands for no players at all.

Sometimes, we want to address the number of players in a coalition. There
is a special symbol for that operation, ||. Thus |K| denotes the number of
players in K which is also called K’s cardinality.

E������� III.1. Determine |∅| and |N |.

Consider the player set N = {1, 2, 3}. How many coalitions can we find?
Here they are:

∅,
{1} , {2} , {3} ,
{1, 2} , {1, 3} , {2, 3} ,
N

A three-player set has eight subsets. The set of {1, 2, 3}’s subsets is denoted
by 2{1,2,3}. Thus, we find

∣∣2{1,2,3}
∣∣ = 2|{1,2,3}|. (Look at it again and express

this formula in words!) In fact, this is a general rule:
∣∣2N

∣∣ = 2|N |

where 2N denotes the set of subsets of N . The above formula is a good
reason for denoting the set of N ’s subsets by 2N . There is another, very
good reason. Consider a subset K of N . Every player i from N belongs to
K (i ∈ K) or not (i ∈ K). Therefore, a coalition is characterized by giving
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one of two states (“in” or “out”) for every player from N. Differently put, a
coalition is a function

N → {in, out} .
The set of these functions are also written as {in, out}N or simpler as 2N .
The set of all subsets of N (or any other set) is sometimes called N ’s power
set.

E������� III.2. Which of the following propositions make sense? Any
coalition K and any grand coalition N fulfill

• K ∈ N and K ∈ 2N ,

• K ⊆ N and K ⊆ 2N ,

• K ∈ N and K ⊆ 2N and/or
• K ⊆ N and K ∈ 2N?

We often need the set-theoretic concept of a complement:

D�������
� III.1 (complement). The set N\K := {i ∈ N : i /∈ K} is
called K’s complement (with respect to N).

E������� III.3. Consider K = {1, 3} . Determine K’s complement with

respect to N = {1, 2, 3} and with respect to N = {1, 2, 3, 4}!

3. The coalition function

In this chapter, we concentrate on a particular game, the gloves game.
Some players have a left glove and others a right glove. Single gloves have a
worth of zero while pairs have a worth of 1 (Euro). The coalition function
for the gloves game is given by

vL,R : 2N → R

K �→ vL,R (K) = min (|K ∩ L| , |K ∩R|) ,
where

• L the set of players holding a left glove and R the set of right-glove
owners together with L ∩R = ∅ and L ∪R = N ,

• vL,R denotes the coalition function for the gloves game,
• 2N is N ’s power set (the domain of vL,R),
• R is the set of real numbers (the range of vL,R),
• |K ∩L| stands for the number of left gloves the players in coalition

K possess, and
• min (x, y) is the smallest of the two numbers x and y.

Thus, the coalition function vL,R attributes the number of pairs in possession
of some coalition K to that coalition.

D�������
� III.2 (player sets and coalition functions). Player sets and
coalition functions are specified by the following definitions:
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• v : 2N → R is called a coalition function if v fulfills v (∅) = 0. v (K)
is called coalition K’s worth.

• For any given coalition function v, its player set can be addressed

by N (v) or, more simply, N .

• We denote the set of all games on N by V (N) and the set of all
games (for any player set N) by V.

E������� III.4. Assume N = {1, 2, 3, 4, 5}, L = {1, 2} and R = {3, 4, 5}.
Find the worths of the coalitions K = {1} , K = ∅, K = N andK = {2, 3, 4}.

The above exercise makes clear that vL,R is, indeed, a coalition function.
The requirement of v (∅) = 0 makes perfect sense: a group of zero agents
cannot achieve anything.

We can interpret the gloves game as a market game where the left-glove
owners form one market side and the right-glove owners the other. We need
to distinguish the worth (of a coalition) from the payoff acrruing to players.

4. Summing and zeros

Payoffs for players are summarized in payoff vectors:

D�������
� III.3. For any finite and nonempty player set N = {1, ..., n} ,
a payoff vector

x = (x1, ..., xn) ∈ Rn

specifies payoffs for all players i = 1, ..., n.

It is possible to sum coalition functions and it is possible to sum payoff
vectors. Summation of vectors is easy — just sum each component individu-
ally:

E������� III.5. Determine the sum of the vectors




1

3

6




+





2

5

1




!

Note the difference between payoff-vector summation

x+ y =






x1
x2

xn





+






y1
y2

yn





=






x1 + y1
x2 + y2

xn + yn






and payoff summation
n∑

i=1

xi.

Vector summation is possible for coalition functions, too. For example,
we obtain the sum v{1},{2,3}+v{1,2},{3} by summing the worths v{1},{2,3} (K)+
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v{1,2},{3} (K) for every coalition K, from the empty set ∅ down to the grand
coalition {1, 2, 3} :






∅ : 0
{1} : 0
{2} : 0
{3} : 0
{1, 2} : 1
{1, 3} : 1
{2, 3} : 0
{1, 2, 3} : 1






+






∅ : 0
{1} : 0
{2} : 0
{3} : 0
{1, 2} : 0
{1, 3} : 1
{2, 3} : 1
{1, 2, 3} : 1






=






∅ : 0
{1} : 0
{2} : 0
{3} : 0
{1, 2} : 1
{1, 3} : 2
{2, 3} : 1
{1, 2, 3} : 2






Of course, we need to agree upon a specific order of coalitions.
Mathematically speaking, Rn and V (N) can be considered as vector

spaces. Vector spaces have a zero. The zero from Rn is

0
∈Rn

=

(
0
∈R

, ..., 0
∈R

)

where the zero on the left-hand side is the zero vector while the zeros on the
right-hand side are just the zero payoffs for all the individual players. In the
vector space of coalition functions, 0 ∈ V (N) is the function that attributes
the worth zero to every coalition, i.e.,

0
∈V(N)

(K) = 0
∈R

for all K ⊆ N

We will opresent some vector-space theory in chapter V.

5. Solution concepts

For the time being, cooperative game theory consists of coalition func-
tions and solution concepts. The task of solution concepts is to define and
defend payoffs as a function of coalition functions. That is, we take a coali-
tion function, apply a solution concept and obtain payoffs for all the players.

Solution concepts may be point-valued (solution function) or set-valued
(solution correspondence). In each case, the domain is the set of all games
V for any finite player sets N . A solution function associates each game
with exactly one payoff vector while a correspondence allows for several or
no payoff vectors.

D�������
� III.4 (solution function, solution correspondence). A func-
tion σ that attributes, for each coalition function v from V, a payoff to each
of v’s players,

σ (v) ∈ R|N(v)|,
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is called a solution function (on V)1. Player i’s payoff is denoted by σi (v) .

In case of N (v) = {1, ..., n} , we also write (σ1 (v) , ..., σn (v)) for σ (v) or

(σi (v))i∈N(v) .
A correspondence that attributes a set of payoff vectors to every coalition

function v,

σ (v) ⊆ R|N(v)|

is called a solution correspondence (on V).
Solution functions and solution correspondences are also called solution

concepts (on V).

Ideally, solution concepts are described both algorithmically and ax-
iomatically. An algorithm is some kind of mathematical procedure (a more
less simple function) that tells how to derive payoffs from the coalition func-
tions. Consider, for example, these four solutions concepts in algorithmic
form:

• player 1 obtains v (N) and the other players zero,
• every player gets 100,
• every player gets v (N) /n,
• every player i’s payoff set is given by [v ({i}) , v (N)] (which may
be the empty set).

Alternatively, solution concepts can be defined by axioms. For example,
axioms might demand that

• all the players obtain the same payoff,
• no more than v (N) is to be distributed among the players,
• player 1 is to get twice the payoff obtained by player 2,
• the names of players have no role to play,
• every player gets v (N)− v (N\ {i}) .

Axioms pin down the players’ payoffs, more or less. Axioms may also make
contradictory demands. We present the most familiar axioms in the follow-
ing sections.

6. Pareto efficiency

Arguably, Pareto efficiency is the single most often applied solution con-
cept in economics — rivaled only by Nash equilibrium from noncooperative
game theory. For the gloves game, Pareto efficiency is defined by

∑

i∈N
xi = vL,R (N) .

1More formallay, a solution function on G is given by

σ : G→ ∪k∈NR
k
, σ (v) ∈ R|N(v)|.
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Thus, the sum of all payoffs is equal to the number of glove pairs. It is
instructive to write this equality as two inequalities:

∑

i∈N
xi ≤ vL,R (N) (feasibility) and

∑

i∈N
xi ≥ vL,R (N) (the grand coalition cannot block x).

According to the first inequality, the players cannot distribute more than
they (all together) can “produce”. This is the requirement of feasibility.

Imagine that the second inequality were violated. Then, we have
∑n

i=1 xi
< vL,R (N) and the players would leave “money on the table”. All players
together could block (or contradict) the payoff vector x. This means they
can propose another payoff vector that is both feasible and better for them.
Indeed, the payoff vector y = (y1, ..., yn) defined by

yi = xi +
1

n

(

vL,R (N)−
n∑

i=1

xi

)

, i ∈ N,

does the trick. y improves upon x.

E������� III.6. Show that the payoff vector y is feasible.

Normally, Pareto efficiency is defined by “it is impossible to improve the
lot of one player without making other players worse off”. If a sum of money
is distributed among the player, we can also define Pareto efficiency by “it is
impossible to improve the lot of all players”. The additional sum of money
that makes one player better off (first definition) can be spread among all
the players (second definition).

D�������
� III.5 (feasibility and efficiency). Let v ∈ V (N) be a coalition
function and let x ∈ Rn be a payoff vector. x is called

• blockable by N in case of

n∑

i=1

xi < v (N) ,

• feasible in case of
∑

i∈N
xi ≤ v (N)

• and efficient or Pareto efficient in case of
∑

i∈N
xi = v (N) .

Thus, an efficient payoff vector is feasible and cannot be blocked by the
grand coalition N . Obviously, Pareto efficiency is a solution correspondence,
not a solution function.
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E������� III.7. Find the Pareto-efficient payoff vectors for the gloves
game v{1},{2}!

For the gloves game, the solution concept “Pareto efficiency” has two
important drawbacks:

• We have very many solutions and the predictive power is weak. In
particular, a left-hand glove can have any price, positive or negative.

• The payoffs for a left-glove owner does not depend on the number
of left and right gloves in our simple economy. Thus, the relative
scarcity of gloves is not reflected by this solution concept.

We now turn to a solution concept that generalizes the idea of blocking from
the grand coalition to all coalitions.

7. The core

Pareto efficiency demands that the grand coalition should not be in a
position to make all players better off. Extending this idea to all coalitions,
the core consists of those feasible (!) payoff vectors that cannot be improved
upon by any coalition with its own means. Formally, we have

D�������
� III.6 (blockability and core). Let v ∈ V (N) be a coalition
function. A payoff vector x ∈ Rn is called blockable by a coalition K ⊆ N if

∑

i∈K
xi < v (K)

holds. The core is the set of all those payoff vectors x fulfilling
∑

i∈N
xi ≤ v (N) (feasibility) and

∑

i∈K
xi ≥ v (K) for all K ⊆ N (no blockade by any coalition).

Do you see that every payoff vector from the core is also Pareto efficient?
Just take K := N .

The core is a stricter concept than Pareto efficiency. It demands that no
coalition (not just the grand coalition) can block any of its payoff vectors.
Let us consider the gloves game for L = {1} and R = {2} . By Pareto
efficiency, we can restrict attention to those payoff vectors x = (x1, x2) that
fulfill x1+x2 = 1. Furthermore, xmay not be blocked by one-man coalitions:

x1 ≥ vL,R ({1}) = 0 and
x2 ≥ vL,R ({2}) = 0.

Hence, the core is the set of payoff vectors x = (x1, x2) obeying

x1 + x2 = 1, x1 ≥ 0, x2 ≥ 0.
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Are we not forgetting about K = ∅? Let us check
∑

i∈∅
xi ≥ vL,R (∅) .

Since there is not i from ∅ (otherwise ∅ would not be the empty set), the sum∑
i∈∅ xi has no summands and is equal to zero. Since all coalition functions

have worth zero for the empty set, we find
∑

i∈∅ xi = 0 = vL,R (∅) for the
gloves game and also for any coalition function.

E������� III.8. Determine the core for the gloves game vL,R with L =

{1, 2} and R = {3} .

In case of |L| = 2 > 1 = |R| right gloves are scarcer than left gloves.
In such a situation, the owner of a right glove should be better off than the
owner of a left glove. The core reflects the relative scarcity in a drastic way.
Consider the Pareto-efficient payoff vector

y =

(
1

10
,
1

10
,
8

10

)
.

It can be blocked by coalition {1, 3} . Its worth is v ({1, 3}) = 1 which can be
distributed among its members in a manner that both are better off. Thus,
y does not lie in the core.

Note that the core is a set-valued solution concept. It can contain one
payoff vector (see the above exercise) or very many payoff vectors (in case
of L = {1} and R = {2}). Later on, we will see coalition functions with an
empty core: every feasible payoff vector is blockable by at least one coalition.

8. The rank-order value

8.1. Rank orders. The rank-order value (this section) and the Shapley
value (the two following sections) are point-valued solution concepts. We
begin with the rank-order values because the Shapley value builds on these
values.

Consider the player setN = {1, 2, 3} and assume that these three players
stand outside our lecture hall and enter, one after the other. Player 1 may
be first, player 3 second and player 2 last — this is the rank order (1, 3, 2).
All in all, we find these rank orders:

(1, 2, 3) , (1, 3, 2) ,

(2, 1, 3) , (2, 3, 1) ,

(3, 1, 2) , (3, 2, 1) .

It is not difficult to see, why, for three players, there are 6 different rank
orders. For a single player 1, we have just one rank order (1) . The second
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player 2 can be placed before or after player 1 so that we obtain the 1 · 2
rank orders

(1, 2) ,

(2, 1) .

For each of these two, the third player 3 can be placed before the two players,
in between or after them:

(3, 1, 2) , (1, 3, 2) , (1, 2, 3) ,

(3, 2, 1) , (2, 3, 1) , (2, 1, 3) .

Therefore, we have 1 · 2 · 3 = 6 rank orders. Generalizing, , for n players, we
have 1 · 2 · ... · n rank orders. We can also use the abbreviation

n! := 1 · 2 · ... · n
which is to be read “n factorial”.

E������� III.9. Determine the number of rank oders for 5 and for 6
players!

D�������
� III.7 (rank order). Let N = {1, ..., n} be a player set. Bi-
jective function ρ : N → N are called rank orders or permutations on N .

The set of all permutations on N is denoted by RON . The set of all players

“up to and including player i under rank order ρ” is denoted by Ki (ρ) and

given by

ρ (j) = i and Ki (ρ) = {ρ (1) , .., ρ (j)} .

Thus, Ki (ρ) is the set of players who enter our lecture hall in the rank
order ρ just after player i has entered.

E������� III.10. Determine K2 (ρ) for

• ρ = (2, 1, 3) and

• ρ = (3, 1, 2)!

8.2. Marginal contributions with respect to rank orders. The
rank-order values give every players his marginal contribution. The marginal
contribution of player i with respect to coalition K is

“the value with him” minus “the value without him”.

Thus, the marginal contributions reflect a player’s productivity:

D�������
� III.8 (marginal contribution with respect to coalitions). Let
i ∈ N be a player from N and let v ∈ V (N) be a coalition function on N .

Player i’s marginal contribution with respect to a coalition K is denoted by

MCK
i (v) and given by

MCK
i (v) := v (K∪{i})− v (K\ {i}) .
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The marginal contribution of a player depends on the coalition function
and the coalition. It does not matter whether i is a member of K or not,
i.e., we have MC

K∪{i}
i (v) =MC

K\{i}
i (v).

E������� III.11. Determine the marginal contributions for v{1,2,3},{4,5}
and

• i = 1,K = {1, 3, 4} ,
• i = 1,K = {3, 4} ,
• i = 4,K = {1, 3, 4} ,
• i = 4,K = {1, 3} .

We now shift from the marginal contribution with respect to some coali-
tion K to the marginal contribution with respect to some rank order ρ. For
rank order (3, 1, 2), one finds the marginal contributions

v ({3})− v (∅) (player 3 enters first),

v ({1, 3})− v ({3}) (player 1 joins player 3), and

v ({1, 2, 3})− v ({1, 3}) (player 2 enters last).

D�������
� III.9 (marginal contribution with respect to rank orders).
Player i’s marginal contribution with respect to rank order ρ is denoted by

MCρ
i (v) and given by

MCρ
i (v) :=MC

Ki(ρ)
i (v) = v (Ki (ρ))− v (Ki (ρ) \ {i}) .

E������� III.12. Find player 2’s rank-order values for the rank orders
(1, 3, 2) and (3, 1, 2)!

Do you see that the players’ marginal contributions add up to v ({1, 2, 3})−
v (∅) = v (N)? When you sum the three marginal contributions, the worths
v ({3}) and v ({1, 3}) cancel! In fact, this holds in general:

L���� III.1 (Adding-up lemma for rank-order values). For any player
set N , any rank order ρ on N and any player i ∈ N , we have

∑

j∈Ki(ρ)

MCρ
i (v) = v (Ki (ρ))

9. The Shapley value: the formula

The Shapley formula rests on a simple idea. Every player obtains

• an average of
• his rank-order values,
• where each rank order is equally likely.

E������� III.13. Consider N = {1, 2, 3} , L = {1, 2} and R = {3} and
determine player 1’s marginal contribution for each rank order.

We employ the following algorithm:
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• We first determine all the possible rank orders.
• We then find the marginal contributions for every rank order (the
rank-order values).

• For every player, we add his marginal contributions.
• Finally, we divide the sum by the number of rank orders.

D�������
� III.10 (Shapley value). The Shapley value is the solution
function Sh given by

Shi (v) =
1

n!

∑

ρ∈RON
MCρ

i (v)

According to the previous exercise, we have

Sh1
(
v{1,2},{3}

)
=
1

6
.

The Shapley values of the other two players can be obtained by the same pro-
cedure. However, there is a more elegant possibility. The Shapley values of
players 1 and 2 are identical because they hold a left glove each and are sym-
metric (in a sense to be defined shortly). Thus, we have Sh2

(
v{1,2},{3}

)
= 1

6 .
Also, the Shapley value satisfies Pareto efficiency which means that the sum
of the payoffs equals the worth of the grand coalition:

3∑

i=1

Shi
(
v{1,2},{3}

)
= v ({1, 2, 3}) = 1

Thus, we find

Sh
(
v{1,2},{3}

)
=

(
1

6
,
1

6
,
2

3

)
.

10. The Shapley value: the axioms

The Shapley value fulfills four axioms:

• the efficiency axiom: the worth of the grand coalition is to be dis-
tributed among all the players,

• the symmetry axiom: players in similar situations obtain the same
payoff,

• the null-player axiom: a player with zero marginal contribution to
every coalition obtains zero payoff, and

• additivity axiom: if players are subject to two coalition functions,
it does not matter whether we apply the Shapley value to the sum
of these two coalition functions or apply the Shapley value to each
coalition function separately and sum the payoffs.

A solution function σ may or may not obey the four axioms mentioned
above.
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D�������
� III.11 (efficiency axiom). A solution function σ is said to

obey the efficiency axiom or the Pareto axiom if
∑

i∈N
σi (v) = v (N)

holds for all coalition functions v ∈ V.
In the gloves game, two left-glove owners are called symmetric.

D�������
� III.12 (symmetry). Two players i and j are called symmet-

ric (with respect to v ∈ V) if we have
v (K ∪ {i}) = v (K ∪ {j})

for every coalition K that does not contain i or j.

E������� III.14. Show that any two left-glove holders are symmetric in
a gloves game vL,R.

E������� III.15. Show MCK
i =MCK

j for two symmetric players i and

j fulfilling i /∈ K and j /∈ K.

It may seem obvious that symmetric players obtain the same payoff:

D�������
� III.13 (symmetry axiom). A solution function σ is said to

obey the symmetry axiom if we have

σi (v) = σj (v)

for any game v ∈ V and any two symmetric players i and j.

In any gloves game obeying L �= ∅ �= R, every player has a non-zero
marginal contribution sometimes.

D�������
� III.14 (null player). A player i ∈ N is called a null player

(with respect to v) if

v (K ∪ {i}) = v (K)

holds for every coalition K.

Shouldn’t a null player obtain nothing?

D�������
� III.15 (null-player axiom). A solution function σ is said to

obey the null-player axiom if we have

σi (v) = 0

for any game v ∈ V and for any null player i ∈ N.

E������� III.16. Under which condition is a player from L a null player

in a gloves game vL,R?

The last axiom that we consider at present is the additivity axiom. It
rests on the possibility to add both payoff vectors and coalition functions
(see section 4).
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D�������
� III.16 (additivity axiom). A solution function σ is said to

obey the additivity axiom if we have

σ (v +w) = σ (v) + σ (w)

for any two coalition functions v,w ∈ V with N (v) = N (w).

Do you see the difference? On the left-hand side, we add the coalition
functions first and then apply the solution function. On the right-hand side
we apply the solution function to the coalition functions individually and
then add the payoff vectors.

E������� III.17. Can you deduce σ (0) = 0 from the additivity axiom?

Hint: use v = w := 0.

Now we note a stunning result:

T �
��� III.1 (Shapley axiomatization). The Shapley formula is the
unique solution function that fulfills the symmetry axiom, the efficiency ax-

iom, the null-player axiom and the additivity axiom.

The theorem means that the Shapley formula fulfills the four axioms.
Consider now a solution function that fulfills the four axioms. According to
the theorem, the Shapley formula is the only solution function to do so.

Differently put, the Shapley formula and the four axioms are equivalent
— they specify the same payoffs. Cooperative game theorists say that she
Shapley formula is “axiomatized” by the set of the four axioms. The chapter
after next will show you how to prove this wonderful result.

E������� III.18. Determine the Shapley value for the gloves game for
L = {1} and R = {2, 3, 4}! Hint: You do not need to write down all 4! rank
orders. Try to find the probability that player 1 does not complete a pair.
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11. Topics and literature

The main topics in this chapter are

• coalition
• coalition function
• gloves game
• core
• efficiency
• feasibility
• marginal contribution
• axioms
• symmetry
• null player
• Shapley value

We introduce the following mathematical concepts and theorems:

• t

•
We recommend

12. Solutions

Exercise III.1

We have |∅| = 0 and |N | = n.
Exercise III.2

The first three propositions are nonsensical, the last one is correct.
Exercise III.3

We have {1, 2, 3} \K = {2} and {1, 2, 3, 4} \K = {2, 4} .
Exercise III.4

The values are

vL,R ({1}) = min (1, 0) = 0,

vL,R (∅) = min (0, 0) = 0,

vL,R (N) = min (2, 3) = 2 and

vL,R ({2, 3, 4}) = min (2, 1) = 1.

Exercise III.5

We obtain the sum of vectors




1

3

6




+





2

5

1




 =





1 + 2

3 + 5

6 + 1




 =





3

8

7





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Exercise III.6

Feasibility follows from

n∑

i=1

yi =
n∑

i=1

xi +
n∑

i=1

1

n



vL,R (N)−
n∑

j=1

xj





=
n∑

i=1

xi +
1

n




n∑

i=1

vL,R (N)−
n∑

i=1

n∑

j=1

xj





=
n∑

i=1

xi +
1

n



nvL,R (N)− n
n∑

j=1

xj





= vL,R (N) .

Exercise III.7

The set of Pareto-efficient payoff vectors (x1, x2) are described by x1 +

x2 = 1. In particular, we may well have x1 < 0.

Exercise III.8

The core obeys the conditions

x1 + x2 + x3 = vL,R (N) = 1,

xi ≥ 0, i = 1, 2, 3,

x1 + x2 ≥ 0,

x1 + x3 ≥ 1 and

x2 + x3 ≥ 1.

Substituting x1 + x3 ≥ 1 into the efficiency condition yields

x2 = 1− (x1 + x3) ≤ 1− 1 = 0.

Hence (because of x2 ≥ 0), we have x2 = 0. For reasons of symmetry, we also
have x1 = 0. Applying efficiency once again, we obtain x3 = 1−(x1 + x2) =

1. Thus, the only candidate for the core is x = (0, 0, 1) . Indeed, this payoff
vector fulfills all the conditions noted above. Therefore,

(0, 0, 1)

is the only element in the core.
Exercise III.11
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The marginal contributions are

MC
{1,3,4}
1

(
v{1,2,3},{4,5}

)
= v ({1, 3, 4} ∪ {1})− v ({1, 3, 4} \ {1})
= v ({1, 3, 4})− v ({3, 4})
= 1− 1 = 0,

MC
{3,4}
1

(
v{1,2,3},{4,5}

)
= v ({3, 4} ∪ {1})− v ({3, 4} \ {1})
= v ({1, 3, 4})− v ({3, 4})
= 1− 1 = 0,

MC
{1,3,4}
4

(
v{1,2,3},{4,5}

)
= v ({1, 3, 4} ∪ {4})− v ({1, 3, 4} \ {4})
= v ({1, 3, 4})− v ({1, 3})
= 1− 0 = 1,

MC
{1,3}
4

(
v{1,2,3},{4,5}

)
= v ({1, 3} ∪ {4})− v ({1, 3} \ {4})
= v ({1, 3, 4})− v ({1, 3})
= 1− 0 = 1.

Exercise III.12

The marginal contributions and hence the rank-order values are the
same: v ({1, 2, 3})− v ({1, 3}) .
Exercise III.9

We find 5! = 1 ·2 · 3 ·4 · 5 = 120 rank orders of 5 players and 6! = 5! ·6 =
120 · 6 = 720 rank orders for 6 players.
Exercise III.10

We find K2 ((2, 1, 3)) = {2} and K2 ((3, 1, 2)) = {1, 2, 3} .
Exercise III.13

We find the marginal contributions

v ({1})− v (∅) = 0− 0 = 0, rank order (1, 2, 3)

v ({1})− v (∅) = 0− 0 = 0, rank order (1, 3, 2)

v ({1, 2})− v ({2}) = 0− 0 = 0, rank order (2, 1, 3)

v ({1, 2, 3})− v ({2, 3}) = 1− 1 = 0, rank order (2, 3, 1)

v ({1, 3})− v ({3}) = 1− 0 = 1, rank order (3, 1, 2)

v ({1, 2, 3})− v ({2, 3}) = 1− 1 = 0, rank order (3, 2, 1) .

Exercise III.14

Let i and j be players from L and let K be a coalition that contains
neither i nor j. Then K ∪ {i} contains the same number of left and the
same number of right gloves as K ∪ {j}. Therefore,

vL,R (K ∪ {i}) = min (|(K ∪ {i}) ∩L| , |(K ∪ {i}) ∩R|)
= min (|(K ∪ {j}) ∩ L| , |(K ∪ {j}) ∩R|)
= vL,R (K ∪ {j}) .
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Exercise III.15

The equality follows from

MCK
i = v (K ∪ {i})− v (K\ {i})

= v (K ∪ {i})− v (K)

= v (K ∪ {j})− v (K)

= v (K ∪ {j})− v (K\ {j})
= MCK

j .

Exercise III.16

A player i from L is a null player iff R = ∅ holds. R = ∅ implies

vL,∅ (K) = min (|K ∩ L| , |K ∩ ∅|)
= min (|K ∩ L| , 0)
= 0

for every coalition K. R �= ∅ means that i has a marginal contribution of 1
when he comes second after a right-glove holder.
Exercise III.18

The left-glove holder 1 completes a pair (the only one) whenever he does
not come first. The probability for coming first is 1

4 for player 1 (and any
other player). Thus, player 1 obtains

(
1− 1

4

)
· 1. The other players share

the rest. Therefore, symmetry and efficiency lead to

ϕ1
(
v{1},{2,3,4}

)
=

3

4
,

ϕ2
(
v{1},{2,3,4}

)
= ϕ3

(
v{1},{2,3,4}

)
= ϕ4

(
v{1},{2,3,4}

)
=
1

12
.

13. Further exercises without solutions



CHAPTER IV

Many games

0.1. Introduction. In the previous chapter, we focus on a specific class
of games, the gloves games. In this chapter, we aim to familiarize the reader
with many other interesting games.

Simple games are simple — all the coalitions have worth 0 or 1. We
address worth-0 coalitions as loosing coalitions and worth-1 coalitions as
winning coalitions. Simple games can be used to model these interesting
situations:

• Political parties form a winning coalition if they command more
than fifty percent of a parliament’s seats. In Germany, one par-
ticular winning coalition of political parties forms the government
coalition in order to elect the chancellor.

• The United Nation’s Security Council has peculiar voting rules ac-
cording to which each permanent member (China, France, ...) has
veto power.

• Some players may be powerful or productive if they combine while
all the other players are “useless”. For example, each productive
player possesses part of a treasure map. The treasure can be found
only if all the different parts of the map are put together. This
type of game is called a unanimity game.

We also introduce non-simple games:

• For example, a car is sold by one player to one of two prospective
buyers. The willingness’ to pay by both buyers should influence
the seller’s payoff.

• Many organizations have the problem of dividing overhead cost to
several units. Examples are doctors with a common secretary or
commonly used facilities, firms organized as a collection of profit-
centers, universities with computing facilities used by several de-
partments or faculties. We show that the core and also the Shapley
value can provide solutions to this problem. This sections rests on
Young (1994a) and chapter 5 from Young (1994b).

• We consider endowment games which are generalizations of gloves
games. Players may possess any number of gloves are any other
goods.

49
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Finally, this chapter presents general properties of coalition functions such
as monotonicity or superadditivity.

1. Simple games

1.1. Definition. We first define monotonic games and then simple games.

D�������
� IV.1 (monotonic game). A coalition function v ∈ V (N) is
called monotonic if ∅ ⊆ S ⊆ S′ implies v (S) ≤ v (S′) .

Thus, monotonicity means that the worth of a coalition cannot decrease
if other players join. Differently put, if S′ is a superset of S (or S a subset
of S′), we cannot have v (S) = 1 and v (S′) = 0.

Simple games are a special subclass of monotonic games:

D�������
� IV.2 (simple game). A coalition function v ∈ V (N) is called
simple if

• we have v (K) = 0 or v (K) = 1 for every coalition K ⊆ N ,

• the grand coalition’s worth is 1 and.
• v is monotonic.

Coalitions with v (K) = 1 are called winning coalitions and coalitions with

v (K) = 0 are called loosing coalitions. A winning coalition K is a minimal

winning coalition if every strict subset of K is not a winning coalition.

Simple games can be characterized by the pivotal coalitions of all the
players:

D�������
� IV.3 (pivotal coalition). For a simple game v, K ⊆ N is a

pivotal coalition for i ∈ N if v (K) = 0 and v (K ∪ {i}) = 1. The number of
i’s pivotal coalitions is denoted by ηi (v) ,

ηi (v) := |{K ⊆ N : v (K) = 0 and v (K ∪ {i}) = 1}| .
We have η (v) := (η1 (v) , ..., ηn (v)) and η̄ (v) :=

∑
i∈N ηi (v) .We sometimes

omit v and write ηi (η, η̄) rather than ηi (v) (η (v) , η̄ (v)).

By
∣∣2N\{i}

∣∣ = 2n−1, no player can have more pivotal coalitions than
2n−1.

E������� IV.1. How do you call a player i ∈ N who has no pivotal

coalitions?

1.2. Veto players and dictators. According to the previous exercise,
all interesting simple games have v (N) = 1. Sometimes, some players are
of central importance:

D�������
� IV.4 (veto player, dictator). Let v be a simple game. A

player ∈ N is called a veto player if

v (N\ {i}) = 0
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holds. i is called a dictator if

v (S) =

{
1, i ∈ S

0, sonst

holds for all S ⊆ N .

Thus, without a veto player, the worth of a coalition is 0 while a dictator
can produce the worth 1 just by himself.

E������� IV.2. Can there be a coalition K such that v (K\ {i}) = 1 for
a veto player i or a dictator i?

E������� IV.3. Is every veto player a dictator or every dictator a veto
player?

E������� IV.4. How do you call a player i ∈ N with ηi = 2
n−1?

1.3. Simple games and voting mechanisms. Oftentimes, simple
games can be used to model voting mechanisms. As a matter of consistency,
complements of winning coalitions have to be loosing coalitions. Otherwise,
a coalition K could vote for something and N\K would vote against it, both
of them successfully.

D�������
� IV.5 (contradictory, decidable). A simple game v ∈ V (N)
is called non-contradictory if v (K) = 1 implies v (N\K) = 0.
A simple game v ∈ V (N) is called decidable if v (K) = 0 implies

v (N\K) = 1.

Thus, a contradictory voting game can lead to opposing decisions — for
example, some candidate A is voted president (with the support of some
coalition K) and then some other candidate B (with the support of N\K)
is also voted president. A non-decidable voting game can prevent any deci-
sion. Neither A nor B can gain enough support because coalition K blocks
candidate B while N\K blocks candidate A.

E������� IV.5. Show that a simple game with a veto player cannot be
contradictory. A simple game with two veto players cannot be decidable.

1.4. Unanimity games. Unanimity games are famous games in coop-
erative game theory. We will use them to prove the Shapley theorem.

D�������
� IV.6 (unanimity game). For any T �= ∅,

uT (K) =

{
1, K ⊇ T

0, otherwise

defines a unanimity game.

The T -players exert a kind of common dictatorship.
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E������� IV.6. Find the null players in the unanimity game uT .

E������� IV.7. Find the core and the Shapley value for N = {1, 2, 3, 4}
and u{1,2}.

1.5. Apex-Spiel. The apex game has one important player i ∈ N who
is nearly a veto player and nearly a dictator.

D�������
� IV.7 (apex game). For i ∈ N with n ≥ 2, the apex game hi
is defined by

hi (K) =






1, i ∈ K and K\ {i} �= ∅
1, K = N\ {i}
0, otherwise

Player i is called the main, or apex, player of that game.

Thus, there are two types of winning coalitions in the apex game:

• i together with at least one other player or
• all the other players taken together.

Generally, we work with apex games for n ≥ 4.

E������� IV.8. Consider h1 for n = 2 and n = 3. How do these games

look like?

E������� IV.9. Is the apex player a veto player or a dictator?

E������� IV.10. Show that the apex game is decidable and not contra-
dictory.

Let us now think find the Shapley value for the apex game. Consider all
the rank orders. The apex player i ∈ N obtains the marginal contribution
1 unless

• he is the first player in a rank order (then his marginal contribution
is v ({i})− v (∅) = 0− 0 = 0) or

• he is the last player (with marginal contribution v (N)−v (N\ {i}) =
1− 1 = 0).

Since every position of the apex player in a rank order has the same proba-
bility, the following exercise is easy:

E������� IV.11. Find the Shapley value for the apex game h1!

1.6. Weighted voting games.

1.6.1. Definition. Weighted voting games form an important subclass of
the simple games. We specify weights for every player and a quota. If the
sum of weights for a coalition is equal to or above the quota, that coalition
is a winning one.
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D�������
� IV.8 (weighted voting game). A voting game v is specified

by a quota q and voting weights gi, i ∈ N, and defined by

v (K) =

{
1,

∑
i∈K gi ≥ q

0,
∑

i∈K gi < q

In that case, the voting game is also denoted by [q; g1, ..., gn] .

For example, [
1

2
;
1

n
, ...,

1

n

]

is the majority rule, according to which fifty percent of the votes are nec-
essary for a winning coalition. Do you see that n = 4 implies that the
coalition {1, 2} is a winning coalition and also the coalition of the other
players, {3, 4}? Thus, this voting game is contradictory.

The apex game h1 for n players can be considered a weighted voting
game given by [

n− 1;n− 3
2
, 1, ..., 1

]
.

E������� IV.12. Consider the unanimity game uT given by t < n and

T = {1, ..., t} . Can you express it as a weighted voting game?

1.6.2. UN Security Council. Let us consider the United Nations’ Secu-
rity Council. According to http://www.un.org/sc/members.asp:, it has 5
permanent members and 10 non-permanent ones. The permanent mem-
bers are China, France, Russian Federation, the United Kingdom and the
United States. In 2009, the non-permanent members were Austria, Burkina
Faso, Costa Rica, Croatia, Japan, Libyan Arab Jamahiriya, Mexico, Turkey,
Uganda and Viet Nam.

We read:

Each Council member has one vote. ... Decisions on sub-
stantive matters require nine votes, including the concurring
votes of all five permanent members. This is the rule of "great
Power unanimity", often referred to as the "veto" power.

Under the Charter, all Members of the United Nations
agree to accept and carry out the decisions of the Security
Council. While other organs of the United Nations make
recommendations to Governments, the Council alone has the
power to take decisions which Member States are obligated
under the Charter to carry out.

Obviously, the UN Security Council has a lot of power and so its voting
mechanism deserves analysis. The above rule for "substantive matters" can
be translated into the weighted voting game

[39; 7, 7, 7, 7, 7, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]
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where the weights 7 accrue to the five permanent and the weights 1 to the
non-permanent members.

E������� IV.13. Using the above voting game, show that every perma-
nent member is a veto player. Show also that the five permanent members

need the additional support of four non-permanent ones.

E������� IV.14. Is the Security Council’s voting rule non-contradictory
and decidable?

It is not easy to calculate the Shapley value for the Security Council.
After all, we have

15! = 1.307.674.368.000

rank orders for the 15 players. Anyway, the Shapley values are

0, 19627 for each permanent member

0, 00186 für each non-permanent member.

2. Three non-simple games

2.1. Buying a car. Following Morris (1994, S. 162), we consider three
agents envolved in a car deal. Andreas (A) has a used car he wants to sell,
Frank (F) and Tobias (T) are potential buyers with willingness to buy of
700 and 500, respectively. This leads to the coalition function v given by

v (A) = v (F ) = v (T ) = 0,

v (A,F ) = 700,

v (A, T ) = 500,

v (F, T ) = 0 and

v (A,F, T ) = 700.

One-man coalitions have the worth zero. For Andreas, the car is useless (he
believes in cycling rather than driving). Frank and Tobias cannot obtain
the car unless Andreas cooperates. In case of a deal, the worth is equal to
the (maximal) willingness to pay.

We use the core to find predictions for the car price. The core is the set
of those payoff vectors (xA, xF , xT ) that fulfill

xA + xF + xT = 700

and

xA ≥ 0, xF ≥ 0, xT ≥ 0,
xA + xF ≥ 700,

xA + xT ≥ 500 and

xF + xT ≥ 0.
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Tobias obtains

xT = 700− (xA + xF ) (efficiency)

≤ 700− 700 (by xA + xF ≥ 700)
= 0

and hence zero, xT = 0. By xA + xT ≥ 500, the seller Andreas can obtain
at least 500.

Summarizing (and checking all the conditions above), we see that the
core is the set of vectors (xA, xF , xT ) obeying

500 ≤ xA ≤ 700,
xF = 700− xA and

xT = 0.

Therefore, the car sells for a price between 500 and 700.

2.2. The Maschler game. Aumann & Myerson (1988) present the
Maschler game which is the three-player game given by

v (K) =






0, |K| = 1
60, |K| = 2
72, |K| = 3

Obviously, the three players are symmetric. It is easy to see that all players
of symmetric games are symmetric.

D�������
� IV.9 (symmetric game). A coalition function v is called

symmetric if there is a function f : N → R such that

v (K) = f (|K|) , K ⊆ N.

E������� IV.15. Find the Shapley value for the Maschler game!

According to the Shapley value, the players 1 and 2 obtain less than
their common worth. Therefore, they can block the payoff vector suggested
by the Shapley value. Indeed, for any efficient payoff vector, we can find a
two-man coalition that can be made better off. Differently put: the core is
empty.

This can be seen easily. We are looking for vectors (x1, x2, x3) that fulfill
both

x1 + x2 + x3 = 72

and

x1 ≥ 0, x2 ≥ 0, x3 ≥ 0,
x1 + x2 ≥ 60,

x1 + x3 ≥ 60 and

x2 + x3 ≥ 60.
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Summing the last three inequalities yields

2x1 + 2x2 + 2x3 ≥ 3 · 60 = 180
and hence a contradiction to efficiency.

2.3. The gloves game, once again. In chapter III, we have calcu-
lated the core for the gloves game L = {1, 2} and R = {3}. The core clearly
shows the bargaining power of the right-glove owner. We will now consider
the core for a case where the scarcity of right gloves seems minimal:

L = {1, 2, ..., 100}
R = {101, ..., 199} .

If a payoff vector

(x1, ..., x100,x101, ..., x199)

is to be long to the core, we have

199∑

i=1

xi = 99

by the efficiency axiom. We now pick any left-glove holder j ∈ {1, 2, ..., 100} .
We find

v (L\ {j}∪R) = 99
and hence

xj = 99−
199∑

i=1,
i�=j

xi (efficiency)

≤ 99− 99 (blockade by coalition L\ {j}∪R)
= 0.

Therefore, we have xj = 0 for every j ∈ L.
Every right-glove owner can claim at least 1 because he can point to

coalitions where he is joined by at least one left-glove owner. Therefore,
every right-glove owner obtains the payoff 1 and every left-glove owner the
payoff zero. Inspite of the minimal scarcity, the right-glove owners get every-
thing.

If two left-glove owners burned their glove, the other left-glove owners
would get a payoff increase from 0 to 1. (Why?)

E������� IV.16. Consider a generalized gloves game where

• player 1 has one left glove,
• player 2 has two left gloves and
• players 3 and 4 have one right glove each.

Calculate the core. How does the core change if player 2 burns one of

his two gloves?
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The burn-a-glove strategy may make sense if payoffs depend on the
scarcity in an extreme fashion as they do for the core.

3. Cost division games

We model cost-division games (for doctors sharing a secretarial office
or faculties sharing computing facilities) by way of cost functions and cost-
savings functions.

D�������
� IV.10 (cost-division game). For a player set N , let c : 2N →
R+ be a coalition function that is called a cost function. On the basis of c,
the cost-savings game is defined by v : 2N → R and

v (K) =
∑

i∈K
c ({i})− c (K) ,K ⊆ N.

The idea behind this definition is that cost savings can be realized if
players pool their resources so that

∑
i∈K

c ({i}) is greater than c (K) and

v (K) is positive.
We consider a specific example. Two towns A and B plan a water-

distribution system.Town A could build such a system for itself at a cost of
11 million Euro and twon B would need 7 million Euro for a system tailor-
made to its needs. The cost for a common water-distribution system is 15
million Euro. The cost function is given by

c ({A}) = 11, c ({B}) = 7 and
c ({A,B}) = 15.

The associated cost-savings game is v : 2{A,B} → R defined by

v ({A}) = 0, c ({B}) = 0 and
v ({A,B}) = 7 + 11− 15 = 3.

v’s core is obviously given by
{
(xA, xB) ∈ R2+ : x1 + x2 = 3

}
.

The cost savings of 3 = 11 + 7− 15 can be allotted to the towns such that
no town is worse off compared to going alone. Thus, the set of undominated
cost allocations is

{
(cA, cB) ∈ R2 : cA + cB = 15, cA ≤ 11, cB ≤ 7

}
.

4. Endowment games

Gloves games are a specific class of endowment games. In these games,
players own an endowment (in the gloves game: a right or a left glove). We
first define the endowment economy and then, on that basis, the endowment
game.
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D�������
� IV.11 (endowment economy). An endowment economy is a
tuple

E =
(
N,G,

(
ωi

)
i∈N , agg

)

consisting of

• the set of agents N = {1, 2, ..., n} ,
• the finite set of goods G = {1, ..., ℓ} ,
• for every agent i ∈ N, an endowment ωi =

(
ωi1, ..., ω

i
ℓ

)
∈ Rℓ+ where

ω :=
∑

i∈N
ωi =

(
∑

i∈N
ωi1, ...,

∑

i∈N
ωiℓ

)

is the economy’s total endowment, and

• an aggregation functions agg : Rℓ → R.

Two remarks are in order:

• Do you see the connection between ω and the exchange Edgeworth
box introduced in chapter II on pp. 14?

• The aggregation function aggregates the different goods’ amounts
into a specific real number in the same way as the min-operator
does in the gloves game.

D�������
� IV.12 (endowment game). Consider an endowment econ-
omy E. An endowment game vE : 2N → R is defined by

vE (K) := agg

(
∑

i∈K
ωi1, ...,

∑

i∈K
ωiℓ

)

.

We sometimes write vω rather than vE .

Within the class of endowment games, we can define the sum of two
coalition functions on N in the usual manner — just sum the worths of every
coalition. For example, we have

(
v{1,2},{3} + v{1},{2,3}

)
({2})

= v{1,2},{3} ({2}) + v{1},{2,3} ({2})
= 0 + 0 = 0

However, taking the specific nature of endowment games into account, it is
also plausible to sum endowments and take it from there. In that case, we
find that player 2 has a left glove (in v{1,2},{3}) and a right glove (in v{1},{2,3})
and hence the worth 1. We capture this idea by the following definition:

D�������
� IV.13 (summing of endowment games). Consider two en-
dowment economies E and F which have the same player set N, the same

set of goods G and the same aggregation function agg. In that case, E and
F are called structurally identical. The (possibly different) endowments are
denoted ωE and ωF , respectively, and the derived endowment games by vE
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and vF . The endowment-based sum of these games is denoted by vE ⊕ vF
and defined by

ωig = (ωE)
i
g + (ωF )

i
g , i ∈ N, g ∈ G and

(vE ⊕ vF ) (K) : = agg

(
∑

i∈K
ωi1, ...,

∑

i∈K
ωiℓ

)

.

Note that the sum of two gloves games need not be a gloves game, but a
generalized gloves game where players can have any number of left or right
gloves.

Endowment-based summing is of economic interest. For example, we
can consider two autarkic economies that open up for trade and define the
gains from trade:

D�������
� IV.14 (summing of endowment games). For a player set
N , consider two endowment economies E and F . The gains from trade are
defined by

GfT (E ,F) = (vE ⊕ vF) (N)− [vE (N) + vF (N)] .

Thus the usual sum of coalition function ignores all substantial linkages
that might exist between them.

E������� IV.17. Show that the gains from trade are zero for any gloves
game vE := v{L},{R} and vF := vE .

A specific class of endowment games has been proposed by Owen (1975):
production games. In these games, players’ endowments represent factors of
production rather than consumption goods. The idea is that the players pool
their factors of production and sell the output. We define the aggregation
function agg : Rℓ → R by

agg (ω1, ..., ωℓ) := p · f (ω1, ..., ωℓ)

where f is a production function and p the price vector. If m goods are
produced, p is a price vector with m entries and · stands for the scalar
product. Thus, the endowment game’s worths stand for

• the revenue
• generated by the output
• produced with the factors of production
• a coalition is endowed with.

5. Properties of coalition functions

5.1. Zero players and symmetric players.
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D�������
� IV.15 (zero player). A player i ∈ N is a zero player for a

coalition function v ∈ V (N) if
v (K∪{i}) = v (K\ {i})

holds for every coalition K ⊆ N .

D�������
� IV.16 (inessential player). A player i ∈ N is an inessential

player for a coalition function v ∈ V (N) if
v (K∪{i})− v (K\ {i}) = v ({i})

holds for every coalition K ⊆ N .

5.2. Inessentiality and additivity. We begin with boring coalition
functions.

D�������
� IV.17 (triviality). A coalition function v ∈ V (N) is called
trivial if

v (K) = 0

holds for every coalition K ⊆ N .

Thus, a trivial coalition function v ∈ V (N) is the zero coalition function
v = 0.

D�������
� IV.18 (inessentiality). A coalition function v ∈ V (N) is
called inessential if

v (K) =
∑

i∈K
v ({i})

holds for all K ⊆ N .

D�������
� IV.19. A coalition function is called additive if v (R ∪ S) =

v (R) + v (S) holds for all coalitions R and S ⊆ N obeying R ∩ S = ∅.

L���� IV.1. A coalition function v is inessential if and only if every

player i ∈ N is an inessential player for v and if and only if v is additive.

5.3. Monotonicity and superadditivity. Nearly all the coalition func-
tions we work with in this book are monotonic (see definition IV.1 on p. 50)
and superadditive. Monotonicity and superadditivity are closely related:

• Monotonicity means that adding players never decreases the worth.
• Superadditivity can be tanslated as “cooperation pays”.

D�������
� IV.20 (superadditivity). A coalition function v ∈ V (N) is
called superadditive if for any two coalitons R and S

R ∩ S = ∅
implies

v (R) + v (S) ≤ v (R ∪ S) .

v (R ∪ S)− (v (R) + v (S)) ≥ 0 is called the gain from cooperation.
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Glove games are monotonic because the number of glove pairs cannot
decrease if additional players (and hence additional gloves) are added. They
are also superadditive because the number of glove pairs cannot decrease
when two disjoint coalitions pool their gloves.

E������� IV.18. Is the coalition function v, given by N = {1, 2, 3} and
v ({1, 2, 3}) = 5,

v ({1, 2}) = v ({1, 3}) = v ({2, 3}) = 4,
v ({1}) = v ({2}) = v ({3}) = 0

superadditive?

E������� IV.19. How about superadditivity of unanimity games, of the
Maschler game or of a contradictory simple game?

While monotonicity and superadditivity seem very similar properties,
monotonicity does not imply superadditivity as you can see from N = {1, 2}
and v ({1}) = v ({2}) = 3 and v ({1, 2}) = 4.

E������� IV.20. Show that every monotonic game v is non-negative,

i.e., fulfills v (K) ≥ 0 for alle K ⊆ N.

E������� IV.21. Show that superadditivity and non-negativity imply
monotonicity.

5.4. Convexity. Superadditivity means: cooperation pays. Convexity
implies superadditivity, but is stronger. Convexity is interesting because the
Shapley value can be shown to lie in the core of any convex game.

D�������
� IV.21 (convexity). A coalition function v ∈ V (N) is called
convex if for any two coalitons S and S′ with S ⊆ S′ and for all players
i ∈ N\S′, we have

v (S ∪ {i})− v (S) ≤ v
(
S′ ∪ {i}

)
− v

(
S′

)
.

v is called strictly convex if the inequality is strict.

Thus, the marginal contribution is large for large coalitions. May-be,
you find fig. 1 helpful.

Let us consider the example of by N = {1, 2, 3, 4} and the coalition
function v given by

v (S) = |S| − 1, S �= ∅.
Note that the marginal contribution is zero for any player who joins the
empty set,

v (∅ ∪ {i})− v (∅) = [|{i}| − 1]− 0 = 0,
while the marginal contribution with respect to any nonempty coalition is
1. Thus, this coalition function is convex.
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F����� 1. Strict convexity

E������� IV.22. Is the unanimity game uT convex? Distinguish between
i ∈ T and i /∈ T . Is uT strictly convex?

Why are convex coaliton functions called convex? The reader remembers
that function f : R → R that are defined by f (x) = x2 or f (x) = ex are
called convex. If they are twice differentiable, the second derivatives (2 and
ex in our examples) are positive.

To see that convex coalition functions behave similarly, we consider the
special case of symmetric coalition functions. In fig. 2, you see that the
differences increase as they do for x2.

Sometimes, an alternative characterization of convexity is helpful:

T �
��� IV.1 (criterion for convexity). A coalition function v is convex

if and only if for all coalitions R and S, we have

v (R ∪ S) + v (R ∩ S) ≥ v (R) + v (S) .

v is strictly convex if and only if

v (R ∪ S) + v (R ∩ S) > v (R) + v (S)

holds for all coalitions R and S with R\S �= ∅ and S\R �= ∅.

We do not present a proof for this criterion. The reader can find a proof
in the textbook on lattice theory by Topkis (1998).
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F����� 2. Convexity for symmetric coalition functions

We now turn to the relationship between superadditivity and convexity.

E������� IV.23. Is the Maschler game convex? Is it superadditive?

Thus, a superadditive coalition function need not be convex. However,
the inverse is true.

E������� IV.24. Using the above criterion for convexity, show that
every convex coalition function is superadditive.

5.5. The Shapley value and the core. The Shapley value need not
be in the core even if the core is nonempty. This assertion follows from the
following exercise that is taken from Moulin (1995, S. 425).

E������� IV.25. Consider the coalition function given by N = {1, 2, 3}
and

v (K) =






0, |K| = 1
1
2 , K = {1, 3} or K = {2, 3}
8
10 , K = {1, 2}
1, K = {1, 2, 3}

Show that
(
4
10 ,

4
10 ,

2
10

)
belongs to the core but that the Shapley value does not.

However, the Shapley value can be shown to lie in the core for convex
coalition functions:
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T �
��� IV.2. If a coalition function v is convex, the Shapley value

Sh (v) lies in the core.
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6. Topics and literature

The main topics in this chapter are

• simple game
• winning coalition
• veto player
• dictator
• null player
• unanimity game
• apex game
• weighted voting game
• buying-a-car game
• Maschler-Spiel
• endowment game
• superadditivity
• convexity
• monotonicity

We introduce the following mathematical concepts and theorems:

• linear independence
• span
• basis
• coefficients

We recommend .

7. Solutions

Exercise IV.1

ηi = 0 means that player i’s marginal contribution is zero with respect
to every coalition and hence player i is a null player.
Exercise IV.2

Can there be a coalition K such that v (K\ {i}) = 1 for a veto player i

or a dictator i?

If i is a veto player, we have v (K\ {i}) ≤ v (N\ {i}) = 0 for every
coalitionK ⊆ N and hence v (K\ {i}) = 0. Thus, a veto player i ∈ N cannot
fulfill v (K\ {i}) = 1. A dictator i cannot fulfill v (K\ {i}) = 1 because the
worth of a coalition is 1 if and only if the dictator belongs to the coalition.
Exercise IV.3

A dictator is always a veto player — without him the coalition cannot
win. However, a veto player need not be a dictator. Just consider the simple
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game v on the player set N = {1, 2} defined by v ({1}) = v ({2}) = 0,

v ({1, 2}) = 1. Players 1 and 2 are two veto players but not dictators.
Exercise IV.4

ηi = 2n−1 implies that every subset K of N\ {i} is a loosing coalition
while K ∪ {i} is winning. Player i is a dictator and a veto player.
Exercise IV.5

Let v be a simple game with a veto player i ∈ N . Then v (K) = 1

implies i ∈ K. By i /∈ N\K, we obtain v (N\K) = 0 — the desired result.
Let v be a simple game with two veto players i and j, i �= j. Then

v ({i}) = 0 (by j /∈ {i}) and v (K\ {i}) = 0 (by i /∈ K\ {i}) hold.
Exercise IV.6

For the unanimity game uT , the null players are the players from N\T .
Exercise IV.7

The core is
{
(x1, x2, x3, x4) ∈ R4+ : x1 + x2 = 1

}

and the Shapley value is given by

Sh
(
u{1,2}

)
=

(
1

2
,
1

2
, 0, 0

)
.

Exercise IV.8

For n = 2, we have

h1 (K) =

{
0, K = {1} or K = ∅
1, otherwise

= u{2}.

n = 3 yields the symmetric game

h1 (K) =

{
1, |K| ≥ 2
0, otherwise

(Symmetry means that the worths depend on the number of the players,
only.)
Exercise IV.9

No, the apex player is not a veto player. If all the other player unite
against the apex player, they win:

hi (N\ {i}) = 1.

For the same reason, the apex player is not a dictator, either.
Exercise IV.10

We first show that hi is not contradictory. Assume hi (K) = 1 for any
coalition K ⊆ N . Then, one of two cases holds. Either we have K = N\ {i}.
This implies hi (N\K) = hi ({i}) = 0. Or we have i ∈ K and |K| ≥ 2. Then,
hi (N\K) = 0. Thus, hi is noct contradictory.
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We now show that hi is decidable. Take any K ⊆ N with hi (K) = 0.
This implies K = {i} or K � N\ {i}. In both cases, the complements are
winning coalitions: N\K = N\ {i} or N\K � {i} .
Exercise IV.11

Since the apex player obtains the marginal contributions for positions 2
through n− 1, his Shapley payoff is

n− 2
n

· 1.

Due to efficiency, the other (symmetric!) players share the rest so that each
of them obtains

1

n− 1

(
1− n− 2

n

)
=

2

n (n− 1) .

Thus, we have

Sh (h1) =

(
n− 2
n

,
2

n (n− 1) , ...,
2

n (n− 1)

)
.

Exercise IV.12

One possible solution is

[
1;
1

t
, ...,

1

t
, 0, ..., 0

]

where 1
t is the weight for the powerful T -players while 0 is the weight for

the unproductive N\T -players.
Exercise IV.13

Every permanent member is a veto player by 4 · 7 + 10 · 1 = 38 < 39.

Because of 5 · 7 + 4 · 1 = 39, four non-permanent members are necessary for
passing a resolution.
Exercise IV.14

The voting rule is not contradictory and not decidable. This is just a
corollary of exercise IV.5 (p. IV.5).
Exercise IV.15

By efficiency and symmetry, we have

Sh (v) = (24, 24, 24) .

Exercise IV.16

The core has to fulfill

x1 + x2 + x3 + x4 = 2
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and also the inequalities

xi ≥ 0, i = 1, ..., 4,

x1 + x3 ≥ 1,

x1 + x4 ≥ 1,

x2 + x4 ≥ 1 and

x2 + x3 + x4 ≥ 2.

We then find

x1 = 2− (x2 + x3 + x4) ≤ 0
and hence

x1 = 0 (because of x1 ≥ 0),
x3 ≥ 1 and x4 ≥ 1.

Using efficiency once more supplies x2 = 0 and

(0, 0, 1, 1)

is the only candidate for a core. Indeed, this is the core. Just check all
the inequalities above and also those omitted. Player 2’s payoff is 0 in this
situation. If he burns his second glove, we find (non-generalized) gloves
game v{1,2},{3,4} where player 2 may achieve any core payoff between 0 and
1.

Exercise IV.17

The number of gloves pairs in vE ⊕ vE is twice the number of glove pairs
in vE .
Exercise IV.18

For any i, j ∈ {1, 2, 3} , i �= j, we have v ({i}) + v ({j}) = 0 + 0 < 4 =

v ({i, j}) and v ({i}) + v (N\ {i}) = 0 + 4 < 5. Hence, v is superadditive.
Exercise IV.19

Every unanimity game is superadditive. Assume a unanimity game uT
that is not superadditive. Then, we would have to disjunct coalitions R and
S with v (R) + v (S) > v (R ∪ S). The whole set of productive players T

cannot be contained in both R and S. If it is contained in R (or in S), it
is also contained in R∪S. Then, we have v (R) + v (S) = 1 = v (R ∪ S) and
the desired contradiction. If T is not contained in R and not contained in
S, we have v (R) + v (S) = 0 and the inequality cannot be true, either.

The Maschler game is also superadditive. We need to consider the two
inequalities

0 + 0 ≤ 60 and 0 + 60 ≤ 72.
A simple game is contradictory if we have a coalitonK such that v (K) =

v (N\K) = 1. By v (K) + v (N\K) = 2 > 1 = v (N) , superadditivity is
violated.
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Exercise IV.20

For all coalitions K ⊆ N , we have K ⊇ ∅ and, by monotonicity v (K) ≥
v (∅) = 0.
Exercise IV.21

Consider two coalitions S,S′ ⊆ N with S ⊆ S′ gegeben. Monotonicity
follows from

v
(
S′

)
= v

(
S ∪

(
S′\S

))

≥ v (S) + v
(
S′\S

)
(superadditivity)

≥ v (S) (non-negativity).

Exercise IV.22

Yes, uT is convex. For i ∈ T and S ⊆ S′ ⊆ N with i /∈ S′, we obtain

uT (S ∪ {i})− uT (S) = uT (S ∪ {i})− 0 (S � T )

≤ uT
(
S′ ∪ {i}

)
− 0 (uT is monotonic)

= uT
(
S′ ∪ {i}

)
− uT

(
S′

)
(S′ � T ).

If, however, i is not included in T, both v (S ∪ {i})−v (S) and v (S′ ∪ {i})−
v (S′) are equal to zero. This shows that uT is convex, but not strictly
convex.
Exercise IV.23

The Maschler game is superadditive (see exercise IV.19, p. 61), but
not convex. For S = {1}, S′ = {1, 2} and i = 3, we have

v (S ∪ {i})− v (S) = v ({1, 3})− v ({1}) = 60
> 12 = v ({1, 2, 3})− v ({1, 2})
= v

(
S′ ∪ {i}

)
− v

(
S′

)
.

Exercise IV.24

Let R and S be disjunct coalitions. If v is convex, we obtain

v (R ∪ S) = v (R ∪ S) + v (∅)
= v (R ∪ S) + v (R ∩ S)

≥ v (R) + v (S) .

Thus, v is superadditive.
Exercise IV.25

Player 3’s Shapley value is

Sh3 (v) =
1

3
· 0 + 1

3
· 1
2
+
1

3
· 2
10
=
7

30
.

Symmetry and efficiency yield

Sh1 (v) = Sh2 (v) =
1

2
·
(
1− 7

30

)
=
23

60
.
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Since we have

Sh1 (v) + Sh2 (v) = 2 ·
23

60
=
23

30
<
24

30
=
8

10
= v ({1, 2}) ,

the Shapley value does not belong to the core. You can check that
(
4
10 ,

4
10 ,

2
10

)

fulfills all the necessary inequalities.

8. Further exercises without solutions

Show that the Shapley value for the cost function and the Shapley value
for the cost-savings function amount to the same result.



CHAPTER V

Dividends

1. Introduction

This chapter is rather technical in nature. We discuss the vector space of
coalition functions. It is a well-known result from linear algebra that every
vector space has a basis.

It turns out that the unanimity games form a basis of the vector space
of coalition functions on a player set N. This means that every coalition
function can be “expressed” by unanimity games.

2. Definition and interpretation

Harsanyi (1963) defines devidends:

D�������
� V.1 (Harsanyi dividend). Let v ∈ V (N) be a coalition func-
tion. The dividend (also called Harsanyi dividend) is a coalition function dv

on N defined by

dv (S) =
∑

K⊆S
(−1)|S|−|K| v (K) .

T �
��� V.1 (Harsanyi dividend). For any coalition function v ∈
V (N), its Harsanyi dividends are defined by the induction formula

dv (S) = v (S) for |S| = 1,
dv (S) = v (S)−

∑

K⊂S
dv (K) for |S| > 1

Why are the values of the coalition function dv called dividends? Con-
sider a player i who is a member of 2n−1 coalitions S ⊆ N. Player i “owns”
coalition S together with the other players from S where his ownership frac-
tion is 1

|S| . Let us, now, assume that each coalition S brings forth a dividend

dv (S). Then, player i should obtain the sum of average dividends

∑

i∈S⊆N

dv (S)

|S| .

It can be shown that this sum equals the Shapley value Shi (v). Thus, the
term dividend makes sense if we assume that players get the Shapley value.

71
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3. Coalition functions as vectors

As noted in chapter III, V (N) can be considered the vector space of
coalition functions on N . Since we have 2n subsets of N, 2n − 1 (the worth
of ∅ is always zero!) entries suffice to describe any game v ∈ V (N) . For
example, u{1,2} ∈ G{1,2,3} can be identified with the vector from R7



 0︸︷︷︸
{1}

, 0︸︷︷︸
{2}

, 0︸︷︷︸
{3}

, 1︸︷︷︸
{1,2}

, 0︸︷︷︸
{1,3}

, 0︸︷︷︸
{2,3}

, 1︸︷︷︸
{1,2,3}



 .

E������� V.1. Write down the vector that describes the Maschler game

v (K) =






0, |K| = 1
60, |K| = 2
72, |K| = 3

You know how to sum vectors. We can also multiply a vector by a real
number (scalar multiplication). Both operations proceed entry by entry:

E������� V.2. Consider v = (1, 3, 3) , w = (2, 7, 8) and α = 1
2 and

determine v +w and αw.

4. Spanning and linear independence

Rm, m ≥ 1, is a prominent class of vector spaces some of which obey
m = 2n − 1. We need some vector-space theory:

D�������
� V.2 (linear combination, spanning). A vector w ∈ Rm is
called a linear combination of vectors v1, ..., vk ∈ Rm if there exist scalars
(also called coefficients) α1, ..., αk ∈ R such that

w =
k∑

ℓ=1

αℓvℓ

holds. The set of vectors {v1, ..., vk} is said to span Rm if every vector from
Rm is a linear combinations of the vectors v1, ..., vk.

Consider, for example, R2 and the set of vectors

{(1, 2) , (0, 1) , (1, 1)} .

Any vector (x1, x2) is a linear combination of these vectors. Just consider

2x1 (1, 2)− (3x1 − x2) (0, 1)− x1 (1, 1)

= (2x1 − x1, 4x1 − (3x1 − x2)− x1)

= (x1, x2) .

E������� V.3. Show that (0, 1) is a linear combination of the other two
vectors, (1, 2) and (1, 1)!
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Using the result of the above exercise, we have

(x1, x2)

= 2x1 (1, 2)− (3x1 − x2) (0, 1)− x1 (1, 1)

= 2x1 (1, 2)− (3x1 − x2) [(1, 2)− (1, 1)]− x1 (1, 1)

= [2x1 − (3x1 − x2)] (1, 2)− [x1 + (3x1 − x2)] (1, 1)

so that any vector from R2 is a linear combination of just (1, 2) and (1, 1) .
If we want to span R2 (or any Rm), we try to find a minimal way to

do so. Any vector in a spanning set that is a linear combination of other
vectors in that set, can be eliminated.

D�������
� V.3 (linear independence). A set of vectors {v1, ..., vk} is
called linearly independent if no vector from that set is a linear combination

of other vectors from that set.

E������� V.4. Are the vectors (1, 3, 3) , (2, 1, 1) and (8, 9, 9) linearly in-
dependent?

Merging these two definitions gives rise to one of the most important
concept for vector spaces.

D�������
� V.4 (basis). A set of vectors {v1, ..., vk} is called a basis for
Rm if it spans Rm and is linearly independent.

An obvious basis for Rm consists of the m unit vectors

(1, 0, ..., 0) ,

(0, 1, 0, ..., ) ,

...,

(0, ..., 0, 1) .

Let us check whether they really do form a basis. Any x = (x1, ..., xm) is a
linear combination of these vectors by

x1 (1, 0, ..., 0) + x2 (0, 1, 0, ..., ) + ...+ xm (0, ..., 0, 1)

= (x1, 0, ..., 0) + (0, x2, 0, ..., ) + ...+ (0, ..., 0, xm)

= (x1, ..., xm) .

This proves that the unit vectors do indeed span Rm.
In order to show linear independence, consider any linear combination

of m− 1 unit vectors, for example

α1 (1, 0, ..., 0) + α2 (0, 1, 0, ..., ) + ...+ αm−1 (0, ..., 0, 1, 0)

which is equal to (α1, ..., αm−1, 0) and unequal to (0, ..., 0, 1) for any coeffi-
cients α1, ..., αm−1.
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L���� V.1 (basis of unit vectors). Them unit vectors (1, 0, ..., 0) , ..., (0, ..., 0, 1) ∈
Rm form a basis of the vector space Rm.

According to the above definition, a basis is a set of

(1) linearly independent vectors
(2) that span Rm.

However, we do not need to check both conditions:

T �
��� V.2 (basis criterion). Every basis of the vector space Rm has
m elements. Any set of m elements of the vector space Rm that span Rm

form a basis. Any set of m elements of the vector space Rm that are linearly
independent form a basis.

The reader might have noticed that the coefficients needed to express x

as a linear combinations of unit vectors are uniquely determined. This is
true for any basis:

T �
��� V.3 (uniquely determined coefficients). Let {v1, ..., vm} be a
basis of Rm and let x be any vector such that

x =
m∑

i=1

αivi =
m∑

i=1

βivi.

Then αi = βi for all i = 1, ..,m.

5. The basis of unanimity games

We have shown in the previous section that the unit games (that at-
tribute the worth of one to exactly one nonempty coalition) form a basis of
V (N). They are the 2n − 1 coalition functions vT , T �= ∅, given by

vT (S) =

{
1, S = T

0, S �= T

An alternative and prominent basis of V (N) is given by the unanimity
games:

L���� V.2 (unanimity games form basis). The 2n−1 unanimity games
uT , T �= ∅, form a basis of the vector space V (N) .

According to theorem V.2, it is sufficient to show that the unanimity
games are linearly independent. We use a proof by contradiction and assume
that there is a unanimity game uT that is a linear combination of the others:

uT =
k.∑

ℓ=1

βℓuTℓ

where

• the coalitions T , T1, ..., Tk are all pairwise different,
• k ≤ 2n − 2 holds and



5. THE BASIS OF UNANIMITY GAMES 75

• βℓ �= 0 holds for all ℓ = 1, ..., k.

Let us assume |T | ≤ |Tℓ| for all ℓ = 1, .., k. We can always rearrange the
equation and rename the coalitions so that this condition is fulfilled. Using
the coalition T as an argument, we now obtain

1 = uT (T )

=
k∑

ℓ=1

βℓuTℓ (T )

=
k∑

ℓ=1

βℓ · 0

= 0

and hence the desired contradiction.

E������� V.5. In the above proof, do you see why uTℓ (T ) = 0 holds for

all ℓ = 1, ..., k?

Now, let us reconsider lemma V.2 and theorem V.3. They say that for
any v ∈ V (N) there exist uniquely determined coefficients λv (T ) such that

v =
∑

T∈2N\{∅}
λv (T )uT

holds. This equation can also be expressed by

v (S) =
∑

T∈2N\{∅}
λv (T )uT (S) , S ⊆ N. (V.1)

Indeed, the coefficients can be shown to be the Harsanyi dividends:

λv (T ) := dv (T ) .

We will not provide a proof for this intriguing fact. Instead, we borrow an
example from Slikker & Nouweland (2001, p. 7)). Consider N := {1, 2, 3}
and the coalition function v given by

v (S) =






0, |S| = 1
60, S = {1, 2}
48, S = {1, 3}
30, S = {2, 3}
72, S = N
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This coalition function can also be expressed by the vector





0 ({1})
0 ({2})
0 ({3})
60 ({1, 2})
48 ({1, 3})
30 ({2, 3})
72 ({1, 2, 3})






Using the induction formula, the coefficients are

dv ({1}) = dv ({2}) = dv ({3}) = 0,
dv ({1, 2}) = v ({1, 2})− dv ({1})− dv ({2})

= 60− 0− 0 = 60,
dv ({1, 3}) = v ({1, 3})− dv ({1})− dv ({3})

= 48− 0− 0 = 48,
dv ({2, 3}) = v ({2, 3})− dv ({2})− dv ({3}) = 30 and

dv ({1, 2, 3}) = v ({1, 2, 3})− dv ({1, 2})− dv ({1, 3})− dv ({2, 3})
−dv ({1})− dv ({2})− dv ({3})

= 72− 60− 48− 30− 0− 0− 0
= −66

and we obtain

dv ({1, 2})u{1,2} + dv ({1, 3})u{1,3} + dv ({2, 3})u{2,3} + dv ({1, 2, 3})uN

= 60






0

0

0

1

0

0

1






+ 48






0

0

0

0

1

0

1






+ 30






0

0

0

0

0

1

1






− 66






0

0

0

0

0

0

1






=






0

0

0

60

48

30

72






and hence the expected vector.
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E������� V.6. Calculate the coefficients for the following games on N =

{1, 2, 3} :
• v ∈ V (N) is defined by v ({1, 2}) = v ({2, 3}) = v ({1, 2, 3}) = 1

and v ({1}) = v ({2}) = v ({3}) = v ({1, 3}) = 0.
• v ∈ V (N) is defined by

v (S) =






0, |S| ≤ 1
8, |S| = 2
9, S = N
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6. Topics and literature

The main topics in this chapter are

• Harsanyi dividend
• stability
• linear independence
• span
• basis
• coefficients

We recommend

7. Solutions

Exercise V.1

The vector describing the Maschler game is



 0︸︷︷︸
{1}

, 0︸︷︷︸
{2}

, 0︸︷︷︸
{3}

, 60︸︷︷︸
{1,2}

, 60︸︷︷︸
{1,3}

, 60︸︷︷︸
{2,3}

, 72︸︷︷︸
{1,2,3}



 .

Exercise V.2

We obtain v+w = (1, 3, 3)+(2, 7, 8) = (3, 10, 11) and αw = 1
2 (2, 7, 8) =(

1, 72 , 4
)
.

Exercise V.3

We have (1, 2)− (1, 1) = (0, 1) . Thus, we need the coefficients 1 and −1.
Exercise V.4

No, they are not linearly independent. Consider 2 (1, 3, 3) + 3 (2, 1, 1) =
(8, 9, 9) .

Exercise V.5

Take any ℓ ∈ {1, ..., k} . In order for uTℓ (T ) = 1 to hold, T would need
to be a superset of Tℓ. However, by |T | ≤ |Tℓ| , T and Tℓ would then need to
be equal which they are not.
Exercise V.6

In general, we have

dv (T ) :=
∑

K∈2T \{∅}
(−1)|T |−|K| v (K) .
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For the first game, we find

dv ({1}) = dv ({2}) = dv ({3}) = 0,
dv ({1, 2}) = (−1)2−1 v ({1}) + (−1)2−1 v ({2}) + (−1)2−2 v ({1, 2}) = 1,
dv ({1, 3}) = (−1)2−1 v ({1}) + (−1)2−1 v ({3}) + (−1)2−2 v ({1, 3}) = 0,
dv ({2, 3}) = (−1)2−1 v ({2}) + (−1)2−1 v ({3}) + (−1)2−2 v ({2, 3}) = 1,

dv ({1, 2, 3}) = (−1)3−1 v ({1}) + (−1)3−1 v ({2}) + (−1)3−1 v ({3})
+ (−1)3−2 v ({1, 2}) + (−1)3−2 v ({1, 3}) + (−1)3−2 v ({2, 3})
+ (−1)3−3 v ({1, 2, 3})

= 0 + 0 + 0− 1− 0− 1 + 1
= −1

while the second leads to

dv (T ) = 0 für |T | = 1,
dv (T ) = dv ({1, 2}) = (−1)2−1 v ({1}) + (−1)2−1 v ({2}) + (−1)2−2 v ({1, 2}) = 8 for |T | = 2

dv ({1, 2, 3}) = 3 · (−1)3−2 v ({1, 2}) + (−1)3−3 v ({1, 2, 3})
= −24 + 9 = −15.

8. Further exercises without solutions





CHAPTER VI

Axiomatizing the Shapley value

1. Introduction

This is a book on applications. Nevertheless, the reader should see the
most prominent example of the axiomatization of a value, the Shapley value.
We prepare the ground in section 2 — axiomatization means to find just the
right set of axioms. If there are too many aioms, they contradict each other.
Too few axioms are incapable of pointing to just one solution concept. If we
strike the right balance, the axioms single out exactly one solution concpet.

The proof of the axiomatization theorem comes in two parts:

(1) We show that the Shapley value fulfills the four axioms (section 3.
(2) We prove that there is only one value fulfilling the four axiom (sec-

tion 4). By the first part, this value needs to be the Shapley value.

Also, we present two other systems of axioms for the Shapley value
(sections 5 and 6). The third axiomatization can be linked to a discussion
on the concept of power-over (section 7).

Finally, we present the Banzhaf solution in section 8 which is an alter-
native to the Shapley value, in particular for simple games.

2. Too many axioms, not enough axioms

For any given set of axioms, we have three possibilities:

• There is no solution concept that fulfills all the axioms. That is,
the axioms are contradictary.

• The axioms are compatible with several solution concepts.
• There is one and only one solution concept that fulfills the axioms.
That is, the solution concept is axiomatized by this set of axioms.

E������� VI.1. Consider the following two axioms:

(1) Every player obtains the same payoff.
(2) Summing the players’ payoffs yields v (N).

(3) Every null player (with zero marginal contributions everywhere) ob-
tains zero payoff.

and the following two solutions:

(1) Every player obtains v (N) /n.

(2) Every player obtains the ρ-value for the rank order (1, 2, ..., n).

81
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Can you identify a set of contradictory axioms and can you identify a axioms

fulfilled by both solution concepts?

D�������
� VI.1. A solution concept σ (on V (N) or on V) is said be
axiomatized by a set of axioms if σ fulfills all the axioms and if any solution

concept to do so is identical with σ.

The Shapley value is defined by

Shi (v) =
1

n!

∑

ρ∈RON
MCρ

i (v) .

This formula tells us to sum up and average the marginal contributions
for each rank order. The formula obeys some axioms and disobeys others.
It turns out that the following four axioms are equivalent to the Shapley
formula:

D�������
� VI.2. Let σ be a solution function σ on V (N). σ obeys

• the efficiency (or Pareto) axiom if ∑i∈N σi (v) = v (N) holds for

all coalition functions v ∈ V (N),
• the symmetry axiom if σi (v) = σj (v) is true for all coalition func-

tions v ∈ V (N) and for any two symmetric players i and j,

• the null-player axiom if we have σi (v) = 0 for all coalition functions
v ∈ V (N) and for any null player i and

• the additivity axiom in case of σ (v +w) = σ (v) + σ (w) for any

two coalition functions v,w ∈ V (N) with N (v) = N (w) .

The main aim of this chapter is to prove

T �
��� VI.1 (1. axiomatization of Shapley value). The Shapley for-
mula is axiomatized by the four axioms mentioned in the previous definition.

3. The Shapley formula fulfills the four axioms

3.1. Efficiency axiom. The efficiency axiom holds for the Shapley
value and even for the marginal contributions.

D�������
� VI.3 (ρ-solution). For a player set N and a rank order

ρ ∈ RON , the ρ-solution is given by

(MCρ
1 (v) , ...,MCρ

n (v)) .

Thus, let us assume any rank order ρ ∈ RON . We can savely assume
ρ = (1, ..., n) . If the players come in a different order, we can rename them
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so as to obtain the order (1, ..., n). We find

∑

i∈N
MCρ

i (v) =
∑

i∈N
[v (Ki (ρ))− v (Ki (ρ) \ {i})]

= [v ({ρ1})− v (∅)]
+ [v ({ρ1, ρ2})− v ({ρ1})]
+ [v ({ρ1, ρ2, ρ3})− v ({ρ1, ρ2})]
+...

+
[
v
({

ρ1, ..., ρn−1
})
− v

({
ρ1, ..., ρn−2

})]

+
[
v ({ρ1, ..., ρn})− v

({
ρ1, ..., ρn−1

})]

= v (N)− v (∅)
= v (N) .

L���� VI.1. The ρ-solutions and the Shapley value fulfill the efficiency

axiom.

The efficiency of the ρ-solutions has been shown above. The efficiency
of the Shapley value follows immediately:

∑

i∈N
Shi (v) =

∑

i∈N

1

n!

∑

ρ∈RON
MCρ

i (v)

=
∑

ρ∈RON

1

n!

∑

i∈N
MCρ

i (v) (rearranging the summands)

=
∑

ρ∈RON

1

n!
v (N) (ρ-solutions are efficient)

= n!
1

n!
v (N)

= v (N) .

3.2. Symmetry axiom. Astonishingly, the symmetry axiom is not
easy to show. We refer the reader to Osborne & Rubinstein (1994, S. 293).
Intuitively, symmetry is obvious. After all,

• two players are symmetric if they contribute in a similar fashion
and

• the Shapley formula’s inputs are these marginal contributions.

3.3. Null-player axiom. A null player contributes nothing, per defi-
nition. The average of nothing is nothing. Therefore, the null-player axiom



84 VI. AXIOMATIZING THE SHAPLEY VALUE

holds for the Shapley value. Just look at
∑

i∈N
Shi (v) =

∑

i∈N

1

n!

∑

ρ∈RON
MCρ

i (v)

=
∑

i∈N

1

n!

∑

ρ∈RON
0

= 0.

3.4. Additivity axiom. In order to show additivity, note

(v +w) (K)− (v +w) (K\ {i})
= v (K) +w (K)− (v (K\ {i}) +w (K\ {i}))
= [v (K)− v (K\ {i})] + [w (K)−w (K\ {i})]

for any two coalition functions v,w ∈ V (N) any player i ∈ N and any
coalition K ⊆ N. Therefore, we find

Shi (v +w)

=
∑

i∈N

1

n!

∑

ρ∈RON
MCρ

i (v +w)

=
∑

i∈N

1

n!

∑

ρ∈RON
[(v +w) (Ki (ρ))− (v +w) (Ki (ρ) \ {i})]

(definition of marginal contribution)

=
∑

i∈N

1

n!

∑

ρ∈RON
([v (Ki (ρ))− v (Ki (ρ) \ {i})]

+ [w (Ki (ρ))−w (Ki (ρ) \ {i})]) (see above)

=
∑

i∈N

1

n!

∑

ρ∈RON
[v (Ki (ρ))− v (Ki (ρ) \ {i})]

+
∑

i∈N

1

n!

∑

ρ∈RON
[w (Ki (ρ))−w (Ki (ρ) \ {i})]

= Shi (v) + Shi (w) .

4. ... and is the only solution function to do so

We now want to show that any solution function that fulfills the four
axioms is the Shapley value. We follow the proof presented by Aumann
(1989, S. 30 ff.). We remind the reader of two important facts.

• The unanimity games uT , T �= ∅, form a basis of the vector space
V (N) (see chapter IV, pp. 74) so that every coalition function v is
a linear combination of these games:

v =
∑

T∈2N\{∅}
λT (v)uT . (VI.1)
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• For any game γuT , γ ∈ R, the players fromN\T are the null players
(compare exercise IV.6, S. 52).

Consider, now, any solution function σ that obeys the four axioms. We
obtain

∑

i∈T
σi (γuT ) =

∑

i∈T
σi (γuT ) +

∑

i∈N\T
σi (γuT ) (null-player axiom)

= (γuT ) (N) (Pareto axiom)

= γuT (N)

= γ.

The null players (from N\T ) get zero payoff, the (symmetric!) T -players
share γ :

σi (γuT ) =

{
γ
|T | , i ∈ T

0, i /∈ T.

Let now v be any coalition function on N . Using the above results and
applying the additivity axiom several times, we find

σi (v) = σi




∑

T∈2N\{∅}
λT (v)uT



 (eq. VI.1)

=
∑

T∈2N\{∅}
σi (λT (v)uT ) (additivity axiom)

=
∑

T∈2N\{∅}

{
λT (v)
|T | , i ∈ T

0, i /∈ T.
(with γ := λT (v) )

Thus, the axioms determine the payoffs. Since the Shapley formula fulfills
the axioms, we obtain the desired result

σ = Sh.

And we are done.

5. A second axiomatization via marginalism

The Shapley value is an average of the marginal contributions of the
players. Thus, whenever we have two coalition functions v and w such that
the marginal contributions (with respect to any given coalition) of a player
is the same under v and under w, the player’s Shapley value is the same.
This fact is called the marginalism axiom:

D�������
� VI.4 (marginalism axiom). A solution function σ on V (N)
is said to obey the marginalism axiom if, for any player i ∈ N and any two

coalition functions v,w ∈ V (N) with N (v) = N (w) ,

MCK
i (v) =MCK

i (w) ,K ⊆ N (v)
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implies

σi (v) = σi (w) .

The marginalism axiom is quite strong. Young (1985) has shown that
the Shapley value can be axiomatized by just three axioms:

T �
��� VI.2 (2. axiomatization of Shapley value). The Shapley for-
mula is axiomatized by the symmetry axiom, the marginalism axiom and the

efficiency axiom.

6. A third axiomatization via balanced contributions

Finally, we want to consider the axiom of balanced contributions which
is due to Myerson (1980). The basic idea is that players suffer equally if one
of them withdraws from the game. We need some formal preliminary:

D�������
� VI.5. Let v ∈ V (N) be a coalition function and let S ⊆ N,

S �= ∅ be a coalition. The restriction of v onto S is the coalition function

v|S : 2S → R,

K �→ v|S (K) = v (K) .

Thus, v|S attributes the same worths as v but only to subsets of S.

D�������
� VI.6 (axiom of balanced contributions). A solution function
σ on V is said to obey the axiom of balanced contributions if, for any coalition
function v and any two players i, j ∈ N (v) =: N,

σi (v)− σi
(
v|N\{j}

)
= σj (v)− σj

(
v|N\{i}

)

holds.

The reader notes that we employ the solution function on V, not on
V (N) . After all, v|N\{j} has one player less than game v. We will dwell on
the interpretation of the balanced contributions in a minute. Before, let us
note the axiomatization theorem:

T �
��� VI.3 (3. axiomatization of Shapley value). The Shapley for-
mula is axiomatized by the efficiency axiom and the axiom of balanced con-

tributions.

Balanced contributions is a very powerful axiom. Note, however, that
we claim this axiom not just for a given player set N but for all its subsets
also.
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7. Balanced contributions and power-over

7.1. Introduction. The power of people and the power of some peo-
ple over others have long been a central concern in sociology, politics, and
psychology while Bartlett (1989) and Rothschild (2002) find a neglect of
power apart from market power in mainstream economics. However, power
seems to be an extraordinary elusive concept. As Bartlett (1989, pp. 9-10)
observes, there exists a ”multiplicity of concepts” of power, but no ”widely
accepted concept of power within either economics or its sister social sci-
ences”.

The thesis of this section is that there are basically three reasons for
this lamentable state. First, power may be defined with reference to actions
(actor 1 forces actor 2 to perform an act against 2’s will) or with reference
to payoffs (actor 1 benefits more than actor 2). This corresponds to the
difference between I-power (with I standing for ”influence”) and P-power
(with P denoting ”prize” or ”payoff”) by Felsenthal & Machover (1998). Of
course, I-power and P-power are closely related because actions result in
payoffs and payoffs flow from actions.

An early and prominent definition of power is due to Max Weber (1968,
p. 53):

”Power is the probability that one actor within a social
relationship will be in a position to carry out his own will
despite resistance ... .”

Obviously, this is I-power. A Weberian P-power definition would be the
following:

”Power is the probability that one actor within a social
relationship will obtain costly benefits from others.”

Secondly, the multiplicity of power concepts also stems from the fact that
power and power-over need to be distinguished. Consider James Coleman’s
(1990, p. 133) definition:

”The power of an actor resides in his control of valuable
events. The value of an event lies in the interests powerful
actors have in that event. ... Power ... is not a property
of the relation between two actors (so it is not correct in
this context to speak of one actor’s power over another,
although it is possible to speak of the relative power of
two actors).”

Most authors, however, prefer to understand power relatively, i.e., in
terms of the power an actor 1 exercises over another actor 2. Proponents
of this tradition are Max Weber (1968), Richard Emerson (1962), Dorwin
Cartwright (1959, p. 196), and Vittorio Hösle (1997, p. 394-396) .
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In this section, we will side with these authors and will talk about power
in the sense of power-over. Our focus is on a third problem. According to
some definitions, power is ubiquitous. For example, Viktor Vanberg (1982,
p. 59, fn 48) observes that in every exchange relationship both sides do what
they would not have done without the influence of the other party.

Indeed, if 1 offers 2 some money to perform a service and 2 obliges, does
1 have power over 2? Or, the other way around, does 2 have power over 1
because he ”forces” 1 to give him money for some important (to 1) service.
According to everyday usage, 1 exerts power over 2 if 1 obtains the service
for ”too little” money (”exploitation”) while 2 exerts power over 1 if 2 asks
for ”too much” and 1 is in an urgent need for the service (”profiteering”,
”extortion”, ”usury”).

In line with the above observation, we claim that every fruitful defin-
ition of power-over needs a reference point which may concern a ”usual”,
”normal”, or ”moral” situation. We will argue for several and quite diverse
reference points in section 7.2. It seems quite unavoidable that reference
points contain some measure of arbitrariness and need to be defended rather
specifically.

In section 7.3, we will try an alternative reference point that is not
arbitrary. The idea of this reference point is simple. Actors may suffer (or
gain) if other actors withdraw (where would you be without me?). In such
a setting, 1 exerts power over 2 if 2 suffers more from a withdrawal by 1
than vice versa. However, we will find good reasons for this definition to
fail. Indeed, if we use the Shapley value, withdrawal of 1 harms 2 as much as
withdrawal of 2 harms 1 — this is the axiom of balanced contributions. While
this may first seem counterintuitive, we will be able to indicate plausible
mechanisms for this to come about.

The idea of this section is to tackle the reference-point issue by consid-
ering the difference between actual payoffs and payoffs according to some
reference point. Of course, we will use cooperative game theory to define
these payoffs.

The general idea of defining power by way of payoff differences can al-
ready be found in Johan Galtung (1969) who defines ”violence ... as the
cause of the difference between the potential and the actual”. Less directly,
Lukes (1986, p. 5) suggests ”that to have power is to be able to make a
difference to the world.” Our difference approach captures these differences.

7.2. Payoff reflections of power-over .

7.2.1. Payoff differences. We want to measure power-over by looking at
the payoff differences caused by the exercise of power of one player over
another. In most examples, a player 1 exercises power over another player
2. We consider two coalition functions, v and w. Often, by v we mean a
coalition function describing the actual social or economic situation where
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player 1 exercises power over player 2. w, on the other hand, describes what
the players would get if, contrary to the actual state of affairs, player 2 were
not subject to the power exerted by player 1. Formally, we usually get

D1 := ϕ1 (v)− ϕ1 (w) > 0

and

D2 := ϕ2 (v)− ϕ2 (w) < 0.

7.2.2. Example: market power. First, we consider the example of the
gloves game where we assume one left-glove holder (player 1) and 4 right-
glove holders (players 2 through 5). The left-glove holder is in a monopoly
(or monopsony) position. The Shapley value is

(
4
5 ,

1
20 ,

1
20 ,

1
20 ,

1
20

)
. Assume

that player 1 sells his left glove. He obtains the price of 4
5 . Each of the

players 2 through 5 have 1
4 chance to buy the glove for a price of 45 . Hence,

each right-glove holder has an expected utility of 14
(
1− 4

5

)
= 1

20 .

Let us now invoke the norm of equal splitting of gains between player 1
and player 2 to whom player 1 happens to sell the left glove. Then, payoffs
are

(
1
2 ,
1
2 , 0, 0, 0

)
. There exists a coalition function w leading to these payoffs.

Then, player 1’s power over player 2 is reflected by

D1 = ϕ1 (v)− ϕ1 (w)

=
4

5
− 1
2

=
3

10

and

D2 = ϕ2 (v)− ϕ2 (w)

=
1

20
− 1
2

= − 9
20

.

7.2.3. Example: emotional dependence. As a second example, we con-
sider the emotional dependence that may sometimes exist between a player
M (man) and a player W (woman). They may both like to live together so
that v (M,W ) > 0. However, he may be more independent of her than the
other way around. Then,

v (M) > v (W )

is a plausible assumption. (If the reader finds the example objectionable,
she or he is welcome to reverse the roles.)
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The Shapley values are given by

ϕM =
1

2
v (M) +

1

2
[v (M,W )− v (W )]

=
1

2
v (M,W ) +

1

2
[v (M)− v (W )]

>
1

2
v (M,W ) +

1

2
[v (W )− v (M)]

= ϕW .

His payoff is higher than her’s. Applying the egalitarian norm (w (M) =

w (W ) = 1
2v (M,W )) we obtain ϕM (w) =

1
2v (M,W ) = ϕW (w). We would

therefore diagnose that he has power over her:

DM = ϕM (v)− ϕM (w)

=
1

2
[v (M)− v (W )]

> 0

>
1

2
[v (W )− v (M)]

= DW

Both examples make clear that the problem about a reference point is not
”solved”. We rather choose to offer a taxonomy: If the reference point
is some or other norm (or defined by some or other counterfactual), then
we obtain this or that payoff difference. While this may seem an evasive
strategy, we argue that power-over necessarily needs a reference point and
that there is no unambiguous choice of such a point.

7.3. Action reflexions of power-over.

7.3.1. Withdrawing and quitting. Instead of invoking some quite arbi-
trary fairness norms, one might consider the differences

ϕ1 (v)− ϕ1

(
v|N\2

)

and

ϕ2 (v)− ϕ2

(
v|N\1

)

known from the axiom of balanced contributions. For player 1, v|N\2 is the
game v without player 2. In words: ϕ1 (v)−ϕ1

(
v|N\2

)
measures the loss to

player 1 if player 2 withdraws. We might try the following definition: Player
1 exerts power over player 2, if player 1 suffers less from a withdrawal by
player 2 than vice versa.

Interestingly, this definition fails if we use the Shapley value: What
1 can do to 2 by withdrawing is exactly equal to what 2 can do to 1 by
withdrawing. This is just what balanced contributions means.
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7.3.2. Example: Revisiting the gloves game. Let us reconsider the gloves
game. Again, we assume one left-glove holder (player 1) and 4 right-glove
holders (players 2 through 5) (see subsection 7.2.2). It might seem that
player 1’s threat of withdrawal carries more weight than player 2’s threat of
withdrawal. However, this is not the case. The Shapley values are

(
4

5
,
1

20
,
1

20
,
1

20
,
1

20

)
for N = {1, 2, 3, 4, 5} ,

(
3

4
,
1

12
,
1

12
,
1

12

)
for N = {1, 3, 4, 5} and

(0, 0, 0, 0) for N = {2, 3, 4, 5}

so that we have

ϕ1 (v)− ϕ1

(
v|N\2

)

=
4

5
− 3
4

=
1

20

and

ϕ2 (v)− ϕ2

(
v|N\1

)

=
1

20
− 0.

The reason for the equality of these differences is this: Player 1 obtains a
price of 45 for his left glove in case of 4 potential buyers, but a price of 34
in case of 3 potential buyers. So indeed, player 2’s withdrawal does not
do much damage to player 1. But player 2’s disutility caused by player 1’s
withdrawal is small also. If player 1 is around, player 2 will have a small
chance (14) of getting the glove and will also have to pay a high price (45).
Therefore, in the presence of player 1, player 2 gets the payoff 1 − 4

5 =
1
5

with a chance of 1
4 only. The small payoff of 1/20 is lost when player 1

withdraws.
While payoff differences with respect to the threat of withdrawal are not

useful for defining power-over, they can be used to theorize about the action
players have to take. In the gloves example, it is the balanced contributions
that allow player 1 to charge a high price for his left glove.

7.3.3. Example: Revisiting emotional dependence. We also reconsider
the emotional-dependence example (see section 7.2.3) and obtain her payoff
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difference as

ϕW (v)− ϕW

(
v|N\M

)

=

[
1

2
v (M,W ) +

1

2
v (W )− 1

2
v (M)

]
− v (W )

=
1

2
[v (M,W )− v (W )− v (M)] .

In case of superadditivity, his threat of withdrawal (divorce, say) is effective
and she suffers from it. However, for player M we get the same result:

ϕM (v)− ϕM

(
v|N\W

)
= ϕW (v)− ϕW

(
v|N\M

)
.

Again, we can use this equality to infer actions: Just because of v (M) >

v (W ) , he can make her do the washing-up. But taking her washing-up into
account, she suffers less from a break-down of the relationship and his loss
of her would be more serious than in a ”fair” partnership.

7.4. Negative sanctions and the threat to withdraw. The equal-
ity of the threats to withdraw may be particularly astonishing for negative
sanctions and coercion (see Willer 1999, pp. 24). Indeed, if a robber (player
1) points his gun to my, player 2’s, head, it may seem impossible for me to
”withdraw”. However, we need to look more closely.

It is important to note that withdrawing is analyzed within the given
game v. The question of whether a player can quit a game or opt out is a
totally different one. For example, I normally do not need to partake in a
market game but sometimes I cannot help being part of a game as in our
gun-and-money game.

First, we need to define the coalition function. For the coalition {1, 2},
v (1, 2) = 0 seems plausible. I hand over some money c > 0 to the robber so
that his gain is my loss. We then have ϕ1 (v) = c = −ϕ2 (v) which fulfills
the efficiency axiom. (Of course, I may be traumatized by the experience
and he may be afraid of being caught and arrested in which case v (1, 2)

should be negative.)
One may be tempted to put v (2) = 0 since I do not lose any money if the

robber is not there. However, what I can achieve on my own still depends
on what the robber does (withdrawal is not quitting!). If I do not hand over
the money peacefully, he may injure me. We define the worth for a coalition
K as the minimum of what the other players, N\K, can inflict on K. We
let i represent the pain of being injured and obtain v (2) = −i < 0.

Similarly, v (1) is the minimum of what I can inflict on the robber. I can
run away and force him to injure me. Then, he will be in fear of prosecution
for injury; let f stand for this fear so that we have v (1) = −f.
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Now, because of v (1) = v|N\2 (1) and ϕ1

(
v|N\2

)
= v (1), my running

away or his injuring me leads to the payoff differences

ϕ1 (v)− ϕ1

(
v|N\2

)

= c︸︷︷︸
money

obtained

− −f︸︷︷︸
disutility from fear of

prosecution for injury

and

ϕ2 (v)− ϕ2

(
v|N\1

)

= −c︸︷︷︸
money given

to robber

− −i︸︷︷︸
disutility from injury

The equality between these two differences can now be used to calculate the
money I will have to hand over to the robber. It is given by

c =
i− f

2
.

The less the robber’s fear of prosecution for injury and the higher my un-
willingness to suffer injury, the higher the robber’s loot. For c to be non-
negative, we need i ≥ f ; my fear of injury has to be higher than the robber’s
fear of prosecution.

7.5. RevisitingWeber’s definition of power. For the Shapley value,
the threat of withdrawal from a cooperative agreement has to be symmetric
between the two players. In the gloves game, this symmetry determines the
price of gloves; in the emotional-dependence example it leads to her doing
the washing up; and in the case of robbery, the robber’s gain obtains.

Of course, the holder of the non-scarce commodity would prefer a fair
price of 12 , the dependent woman would like to share the burden of housework
evenly, and the victim of robbery would prefer to hold on to his money.
However, the holder of the scarce commodity, the man in the dependency
example and the robber manage to ”realize their own will ... against the
resistance” of the other party. We just cited Max Weber in order to indicate
that we consider these three examples instances of power in his sense.

In fact, a research program suggests itself: Whenever we have a seem-
ingly asymmetric power-over relationship we should look out for Weberian
power by equalizing the payoff differences with respect to the threat of with-
drawal. For example, power-over relationships may exist between parents
and children, God and humans, a king and his subjects, a bureaucrat and
people obtaining permission, master and slave, etc.. Which actions lead to
balanced contributions?
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8. The Banzhaf solution

8.1. The Banzhaf formula. The Banzhaft solution is due to Banzhaf
(1965) who applied it to weighted majority games. The Banzhaf formula is
given by

Bai (v) =
1

2n−1
∑

K⊆N,
i/∈K

[v (K ∪ {i})− v (K)] , i ∈ N.

Similar to the Shapley value, an average of marginal contributions is calcu-
lated. However, while Shapley considers all rank orders, Banzhaf proposes
to look at all coalitions which (do not) contain a given player i. We can find

∣∣∣2N\{i}
∣∣∣ = 2|N\{i}| = 2n−1

of these coalitions.
Thus, under the Shapley value, every rank order has the same probability

while the Banzhaf index attributes the same probability for each coalition
that contains a specfic player.

E������� VI.2. Given N = {1, 2, 3} , write down the coalitions that do
not contain player i.

The Banzhaf formula can be applied to any game but the main field of
application concerns simple games. Then, the Banzhaf formula is also called
Banzhaft power index or Banzhaf index.

Restricting attention to simple games, we can focus on pivotal coalitions.
We remind the reader of the definition found in chapter IV:

D�������
� VI.7 (pivotal coalition). For a simple game v, K ⊆ N is a

pivotal coalition for i ∈ N if v (K) = 0 and v (K ∪ {i}) = 1. The number of
i’s pivotal coalitions is denoted by ηi (v) ,

ηi (v) := |{K ⊆ N : v (K) = 0 and v (K ∪ {i}) = 1}| .

We have η (v) := (η1 (v) , ..., ηn (v)) and η̄ (v) :=
∑

i∈N ηi (v) .We sometimes

omit the game and write ηi (η, η̄) rather than ηi (v) (η (v) , η̄ (v)).

Thus, a player i is pivotal for a coalitionK if v (K) = 0 and v (K ∪ {i}) =
1 hold. Player i’s number of pivotal coalitions is denoted by ηi (v) (or ηi).

E������� VI.3. Find ηi for a null player and for a dictator.

Now, the Banzhaf index for player i can be rewritten as

Bai (v) =
ηi
2n−1

.

E������� VI.4. Calculate the Banzhaf payoffs for player 1 in case of
N = {1, 2, 3} and u{1,2}. What do you find for N = {1, 2, 3, 4} and u{1,2,3}?



8. THE BANZHAF SOLUTION 95

E������� VI.5. Find the Banzhaf payoffs for N = {1, 2, 3, 4} and the
apex game h1 defined by

h1 (K) =






1, 1 ∈ K and K\ {1} �= ∅
1, K = N\ {1}
0, sonst

Does the Banzhaf solution fulfill Pareto efficiency?

8.2. The Banzhaf axiomatization. While the Banzhaf index violates
Pareto efficiency in general, it always fulfills the other three Shapley axioms.
Indeed, the following theorem can be shown:

T �
��� VI.4 (axiomatization of the Banzhaf value). The Banzhaf
formula is axiomatized by null-player axiom, the symmetry axiom, the mar-

ginalism axiom and the merging axiom.

You know all these axioms except the merging axiom. It means that if
you merge two players into one player, then this new player obtains the sum
of what the two constituent players got.

D�������
� VI.8 (merging players). For a game (N, v) and two players

i, j ∈ N, i �= j, the merged game (Nij, vij) is given by Nij = (N\ {i, j})∪{ij}
and

vij (K) =

{
v (K) , K ⊆ N\ {ij}
v((K\{ij}) ∪ {i, j}), ij ∈ K

for all K ⊆ Nij .

D�������
� VI.9 (merging axiom). A solution function σ is said to obey

the merging axiom if we have

σi (v) + σj (v) = σij (Nij , vij)

for any merged game in the sense of the definition above.

Consider the gloves game v{1,2},{3}. Its Shapley payoffs are Sh
(
v{1,2},{3}

)
=(

1
6 ,
1
6 ,
2
3

)
while the Banzhaf formula yields Ba

(
v{1,2},{3}

)
=

(
1
4 ,
1
4 ,
3
4

)
.

Let us now assume that players 1 and 2 merge. The new player 12
obtains the Shapley payoff 1

2 > 1
6 +

1
6 . Intuitively, he players 1 and 2 (from

the same market side) do not compete against each other any more so that
their joint payoff increases while player 3 suffers. In contrast the Banzhaf
payoffs are 1

2 for both 12 and 3. In line with the merging axiom, we have
1
4+

1
4 =

1
2 . However, player 3’s payoff reduces so that there is some indication

of decreased competition between the left-hand glove owners even for this
value.

If players 2 and 3 merge, the new player 23 is a dictator with Shapley
value 1 and Banzhaf value 1. Again, the Banzhaf value obeys the merging
axiom while the Shapley value does not.
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9. Topics and literature

The main topics in this chapter are

• axiomatization
• balanced contributions
• marginalism
• power-over
• P-power and I-power

We introduce the following mathematical concepts and theorems:

• t

•
We recommend

10. Solutions

Exercise VI.1

The set of all three axioms is contradictory. Just consider the unanimity
game u{1} for N = {1, 2}. According to the third axiom, we should have
σ2

(
u{1}

)
= 0, while the second axom then yields σ1

(
u{1}

)
= 1−σ2

(
u{1}

)
=

1. However, the first axiom claims σ1
(
u{1}

)
= σ2

(
u{1}

)
.

Both solution concepts fulfill axioms 2. Using the same unanimity game
as above, the first solution concept yields the payoffs σ1

(
u{1}

)
= σ2

(
u{1}

)
=

1
2 while the rank order ρ = (1, 2) leads to the rank-order value (1, 0).
Exercise VI.2

Player 1 does not belong to four coalitions: ∅, {2} , {3} , {2, 3}.
Exercise VI.3

For a null player, we find ηi = 0, while ηi = 2
n−1 characterizes a dictator.

Exercise VI.4

Player 1 has the two pivotal coalitions, {2} and {3}. Therefore, his
Banzhaf index is 2

4 =
1
2 .

Exercise VI.5

For player 1, every coalition is pivatal except ∅ and {2, 3, 4}. Therefore,
we find Ba1 (h1) =

6
8 =

3
4 .

Player 2’s pivatal coalitions are {1} and {2, 3} and he therefore obtains
Ba2 (h1) =

2
8 =

1
4 . By symmetry, we obtain Ba3 (h1) = Ba4 (h1) =

1
4 .

Therefore, the sum of Banzhaf payoffs exceeds the worth of the grand coali-
tion:

3

4
+ 3 · 1

4
=
3

2
> 1 = h1 (N) .

The Banzhaf index is not Pareto efficient.
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11. Further exercises without solutions

(including Banzhaf)
The Shapley value on partitions





Part C

The Shapley value on partitions



In the second part of our book, we introduce the Shapley value and other
simple solution concepts. In this third part, we now get to more complicated
problems where the players are structured in some way or other. We assume
that players split up in disjunct groups called components (of a partition).
Components might stand for groups of people that

• work together and create worth, for example people trading goods
with each other or people working in firms (chapter VII) or

• bargain together where unions are the prime example (chapter
VIII).

In chapter ??, we combine both sorts of partition. The fact that workers
belong to a firm is expressed by a working-together partiton while a second
partition stands for the union that a worker may or may not belong to.



CHAPTER VII

The outside option values

1. Introduction

Let us reconsider the Shapley value and the core for the gloves game.
The core represents the competitive solution where the holders of the scarce
commodity (the right-glove owners in case of |R| < |L|) obtain a payoff of
1. This result holds for |L| = 100 and |R| = 99 as well as for |L| = 100 and
|R| = 1. The following table reports the core payoffs for an owner of a right
glove in a market with r right-glove owners and l left-glove owners:

number l of left-glove owners
0 1 2 3 4

number r 1 0 ∈ [0, 1] 1 1 1
of 2 0 0 ∈ [0, 1] 1 1
right-glove 3 0 0 0 ∈ [0, 1] 1
owners 4 0 0 0 0 ∈ [0, 1]

Shapley & Shubik (1969, p. 342) denounce the ”violent discontinuity exhib-
ited by ... the core”.

In contrast, the Shapley value is sensitive to the relative scarcity of the
gloves. The following table, taken from Shapley & Shubik (1969, S. 344),
tells the Shapley values for the right-glove owner, again depending on the
number of right and left gloves:

number l of left-glove owners
0 1 2 3 4

number r 1 0 0,500 0,667 0,750 0,800
of 2 0 0,167 0,500 0,650 0,733

right-glove 3 0 0,083 0,233 0,500 0,638
owners 4 0 0,050 0,133 0,271 0,500

This table clearly shows how the payoff increases with the number of players
on the other market side. Shapley & Shubik (1969, p. 344) show that the
Shapley value of the gloves game converges to the core: When replicating
the game (i.e., increasing the number of left and right gloves by way of
multiplication), the Shapley values converge toward 0 or 1 in case of l �= r

(for l = r we get a core payoff 1
2). Consider, for example, r = 1 and l = 2

(bold face) and then, by using the factor 2, r = 2 and l = 4. You see that the

101
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payoff for the scarce-resource holder increases. The convergence can also be
seen from the following table:

replication factor n = 3, r = 1 n = 4, r = 1

1 0.6666... 0.75
10 0.8822... 0.9407...
100 0.9816... 0.9927...

Note that the Shapley value attributes a positive value to all players
unless |L| = 0 holds or |R| = 0. However, in case of |L| > |R|, some
left-glove owners will not be able to strike a deal. They should then get a
pay-off of zero. Therefore, the Shapley value is an ex-ante value, indicating
the expected payoff to an agent in the gloves game before it is clear whether
or not he will find a trading partner.

In this chapter, we are interested in an ex-post value that should give
us an idea about the payoff for glove holders once they have, or have not,
found a trading partner. In particular, this value could be used to make
predictions about the price of a left (or right) glove. While the Shapley value
does not attempt to predict a price, the values presented in this chapter are
candidates for that purpose.

The trading-partner distribution can be modelled by coalition struc-
tures. A coalition structure is a partition on the set of players; the sets
making up the partition are called components. Building on the Shapley
value, several partitional values (or values for coalition structures) have been
presented in the literature, most notably by Aumann & Drèze (1974) and
Owen (1977). There is an important interpretational difference between the
Aumann-Dreze (AD) value and the Owen value. For Aumann and Dreze,
players are organized in (active) components in order to do business together.
Then the players within each component should arguably get its worth, as
in the Aumann-Dreze value (AD-value). This is the property of component
efficiency. The idea of the Owen value is that players form bargaining com-
ponents (unions etc.) that offer the service of all their members or no service
at all. In this chapter, we have the Aumann-Dreze interpretation in mind.
The Owen value is the subject matter of the next chapter.

By component efficiency, the AD-value seems a good candidate for pre-
dicting the price of a left glove. Of course, we have to specify a partition
before we can apply the AD-value. Turning to the gloves game, we often as-
sume maximal-pairs partitions. These are partitions that host min (|L| , |R|)
components, each containing one left-glove holder and one right-glove owner.
If |L| > |R|, a maximal-pairs partition contains other components as well,
with elements from L only. A left-glove and a right-glove owner who make
up one component of the partition, receive an AD-value of 1/2 each, irre-
spective of how many other left-hand or right-hand gloves are present.
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The AD-payoffs do not accord well with our intuition about competi-
tion. More specifically, they do not take account of outside options, i.e.
the number of left and right gloves outside the component in question.
The outside-option value (oo-value, for short) W due to Wiese (2007) and
the outside-option value Ca introduced by Casajus (2009) are component-
efficient value that produce results that are more sensitive to the relative
scarcity of gloves. Assume player set N = {1, 2, 3} and the gloves game
v{1},{2,3}. Now let P = {{1, 2} , {3}} be a maximal-pairs partition. We find

AD
(
v{1},{2,3},P

)
=

(
1

2
,
1

2
, 0

)
,

W
(
v{1},{2,3},P

)
=

(
2

3
,
1

3
, 0

)
,

Ca
(
v{1},{2,3}

)
=

(
3

4
,
1

4
, 0

)

The oo-values attributes a higher payoff to player 1 than to player 2 thus re-
flecting the outside opportunities of player 1 (v ({1, 3}) = 1 > 0 = v ({2, 3})).

In spirit, the bargaining set (a concept we will not go into) is close to
the outside-option values. (In the above example, the bargaining set yields
(0, 60, 0), a somewhat ”extreme” solution.) In fact, I find Maschler’s (1992,
pp. 595) introducing remarks pertinent to these value:

During the course of negotiations there comes a moment
when a certain coalition structure is ”crystallized”. The
players will no longer listen to ”outsiders”, yet each [com-
ponent] has still to adjust the final share of proceeds. (This
decision may depend on options outside the [component],
even though the chances of defection are slim).

Arguably, there are many economic and political situations where we
need these properties. Apart from market games (as the gloves game), one
might think of the power within a government coalition. This power rests
with the parties involved (component efficiency) but the power of each party
within the government depends on other governments that might possibly
form (outside options).

Close to the AD-approach, the oo-values obey component efficiency,
symmetry and additivity. However, we argue that these values cannot pos-
sibly obey the null-player axiom. Consider N = {1, 2, 3} and the unanimity
game u{1,2} which maps the worth 1 to coalitions {1, 2} and {1, 2, 3} and
the worth 0 to all other coalitions. We now look at the coalition struc-
ture P1 = {{1, 3} , {2}} . By component efficiency, we get σoo1

(
u{1,2},P1

)
+

σoo3
(
u{1,2},P1

)
= 0 = σoo2

(
u{1,2},P1

)
. Player 3 is a null player; his contribu-

tion to any coalition is zero. Yet, his payoff cannot be zero under σoo. The
reason is this: Player 1 has outside options. By joining forces with player
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2 (thus violating the existing coalition structure) he would have claim to a
payoff of 1/2. Within the existing coalition structure, he will turn to player 3
to satisfy at least part of this claim. But then, player 3’s payoff is negative.

Most solution concepts found in the literature do obey the null-player
axiom. A noticeable excepts is the solidarity value concocted by Nowak
& Radzik (1994). Consider the unanimity game N = {1, 2, 3} and the
unanimity game u{1,2}. The two productive players do not obtain 1

2 (their
Shapley value but only 7

18 ; they leave
4
18 for null player 3, for charity reasons.

It should also be clear that a component-efficient value that respects out-
side options cannot always coincide with the value for some ”stable” parti-
tion. In our example, stable partitions might be given by P2 = {{1, 2} , {3}}
or P3 = {{1, 2, 3}}. By component efficiency the sum of payoffs for all three
players is zero for P1 but 1 for P2 and P3.

Some readers might object to a negative payoff for player 3 by pointing
to the possibility that player 3 departs from coalition {1, 3} to obtain the
zero payoff. However, for the purpose of determining the outside-option
value, the coalition structure P is given. The stability of P is another —
separate — issue that we will with in subsection ??. Also, it is easy to show
that negative payoffs need not bother us if we consider the gloves game and
a maximal-pairs partitions.

It has been noted that the oo-values are close the AD-value and the
Shapley value. Indeed, they are generalizations of both these values.

This chapter is organized as follows: In section 2 basic definitions (par-
titions, partitional games) are given. Section 3 presents important axioms
for partitional values. We briefly introduce the Aumann-Dreze value in sec-
tion 4 before presenting the outside-option values due to Wiese (with an
application to the gloves game) and due to Casajus (with an application
to the elections in Germany for the Bundestag 2009) in sections 5 and 6,
respectively. We discuss the differences between these values in section 7.

2. Solution functions for partitional games

2.1. Partitions. Partitioning a set means to define subsets such that
every element from the set is an element from exactly one subset. Consider
the set {1, 2, 3, 4}.

{{1, 2} , {3} , {4}}

is an example of a partition of that set while

{{1, 2} , {4}} or

{{1, 2} , {2, 3} , {4}}

are not.
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D�������
� VII.1 (partition). Let N be a set (of players). A system of

subsets

P = {C1, ..., Ck}
is called a partition if

• ⋃k
j=1Cj = N,

• Cj ∩Cj′ = ∅ for all j �= j′ from {1, ..., k} and
• Cj �= ∅ for all j = 1, ..., k

hold. The subsets Cj ⊆ N are called components.

The of all partitions on N is denoted by P (N) or P. The component

hosting player i is denoted by P (i) .

Sometimes, we need to compare partitions.

D�������
� VII.2. A partition P1 is called finer than a partition P2
if P1 (i) ⊆ P2 (i) holds for all i ∈ N. In that case, P2 is called coarser
than P1. The finest partition is called the atomic partition and given by
{{1} , ..., {n}} . The coarsest partition is called the trivial partition and equal
to {N}.

E������� VII.1. Is P1 finer or coarser than P2?
(1) P1 = P2 = {{1, 2} , {3, 4} , {5}} ,
(2) P1 = {{1, 2} , {3, 4} , {5}} , P2 = {{1, 2, 3} , {4, 5}} ,
(3) P1 = {{1, 2} , {3, 4} , {5}} , P2 = {{1, 2} , {3} , {4} , {5}} .

2.2. Partitional games. We are now set to define partitional games.

D�������
� VII.3 (partitional game). For any player set N , every coali-
tion function v ∈ V (N) and any partition P ∈ P (N) , (v,P) is called a par-
titional game. The set of all partitional games on N is denoted by Vpart (N)
and the set of all partitional games for all player sets N by Vpart.

We need to extend the definition of a solution function:

D�������
� VII.4 (solution function for partitional games). A function
σ that attributes, for each partitional game (v,P) , a payoff to each of v’s
players,

σ (v,P) ∈ R|N(v)|,
is called a solution function (on Vpart).

3. Important axioms for partitional values

Solution functions σ on (N,P (N)) might obey one or several of the
following axioms. We concentrate on the axioms that we make use of in this
chapter. We encounter additional ones in the next chapter.



106 VII. THE OUTSIDE OPTION VALUES

D�������
� VII.5 (component-efficiency axiom). A solution function
(on Vpart) σ is said to obey the component-efficiency axiom if

∑

i∈C
σi (v,P) = v (C)

holds for all partitional games (v,P) ∈ Vpart and all C ∈ P.

Component effciency is a natural requirement for partitions if we have
the “work together and create worth” interpretation in mind.

We also need a symmetry axiom where symmetry has to refer to the
coalition function and to the partition.

D�������
� VII.6 (P-symmetry). Two players i and j from N are called

P-symmetric if they symmetric and if P (i) = P (j) holds.

D�������
� VII.7 (symmetry axiom). A solution function σ is said to

obey the symmetry axiom if we have

σi (v,P) = σj (v,P)
for all partitional games (v,P) ∈ Vpart and for any two P-symmetric players
i and j.

As argued above, a component-efficient value that takes outside options
into account, cannot possibly satisfy the null-player axiom:

D�������
� VII.8 (null-player axiom). A solution function σ is said to

obey the null-player axiom if we have

σi (v,P) = 0
for all partitional games (v,P) ∈ Vpart and for every null player i ∈ N.

A much milder requirement is the grand-coalition null-player axiom in-
troduced by Casajus (2009):

D�������
� VII.9 (grand-coalition null-player axiom). A solution func-
tion σ is said to obey the grand-coalition null-player axiom if we have

σi (v, {N}) = 0
for all partitional games (v, {N}) ∈ Vpart and for every null player i ∈ N.

Of course, we also have an additivity axiom:

D�������
� VII.10 (additivity axiom). A solution function σ is said to

obey the additivity axiom if we have

σ (v +w,P) = σ (v,P) + σ (w,P)
for any two coalition functions v,w ∈ V with N (v) = N (w) and any parti-

tion P ∈ P (N (v)).
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4. The Aumann-Dreze value: formula and axiomatization

Once we know how to calculate the Shapley value, it is simple to obtain
the Aumann-Dreze payoffs. Just proceed in two steps:

(1) Restrict the coalition function to the components.
(2) Calculate the Shapley value for the restricted function.

D�������
� VII.11 (Aumann-Dreze value). The Aumann-Dreze value
on Vpart is the solution function AD given by

ADi (v,P) := Shi
(
v|P(i)

)

The Aumann-Dreze value is an obvious extension of the Shapley value:

L���� VII.1. We have AD (v, {N}) = Sh (v) .

E������� VII.2. Calculate the Aumann-Dreze payoffs for P = {{1} , {2, 3}}
and the coalition functions

• u{1,2} and
• v{1,2},{3}.

The axiomatization for the Aumann-Dreze value is very close to the
Shapley axiomatization:

T �
��� VII.1 (Aumann-Dreze axiomatization). The Aumann-Dreze
value is the unique solution function on Vpart that fulfills the symmetry ax-
iom, the component-efficiency axiom, the null-player axiom and the additiv-

ity axiom.

The Aumann-Dreze value rests on the premise that every component is
an island. There are not interlinkages between players in a component and
those outside.

5. The outside-option value due to Wiese

5.1. Definition and properties. TheWiese outside-option value uses
a rank-order definition. Assume a partition P, a rank order ρ and a player
i. Player i belongs to the component P (i) and also to the set Ki (ρ). If
player i appears, is he the last player of his component, i.e., have all the
other players from P (i) appeared before him? Formally, this is true if and
only if

P (i) ⊆ Ki (ρ)

holds.

E������� VII.3. Indicate the players that complete their components for
the partition P = {{1, 2, 3} , {4, 5} , {6}} and the rank order ρ = (3, 5, 6, 1, 2, 4)!
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While the Aumann-Dreze value ignores any effect of players outside a
component on those inside, the outside-option values model these effects.
The Wiese (2007) value has an interpretation in terms of rank orders.

D�������
� VII.12 (Wiese value). The Wiese value on Vpart is the so-
lution function W given by

Wi (v,P) :=
1

n!

∑

ρ∈RON

{
v (P (i))−∑

j∈P(i)\{i}MCj (v, ρ) , P (i) ⊆ Ki (ρ) ,

MCi (v, ρ) , otherwise,

The reader notes that player i’s payoff does not depend on the partition
P in general, but only on P (i). In looking at a rank order ρ, player i

gets her marginal contribution MCi (v, ρ) if she is not the last player in her
component in ρ, i.e., if P (i) is not included in Ki (ρ). If i is the last player
in her component, she gets the worth of this component minus the payoffs
(marginal contributions MCj (v, ρ)) to the other players in her component.

The above formula lends itself to an interpretation very close to the one
given for the Shapley value. For both formulae, we consider that all players
arrive in a random order. For the Shapley value, the player’s receive their
marginal contribution with respect to the players arriving before them. In
our formula, matters are a bit more complicated. For every rank order ρ,

exactly one player i from P (i) is not followed by other players from her com-
ponent. The other players from P (i) \ {i} get their marginal contributions
as in the Shapley case. This marginal contribution will not always concern
players from P (i) exclusively. Some of the players in Kj (ρ) , j ∈ P (i) \ {i} ,
may well be outside P (i) = P (j) so that outside options are taken into ac-
count. Player i, who is the last player in her component, obtains the worth
of her component net of the marginal contributions awarded to the other
players in her component.

The construction makes clear that theWiese value is component efficient.
Since the axiomatization for this is not very nice, we confine ourselves to
state some important properties.

T �
��� VII.2 (properties of the Wiese value). The Wiese value obeys
the symmetry axiom, the component-efficiency axiom, the grand-coalition

null-player axiom and the additivity axiom. It violates the null-player axiom.

The Wiese value is a generalization of the Shapley value in two senses:

L���� VII.2. We have W (v, {N}) = Sh (v) .

For a proof, consider the trivial partition P = {N} and a player i ∈ N .
Note that N = P (i) is a subset of Ki (ρ) only if i is the last player in
ρ. In that case, we have v (P (i)) −∑

j∈P(i)\{i}MCj (v, ρ) = MCi (v, ρ) by
(component) efficiency.
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L���� VII.3. Let v be a simple game and W (v) its set of winning

coalitions. Let there be a veto player iveto ∈ N , i.e., iveto ∈ W for all

W ∈ W (v) . Let P be a partition of N such that P (iveto) ∈ W (v). Then,

Wiveto (v,P) = Shi (v).

We do not provide a proof, but invite the reader to consult Wiese (2007).

5.2. Application: the gloves game.

5.2.1. Every player holds one glove, only. The Wiese value for a right-
glove owner whose component also contains a left-glove owner is given in
the following table:

no. of left-glove holders
0 1 2 3 4

no. of 1 0 0.500 0.667 0.750 0.800
right- 2 0 0.333 0.500 0.633 0.717
glove 3 0 0.250 0.367 0.500 0.614
holders 4 0 0.200 0.283 0.386 0.500

It seems clear that the value is an ex-post value while retaining the
sensitivity to the relative scarcity. Thus, if a right-glove owner manages to
sell his glove, he can expect the price given in that table. The reader may
also note that in case of one right-glove owner, only, this agent obtains the
Shapley value, in accordance with lemma VII.3.

In private communication, Joachim Rosenmüller conjectured that the
outside-option value of the gloves game converges to the core. (After all,
the Shapley value does.) The following examples corroborate this conjecture:

replication factor n = 3, r = 1 n = 4, r = 1

1 0.6666... 0.75
10 0.8531... 0.9278...
100 0.9734... 0.9904...

As yet, a proof has not been found.
5.2.2. The generalized gloves game. Exercise IV.16 (p. 56) alerts us to

the fact that burning gloves may be a profitable strategy if payoffs are eval-
uated with the core.

Consider the situation of farmers. They may well benefit from a bad
harvest that hits all of them. However, we might be surprised to find a
single farmer who benefits from a bad harvest striking himself only but not
the other farmers. In this sense the core exhibits an extreme outcome.

It is clear that a Shapley-payoff recipient will never burn a glove. After
all, his marginal benefit can never increase by such an action. How does the
Wiese value fare in that respect?
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Let us now consider the endowment economy (see the general definition
on p. 58)

E =
(
N, {L,R} ,

(
ωiL, ω

i
R

)
i∈N ,min

)

where player i ∈ N has ωiL left and ωiR right gloves. The corresponding
endowment coalition function is defined by

vE (K) = min

(
∑

i∈K
ωiL,

∑

i∈K
ωiR

)

.

For example, let E be specified by

ω1L = 1, ω1R = 0,

ω2L = 2, ω2R = 0,

ω3L = 1, ω3R = 0,

ω4L = 0, ω4R = 1,

ω5L = 0, ω5R = 1,

ω6L = 0, ω6R = 1.

This game is obviously very close to v{1,2,3},{4,5,6}. Player 2 holds two gloves
while all the other players hold one glove each, with players 1 to 3 holding
left gloves and players 4 to 6 holding right gloves. For the maximal-pairs
partition

P = {{1, 4} , {2, 5} , {3, 6}}
we obtain the Wiese payoff

{
5

12
,
31

60
,
5

12
,
7

12
,
29

60
,
7

12

}

while the Wiese payoff is
{
1

2
,
1

2
,
1

2
,
1

2
,
1

2
,
1

2

}

for the gloves game v{1,2,3},{4,5,6}.
We have three observations. First, player 2 benefits from her additional

endowment although her component’s worth is 1 in both cases. Second,
by component efficiency, player 5 suffers from the increased endowment of
player 2. Third, players 4 and 6 who hold right gloves, benefit from the
increase in left gloves. These observations can be generalized:

P�


����
� VII.1. Let ω and ω̂ be two endowments and i, j (i �= j)

two players from N. Let ωk = ω̂k for all k �= i, ωiR = ω̂iR and ωiL < ω̂iL. We

denote the corresponding endowment games by vω and vω̂, respectively. For

any partition P, we get

•
Wi (vω,P) ≤Wi (vω̂,P) ,
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• if P (i) = {i, j} and ωiL + ωjL ≥ ωiR + ωjR,

Wj (vω,P) ≥Wj (vω̂,P) ,
• if P (j) �= P (i) , ωjR ≥ ωkR, and ωjL ≤ ωkL for all k ∈ P (j),

Wj (vω,P) ≤Wj (vω̂,P) ,

The first assertion states that a player whose endowment is increased
(player 2 in the above example) can never be hurt by this increase. This
result is in contrast to results for the core where a player may benefit from
burning a glove. The second assertion is a direct conclusion from the first,
together with component efficiency. The third generalizes the observation
about players 4 and 6 above: Since player j holds less left gloves and more
right gloves than any other player in his component, he will benefit more
from a higher endowment of left gloves outside his component than the
other players in his component. For a proof, consult the working paper
“The outside-option value - axiomatization and application to the gloves
game” on the webpage http://www.uni-leipzig.de/~micro/wopap.html.

6. The outside-option value due to Casajus

6.1. The splitting axiom. The splitting axiom is the central axiom
for the outside-option value concocted by Casajus (2009):

D�������
� VII.13 (splitting axiom). Consider two partitions P1 and
P2 such that P1 is finer than P2. If two players i and j belong to the same

component of the finer partition (j ∈ P1 (i)), we have
σi (v,P2)− σi (v,P1) = σj (v,P2)− σj (v,P1)

for all partitional games (v,P) ∈ Vpart.

Casajus makes a good case for this axiom: “Splitting a structural coali-
tion affects all players who remain in the same structural coalition in the
same way. As the value is already meant to reflect the outside options of the
players, one could argue that the gains/losses of splitting/separating should
be distributed equally within a resulting structural coalition.”

We come back to the splitting axiom later.

6.2. Axiomatization of the Casajus value. The Casajus value does
not, as far as we know, admit a rank-order definition. Instead it builds on
the Shapley values in the most simple fashion:

D�������
� VII.14 (Casajus value). The Casajus value on Vpart is the
solution function Ca given by

Cai (v) := Shi (v) +
v (P (i))−∑

j∈P(i) Shj (v)

|P (i)|
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According to this value, the players obtain the Shapley value which
then has to be made component-efficient. If the sum of the Shapley values
in a component happens to equal the component’s worth, the Casajus value
equals the Shapley value. If the sum of a component’s Shapley values exceed
the component’s worth, the difference, averaged over all the players in the
component, has to be “paid” by every player.

T �
��� VII.3 (axiomatization of Casajus value). The Casajus for-
mula is axiomatized by the symmetry axiom, the component-efficiency ax-

iom, the grand-coalition null-player axiom, the additivity axiom and the

splitting axiom.

E������� VII.4. Determine the Casajus value for N = {1, 2, 3} and
the unanimity game u{1,2}. Consider both P = {{1, 3} , {2}} and P =

{{1, 2} , {3}} .

6.3. Application: elections in Germany for the Bundestag 2009.

6.3.1. Political parties. In 2009, 27 parties were present in one or several
or all of the 16 German Länder. Among these, we find

• SPD — Sozialdemokratische Partei Deutschlands (16 lists)
• CDU — Christlich Demokratische Union Deutschlands (15 lists —
not in Bavaria)

• FDP — Freie Demokratische Partei (16 lists)
• DIE LINKE — Die Linke (16 lists)
• GRÜNE — Bündnis 90/Die Grünen (16 lists)
• CSU — Christlich-Soziale Union in Bayern (1 list only — Bavaria)
• NPD — Nationaldemokratische Partei Deutschlands (16 lists)
• MLPD — Marxistisch-Leninistische Partei Deutschlands (16 lists)
• PIRATEN — Piratenpartei Deutschland (15 lists, not in Saxony)
• DVU — Deutsche Volksunion (12 lists)
• REP — Die Republikaner (11 lists)
• ödp — Ökologisch-Demokratische Partei (8 lists)
• BüSo — Bürgerrechtsbewegung Solidarität (7 lists)
• Die Tierschutzpartei — Mensch Umwelt Tierschutz (6 lists)

6.3.2. Results. The election for the 17th German Bundestag took playe
on September, 27th, 2009 and brought forth some extreme results:

• The participation rate (70.78%) was the lowest ever recorded in the
Federal Republic of Germany.

• The Christian democrats and the liberals collected the number of
votes necessary to form a government coalition.

• The liberals, the lefts and the greens obtained the best results in
their party histories.

• The parties of the ruling grand coalition (Christian democrats, so-
cial democrtes) lost in big way:
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F����� 1

F����� 2

— The social democrats witnessed their worst result in any elec-
tion for the Bundestag.

— The Christian democrats saw their worst election result since
1949.

The vote distribution can be seen from the following table:
The vote distribution leads to the seat distribution seen in the following

diagram:
6.3.3. Coalitions functions and actual political outcome. Which parties

can form government coalitions? The Christian democrats and the liberales
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ruled out a coalition with the leftist party. So did Frank-Walter Steinmeier
on behalf of the social democrats.

The liberals excluded a coalition with the greens and the social de-
mocrats (traffic-light coalition: red - yellow - green). The green party ex-
cluded the Jamaica coalition (black - yellow - green).

We suggest to consider three assumptions:

• assumption 1: Black - yellow and black - red are possible coalitions,
only.

• assumption 2: Apart from the two coalitions mentioned in assump-
tion 1, red - yellow -green and black - yellow - green are also possible

• assumption 3: All government coalitions are feasible except that
the left party will not be seen in a coalition with the christian
democrats or the liberals.

Thus, we have three different coalition functions:
Under assumption 1, we find the coalition function

v (K) =






1, CDU ∈ K, SPD ∈ K

1, CDU ∈ K,FDP ∈ K

0, otherwise

with the Shapley payoffs

ShCDU =
2

3
,ShSPD =

1

6
,ShFDP =

1

6
,

the Casajus payoffs for the black - yellow coalition

χCDU =
3

4
, χSPD = 0, χFDP =

1

4

and the Casajus payoffs for the black - red coalition

χCDU =
3

4
, χSPD =

1

4
, χFDP = 0

Taking the seat distribution into account, assumptions 2 and 3 do not
change the above coalition function:

• The green party is a null player within a Jamaica (black - yellow -
green) coalition.

• The traffic-light (red - yellow - green) coalition does not avail of
50% of the seats in the Bundestag.

Therefore, the promises made by the liberals and greens proved not to be
expensive ex-post.

The actual government coalition has the Christian democrats form a
government coalition with the liberal party. The actual distribution of min-
istries taken over by these parties approximates the Casajus values. 11
portfolios are in the hands of CDU/CSU and 5 in the hands of the liberals
with 5

16 being slightly above 4
16 =

1
4 .



6. THE OUTSIDE-OPTION VALUE DUE TO CASAJUS 115

6.3.4. Coalitions functions and the Sonntagsfrage. German demographers
regularly ask potential voters about their actual inclinations. On February,
19th, 2010, a few months after the 2009 elections, Infratest dimap reported
these results:

distribution of votes ... of seats
SPD 27 28

CDU 34 36

Left 10 10

FDP 10 10

Green 15 16

After the Oskar Lafontaine (a very prominent member of the left party
and a former social democrat disliked by many social democrats) withdraws
from politics, some social democrats are ready to review their willingness to
form a coalition with the left party.

Therefore, one might reconsider assumption 3 from above. We now
obtain the coalition function

v (K) =






1, CDU ∈ K,SPD ∈ K

1, CDU ∈ K,Green ∈ K

1, SPD ∈ K,Green ∈ K,FDP ∈ K

1, SPD ∈ K,Green ∈ K,Left ∈ K

0, otherwise

the Shapley payoffs

ShCDU =
22

60
,ShSPD =

17

60
,ShFDP =

2

60
,ShLinke =

2

60
, ShGreen =

17

60

and the Casajus payoffs

• for the grand coalition:

χCDU =
39

72
, χSPD =

33

72
,

• for the black-green coalition:

χCDU =
39

72
, χGreen =

33

72
,

• for the black-green-liberal coalition:

χSDP =
30

72
, χGreen =

30

72
, χFDP =

12

72

• for the red-red-green coalition:

χSDP =
30

72
, χGreen =

30

72
, χLeft =

12

72

• and, finally, for the Jamaica coalition

χCDU =
34

72
, χGreen =

28

72
, χFDP =

10

72
.
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Thus, the Christian democrats are free to choose the social democrats or
the green party as a coalition partner. Both have no better alternative than
to go along.

7. Contrasting the Casajus and the Wiese values

7.1. The splitting axiom. We try to find out under what circum-
stances the Wiese value violates the splitting axiom. Consider the game on
N = {1, 2, 3} partly given by

v (i) = 0, i = 1, 2, 3,

v (N) = 1.

The Shapley values for players 1 and 2 are

W1 (v, {N}) = Sh1 (v) =
2 + v(1, 2) + v(1, 3)− 2v (2, 3)

6
,

W2 (v, {N}) = Sh2 (v) =
2 + v(1, 2) + v(2, 3)− 2v (1, 3)

6

Consider the grand coalition N = {1, 2, 3} and assume that players 1 and 2
split off. Then we obtain the partition

P = {{1, 2} , {3}}
and the Wiese payoffs

W1 (v,P) =
−2 + 2v(1, 2) + v(2, 3)

6
,

W2 (v,P) =
−2 + 2v(1, 2) + v(1, 3)

6
.

The splitting axiom claims that players 1 and 2 should benefit (or be hurt)
equally. It holds for the Casajus value where we find

Ca1 (v, {N})−Ca1 (v,P) = Sh1 (v)−
(
Sh1 (v) +

v ({1, 2})− Sh1 (v)− Sh2 (v)

2

)

= Sh2 (v)−
(
Sh2 (v) +

v ({1, 2})− Sh1 (v)− Sh2 (v)

2

)

= Ca2 (v, {N})−Ca2 (v,P)
The splitting axiom is not fulfilled by the Wiese value. In fact, we have

W1 (v, {N})−W1 (v,P) < W2 (v, {N})−W2 (v,P)
if an only if

v(1, 3)− v (3) < v(2, 3)− v (3)

holds. Thus, splitting away from player 3 hurts player 1 less than player 2 iff
player 1’s marginal contribution with respect to player 3 is less than player
2’s marginal contribution.

One could argue that this is quite a sensible outcome. Assume that the
above inequality holds, i.e., player 2’s marginal contribution with respect to
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player 3 is higher than player 1’s contribution. The splitting axiom used for
the Casajus value implies that player 1 has to pay damages to player 2 so
that both are harmed equally. In the final analysis, the question seems to
be whether outside options are as important as inside opportunities. The
Casajus value says “yes” while the Wiese value says “not quite”.

7.2. Why make the last player the residual claimant? Noting
that the Wiese value makes the last player in a component the residual
claimant, Casajus (2009, p. 56) asks why not take the first or any other
position. Indeed, let us define a series of values W k for k = 0, 1, ..., |P (i)|−1
by

W k
i (v,P) =

1

n!

∑

ρ∈RON

{
v (P (i))−∑

j∈P(i)\{i}MCj (v, ρ) , |P (i) \Ki (ρ)| = k,

MCi (v, ρ) , otherwise,

The haveW =W 0.Generalizating lemma VII.2 (p. 108), we haveW k (v, {N}) =
Sh for k ∈ {0, 1, ..., |P (i)| − 1} .

Let us do the same exercise as in the previous subsection, this time for
W 1. We find

6W 1
1 (v,P) = v (1, 2)−MC2 (v, (1, 2, 3)) + v (1, 2)−MC2 (v, (1, 3, 2))

+MC1 (v, (2, 1, 3)) +MC1 (v, (2, 3, 1))

+v (1, 2)−MC2 (v, (3, 1, 2))

+MC1 (v, (3, 2, 1))

= v (1, 2)− [v (1, 2)− v (1)] + v (1, 2)− [v (1, 2, 3)− v (1, 3)]

+ [v (1, 2)− v (2)] + [v (1, 2, 3)− v (2, 3)]

+v (1, 2)− [v (1, 2, 3)− v (1, 3)]

+ [v (1, 2, 3)− v (2, 3)]

= 3v (1, 2) + 2v (1, 3)− 2v (2, 3)
and hence

W 1
1 (v,P) =

3v (1, 2) + 2v (1, 3)− 2v (2, 3)
6

and

W 1
2 (v,P) =

3v (1, 2)− 2v (1, 3) + 2v (2, 3)
6

by component efficiency.
We now get

W 1
1 (v, {N})−W 1

1 (v,P) < W 1
2 (v, {N})−W 1

2 (v,P)
if an only if

v (2, 3)− v (3) < v (1, 3)− v (3)

holds. Thus, splitting away from player 3 hurts player 1 less than player 2
iff (and although) player 1’s marginal contribution with respect to player 3
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is larger than player 2’s marginal contribution. Thus, we have the opposite
result as in the previous section.
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8. Topics and literature

The main topics in this chapter are

• outside-option values
• Casajus value
• Wiese value
• component efficiency
• splitting axiom

We introduce the following mathematical concepts and theorems:

• t

•
We recommend.

9. Solutions

Exercise VII.1

We find:

(1) P1 is both finer and coarser than P2.
(2) P1 is neither finer nor coarser than P2.
(3) P1 is coarser than P2, but not finer.

Exercise VII.2

We have u{1,2} (1) = v{1,2},{3} (1) = 0 and hence AD1

(
u{1,2},P

)
=

AD1

(
v{1,2},{3},P

)
= 0. For the unanimity game, we findAD3

(
u{1,2},P

)
= 0

for null player 3 and AD2

(
u{1,2},P

)
= u{1,2} ({2, 3})− 0 = 0 by component

efficiency. Turning to the gloves game, we obtain

AD2

(
v{1,2},{3},P

)
= Sh2

(
v{1,2},{3}

∣∣
{2,3}

)

= Sh2
(
v{2},{3}

)

=
1

2

= AD3

(
v{1,2},{3},P

)
.

Exercise VII.3

The players 6, 2 and 4 complete their components.
Exercise VII.4

The Shapley value for the unanimity game u{1,2} is Sh
(
u{1,2}

)
=

(
1
2 ,
1
2 , 0

)

so that we get player 1’s Casajus value

Ca1
(
u{1,2}, {{1, 3} , {2}}

)
=
1

2
+
0−

(
1
2 + 0

)

2
=
1

4
.
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The other players’ payoffs can be obtained by component efficiency. Finally,
we have

Ca
(
u{1,2}, {{1, 3} , {2}}

)
=

(
1

4
, 0,−1

4

)
.

For the other partition, we find

Ca
(
u{1,2}, {{1, 2} , {3}}

)
=

(
1

2
,
1

2
, 0

)
.

For example, you could have applied component efficiency to player 3 and
then P-symmetry to the other two players.

10. Further exercises without solutions

(1) Assume two men, Max (M) and Onno (O), who both love Ada (A).
Their coalition function is given

v (K) =






0, |K| ≤ 1
6, K = {M,A}
4, K = {O,A}
1, K = {M,O}
2, K = {M,O,A}

• Calculate the AD payoffs and the outside options values due
both to Casajus andWiese for the partition P = {{M,A} , {O}}!

• Comment!
(2) A capitalist employs two workers 1 and 2. The firm’s coalition func-

tion is given by N = {K, 1, 2} and
v ({K}) = 10,

v ({1}) = v ({2}) = v ({1, 2}) = 0,
v ({K, 1}) = v ({K, 2}) = 16,

v (N) = 19

Find the players’ payoffs by applying suitable solution concepts for
• full employment,
• partial employment (worker 2 is fired).
Comment!

(3) Consider the player set N = {m,w1, w2} where m stands for a
man and w1 and w2 for two women. The government’s viewpoint
on marriages, homosexual marriages and polygamy is expressed by
the coalition functions v given by

v ({m}) = v ({w1}) = v ({w2}) = 0,
v ({m,w1}) = v ({m,w2}) = 5,
v ({w1, w2}) = 3,

v (N) = −2.
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• Is v monotonic, superadditive or essential?
• Which solution concept would you like to apply? How about
the

— core
— the Shapley value,
— the AD-value,
— the outside-option value (due to either Casajus orWiese)?

(4) Using the axioms, derive the Shapley payoffs and the AD-payoffs
for the coalition function given by N = {1, 2, 3, 4} and

v (K) =






0, K ∈ {{1} , {2} , {3}}
10, K ∈ {{4} , {1, 4} , {2, 4} , {3, 4}}
60, K ∈ {{1, 2} , {1, 3} , {2, 3}}
72, K = {1, 2, 3}
70, K ∈ {{1, 2, 4} , {1, 3, 4} , {2, 3, 4}}
82, K = N

and the partition P = {{1, 2, 3} , {4}}!





CHAPTER VIII

The union value

1. Introduction

The components in this chapter are bargaining groups. They players
in such a component put their aggregate contributions in the balance. A
priori, it is unclear whether that is a good idea. For example, German
citizens form a component within the European Union. It seems that the
average German stands a smaller chance of becoming a EU commissioner
than an Irish person.

• We find that the productive players in a unanimity game profit
when they dissociate themselves from other productive players.

• Left-glove owners may benefit from forming a cartel of left-glove
holders.

The main idea behind the Owen, or union, value is this. We consider two
games. First, the components play against each other leading to some ag-
gregate payoff for each of them. Second, within each component, the players
bargain about their share of the component’s aggregate payoff.

We proceed as follows. In the next section, we explain how some rank
orders are not consistent with some partitions. We present the union value
in section 3 and its axiomatizations in section 4. Examples in section 5
conclude the chapter.

The Owen value is a generalization of the Shapley value. This will
become obvious for the trivial partition P = {N} (one bargaining block
containing all players) and for the atomic partition P = {{1} , {2} , ..., {n}}
(every player bargains for himself). In section 6, we show that the Shapley
value can be obtained as the mean of Owen values for different partitions.

2. Partitions and rank orders

Before presenting the union value, we need to do some preparatory
groundwork. First of all, we remind the reader of definition VIII.1 (p. 123):
For a component P of the player set N , the component containing player
i ∈ N is denoted by P (i) ∈ 2N . Second, we need to define P (R) for a player
set R ⊆ N .

D�������
� VIII.1 (subpartition). Let P = {C1, ..., Ck} be a partition
of N . Partition P1 is called a subpartition of P2 if P1 ⊆ P2 holds. The set

123
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of components containing any player from R ⊆ N is given by

P (R) := {C ⊆ N : ∃i ∈ R such that C = P (i)}

According to the above definition, we have C ∩R �= 0⇔ C ∈ P (R) for
all C ∈ P. Differently put, P (R) is a subpartition of P (i.e., P (R) contains
nothing but components from P) and the smallest subpartition that places
all players from R in components. We get from a partition P to P (R) by
deleting those components that do not contain R-players.

E������� VIII.1. Express P (T ) and P (i) ∩ T in your own words.

D�������
� VIII.2 (union of components). Let P = {C1, ..., Ck} be a
partition of N . We denote the union of R-components by

⋃
P (R) :=

⋃

i∈R
P (i) .

Thus, P (R) is a set of subsets of N while
⋃
P (R) is a subset of N .

Alternatively,
⋃
P (R) is the set with partition P (R).

E������� VIII.2. Consider P = {{1} , {2} , {3, 4} , {5, 6, 7}} and find
P ({2, 5}) and

⋃
P ({2, 5}) .

Do you see that P (i) is a subset of N while P ({i}) is the set that
contains P (i) , P ({i}) = {P (i)}? Also, P (R) is a subpartition of P while
P (i) is not. Do not worry your head off if you do not understand. In any
case, have a close look at the following exercise.

E������� VIII.3. Determine P (2) , P ({2, 3}) , P ({2}) and P (N\ {2, 3})
for N = {1, ..., 4} and the partitions

• P = {{1} , {2} , {3, 4}} and
• P = {{1} , {2, 3} , {4}}!

Are any of the resulting expression partitions?

We now turn to the final and most important bit of formal language. For
a given partition P ∈ P (N), we want to consider those rank orders ρ ∈ ROn

that leave the players of each component together. Consider, for example,
the partition P = {{1} , {2} , {3, 4}} . The rank order ρ = (3, 1, 2, 4) tears
the component {3, 4} apart while the rank order ρ = (3, 4, 1, 2) does not.

D�������
� VIII.3 (consistent rank orders). A rank order ρ ∈ ROn is

called consistent with a partition P ∈ P (N), if, for every component C from
P, there exist an index j and a number ℓ ∈ {0, ..., n− j} such that

C =
{
ρj, ρj+1, ..., ρj+ℓ

}

holds. The set of all rank oders on N that are consistent with a partition P
are denoted by ROPn or ROP .



3. UNION-VALUE FORMULA 125

The ROPn is contained in the set ROn. Starting with ROn, we get to
ROPn n by deleting those rank oders that tear apart players belonging to the
same component.

E������� VIII.4. Which of the following rank oders are consistent with
the partition P = {{1} , {2} , {3, 4} , {5, 6, 7}}?

• ρ = (1, 2, 3, 4, 5, 6, 7)

• ρ = (2, 1, 4, 5, 6, 7, 3)

• ρ = (1, 5, 2, 3, 4, 6, 7)

• ρ = (1, 4, 3, 7, 5, 6, 2)

E������� VIII.5. Which rank orders from RO7 are consistent with

• P = {{1, 2, 3, 4, 5, 6, 7}} or
• P = {{1} , {2} , {3} , {4} , {5} , {6} , {7}}?

You certainly remember

|ROn| = n!

We derive this formula on p. 40. How many rank orders are consistent with
a partition

P = {S1, ..., Sk}?
Note.

• We have k! possibilities to rank the components S1 through Sk.
• Within component Sj, there are |Sj |! possibilities to rank its play-
ers.

Thus, we find ∣∣ROPn
∣∣ = k! · |S1|! · ... · |Sk|!

and hence a second reason why
∣∣∣RO

{{1,2,...,n}}
n

∣∣∣ =
∣∣∣RO

{{1},{2},...,{n}}
n

∣∣∣ (see

exercise VIII.5) holds.

3. Union-value formula

The union partition stands for groups of players who put their aggregate
marginal contribution into the balance.

D�������
� VIII.4 (Owen value). The Owen value on Vpart is the solu-
tion function Ow given by

Owi (v,P) =
1

|ROPn |
∑

ρ∈ROPn

[v (Ki (ρ))− v (Ki (ρ))] , i ∈ N.

Thus, in contrast to the Shapley value, we consider the rank orders that
are consistent with the partition P, only, rather than all rank orders.

Let us consider the player set N = {1, 2, 3} , the gloves game v{1,2},{3}.
Right gloves are scarce and the Shapley payoffs are

(
1
6 ,
1
6 ,
2
3

)
. Let us now

assume that the left-glove owners form a cartel so that we are dealing with
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the partition P = {{1, 2} , {3}}. We have four rank orders consistent with
P:

(1, 2, 3) , (2, 1, 3) , (3, 1, 2) and (3, 2, 1) .

Thus, we obtain the Owen payoffs

Ow1
(
v{1,2},{3},P

)
=

1

4




 0︸︷︷︸
(1,2,3)

+ �︸︷︷︸
(1,3,2)

+ 0︸︷︷︸
(2,1,3)

+ �︸︷︷︸
(2,3,1)

+ 1︸︷︷︸
(3,1,2)

+ 0︸︷︷︸
(3,2,1)




 =

1

4
,

Ow2
(
v{1,2},{3},P

)
=

1

4




 0︸︷︷︸
(1,2,3)

+ �︸︷︷︸
(1,3,2)

+ 0︸︷︷︸
(2,1,3)

+ �︸︷︷︸
(2,3,1)

+ 0︸︷︷︸
(3,1,2)

+ 1︸︷︷︸
(3,2,1)




 =

1

4
,

Ow3
(
v{1,2},{3},P

)
=

1

4




 1︸︷︷︸
(1,2,3)

+ �︸︷︷︸
(1,3,2)

+ 1︸︷︷︸
(2,1,3)

+ �︸︷︷︸
(2,3,1)

+ 0︸︷︷︸
(3,1,2)

+ 0︸︷︷︸
(3,2,1)




 =

2

4
.

In this case, unionization pays.
Do you see that P = {{1, 2, ..., n}} and P = {{1} , {2} , ..., {n}} lead to

the same Owen values?

4. Axiomatization

The Owen value is a solution function σ on (N,P (N)) that obeys

• the efficiency axiom,
• the symmetry axiom (payoff equality for P-symmetric players),
• the null-player axiom, and
• the additivity axioms.

These axioms do not suffice to pin down the Owen value. We introduce
additional axioms which need some preparation. The symmetry axiom for
components claims that symmetric components should obtain the same ag-
gregate payoff. Thus, this axiom is well in line with the two games underlying
the Owen value, the game between components first and the game within
components second.

D�������
� VIII.5 (component symmetry). Consider a partition P ∈
P (N). Two components C and C′ from P are called symmetric if

v
(⋃

P (K)∪C
)
= v

(⋃
P (K)∪C ′

)

holds for all K ⊆ N\ (C∪C ′) .

D�������
� VIII.6 (symmetry axiom for components). A solution func-
tion (on Vpart) σ is said to obey symmetry between components if

σC (v,P) = σC′ (v,P)

holds for all symmetric components C and C ′ from P.
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Owen (1977) suggests a nice axiomatization:

T �
��� VIII.1 (Axiomatization of the Owen value). The Owen for-
mula is the unique solution function that fulfills the symmetry axiom, the

symmetry axiom for components, the efficiency axiom, the null-player ax-

iom and the additivity axiom.

Let us revisit the gloves game v{1,2},{3} and the partition P = {{1, 2} , {3}}
(see section 3). Both components are needed to produce the worth of 1.
Therefore, the symmetry axiom for components yields

Ow1
(
v{1,2},{3},P

)
+Ow2

(
v{1,2},{3},P

)
= Ow3

(
v{1,2},{3},P

)

efficiency then leads to

Ow3
(
v{1,2},{3},P

)
= 1−

(
Ow1

(
v{1,2},{3},P

)
+Ow2

(
v{1,2},{3},P

))

= 1−Ow3
(
v{1,2},{3},P

)

and hence to Ow3
(
v{1,2},{3},P

)
= 1

2 . Finally, the symmetry between players
1 and 2 produces Ow1

(
v{1,2},{3},P

)
= Ow2

(
v{1,2},{3},P

)
= 1

4 .

5. Examples

5.1. Unanimity games. We now develop a general formula for una-
nimity games. First of all, we disregard any component C with C ⊆ N\T .
These null components do not influence the payoffs. Thus, we focus on com-
ponents that host at least one T -player and on the partition P (T ) . Each
component in P (T ) has the same probability 1

|P(T )| to be the last compo-
nent. Within each of these components, every i ∈ T player has the same
probability 1

|P(i)∩T | to complete T.

Thus, the Owen value yields the following payoffs for a unanimity game
uT , T �= ∅ :

Owi (uT ,P) =
{

1
|P(T )|

1
|P(i)∩T | , i ∈ T

0, otherwise

Every T -player obtains a positive payoff, even if not all T -players belong to
a single component.

Assume that a player i ∈ T, for whom |P (i) ∩ T | ≥ 2 holds, breaks off
and forms a component all by himself. In that case,

• the number of T -components increases from |P (T )| to |P (T )|+ 1
while

• the number of T -players in i’s component decreases from |P (i) ∩ T | ≥
2 to 1.

Then, his payoff weakly increases as can be seen from

1

|P (T )|
1

|P (i) ∩ T | ≤
1

|P (T )|+ 1
1

1
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which is equivalent to

|P (T )|+ 1
|P (T )| ≤ |P (i) ∩ T |

where equality holds for |P (T )| = 1 and |P (i) ∩ T | = 2, only.

5.2. Symmetric games. The Shapley values are identical for players
in a symmetric game. The simple reason is that players are symmetric in a
symmetric game. However, symmetric players may well not be P-symmetric.
Consider N = {1, 2, 3}, P = {{1, 2} , {3}} and the coalition function v given
by

v (S) =






0, |S| ≤ 1
α, |S| = 2
1, |S| = 3

for any α ∈ R. To calculate player 1’s Owen payoff, we consider the following
table.

rank order marginal contribution for player 1

1-2-3 0

2-1-3 α

3-1-2 α

3-2-1 1− α

sum 1 + α

Owen payoff 1+α
4

Since players 1 and 2 areP-symmetric, we haveOw2 (v,P) = Ow1 (v,P) =
1+α
4 . Efficiency yields

Ow3 (v,P) = 1−Ow1 (v,P)−Ow2 (v,P)

= 1− 2 · 1 + α

4
=
1

2
− 1
2
α.

Thus, we obtain Ow3 (v,P) �= Ow1 (v,P) unless α = 1
3 happens to hold.

5.3. Apex games. Unionization does not pay for powerful players in
a unanimity game. However, the weak players in an apex game win by
forming a union.

E������� VIII.6. Find the Owen payoffs for the n-player apex game h1
and the partition P = {{1} , {2, ..., n}} .

If the unimportant players form several components, the apex player
obtains a positive payoff. For example, if the players 2 to n form two com-
ponents, the apex player obtains the marginal payoff 1 in one out of three
cases — therefore, we have Ow1 (v,P) = 1

3 .

E������� VIII.7. Can you find a partition P = {{1} , C1, C2} such that
a player j ∈ {2, ..., n} obtains a higher payoff than 1

n−1?
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6. The Shapley value is an average of Owen values

We plan to present a probabilistic generalization of the Owen value.
Instead of looking at a particular partition, we assume a probability distri-
bution on the set of all partitions.

6.1. Probability distribution. In this section, we introduce proba-
bility distributions on the set of partitions P (N) . This important concept
merits a proper definition, where [0, 1] is short for {x ∈ R : 0 ≤ x ≤ 1}:

D�������
� VIII.7 (probability distribution). LetM be a nonempty set.

A probability distribution on M is a function

prob : 2M → [0, 1]

such that

• prob (∅) = 0,
• prob (A∪B) = prob (A) + prob (B) for all A,B ∈ 2M obeying A ∩

B = ∅ and
• prob (M) = 1.

Subsets of M are also called events. For m ∈ M , we often write prob (m)

rather than prob ({m}) . If a m ∈ M exists such that prob (m) = 1, prob

is called a trivial probability distribution and can be identified with m. We

denote the set of all probability distributions on M by Prob (M).

E������� VIII.8. Throw a fair dice. What is the probability for the
event A, “the number of pips (spots) is 2”, and the event B, “the number of

pips is odd”. Apply the definition to find the probability for the event “the

number of pips is 1, 2, 3 or 5”.

Thus, a probability distribution associates a number between 0 and 1 to
every subset of M . (This definition is okay for finite sets M but a problem
can arise for sets with M that are infinite but not countably infinite. For
example, in case of M = [0, 1], a probability cannot be defined for every
subset of M, but for so-called measurable subsets only. However, it is not
easy to find a subset of [0, 1] that is not measurable. Therefore, we do not
discuss the concept of measurability.)

6.2. Symmetric probability distribution. We now consider proba-
bility distributions prob on M = P (N). Following Casajus (2010), let us
consider those probability distributions that are unaffected by the labeling
of the players. We call these probability distributions “symmetric”. For
example, the probability distribution prob on P ({1, 2, 3}) given by

prob ({{1, 2} , {3}}) = 1

2
= prob ({{1} , {2, 3}})
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is not symmetric because of prob ({{2} , {1, 3}}) = 0. Also, defining prob by

prob ({{1, 2} , {3}}) = 1
does not yield a symmetric probability distribution, again because of prob ({{2} , {1, 3}}) =
0.

In contrast, the probability distributions prob1, prob2, and prob3 given
by

prob1 ({{1, 2} , {3}}) = prob1 ({{1} , {2, 3}}) = prob1 ({{2} , {1, 3}}) =
1

3
,

prob2 ({{1, 2, ..., n}}) = 1, and

prob3 ({{1} , {2} , ..., {n}}) = 1

are symmetric.
We now like to present the formal definition proposed by Casajus (2010).

Consider a bijection π : N → N . For example, for N = {1, 2, 3} , a bijection
π is defined by

π (1) = 3,

π (2) = 1, and

π (3) = 2.

For a partition P, π (P) is the partition {π (C) : C ∈ P}.

E������� VIII.9. Let P = {{1, 2} , {3}} . Find π (P) for the above bi-
jection π!

D�������
� VIII.8 (symmetric probability distribution). Let prob be a
probability distribution on P (N) . prob is called symmetric if every bijection

π : N → N yields

prob (P) = prob (π (P)) .

Let us applying the definition to the probability distributions prob1,
prob2, and prob3 given above. prob1 is symmetric because there exist three
partitions with

• one player in a singleton component and
• the two other players sharing a component

and these three partitions have the same probability (13).
Do you see that π ({1, 2, ..., n}) = {1, 2, ..., n} for every bijection π. Also,

every partition π keeps the atomic partition intact.

6.3. The probabilistic Owen value.

D�������
� VIII.9 (probabilistic Owen value). The probabilistic Owen
value on Vpart is the solution function Ow given by

Owi (v, prob) =
∑

P∈P(N)
prob (P)Owi (v,P) , i ∈ N,
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where prob ∈ Prob (P (N)) is a probability distribution on the set of parti-

tions of N .

Casajus (2010) shows the following result:

T �
��� VIII.2. For any symmetric probability distribution prob on

P (N), we have

Ow (v, prob) = Sh (v) .
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7. Topics and literature

The main topics in this chapter are

• union value

We introduce the following mathematical concepts and theorems:

• t

•
We recommend

8. Solutions

Exercise VIII.1

P (T ) is the set of P’s components that contain at least one T -player.
P (i) ∩ T is the set of T -players in i’s component.
Exercise VIII.2

We have P ({2, 5}) = {{2} , {5, 6, 7}} and
⋃
P ({2, 5}) = {2, 5, 6, 7}.

Exercise VIII.3

For the first partition, we obtain P (2) = {2} , P ({2, 3}) = {{2} , {3, 4}} ,
P ({2}) = {{2}} and P (N\ {2, 3}) = {{1} , {3, 4}}, the second partition
yields P (2) = {2, 3} , P ({2, 3}) = {{2, 3}} , P ({2}) = {{2, 3}} andP (N\ {2, 3}) =
{{1} , {4}}. P ({2, 3}) , P ({2}) and P (N\ {2, 3}) are subsets of the parti-
tions and partitions in their own right, albeit of different sets.
Exercise VIII.4

The first and the last rank order are consistent with P. The second rank
order tears component {3, 4} apart and the third rank order does not leave
the component {5, 6, 7} intact.
Exercise VIII.5

For both partitions, we find ROPn = ROn.
Exercise VIII.6

The apex player’s marginal payoff is zero if his one-man component is
first and also if his component is last. Therefore, we have Ow1 (h1,P) = 0
and, by P-symmetry Owj (h1,P) = 1

n−1 for all players j = 2, ..., n− 1.
Exercise VIII.7

If all unimportant players j ∈ {2, ..., n} are gathered in one component,
each of them obtains 1

n−1 . In partition P = {{1} , C1, C2}, component C1
gets the payoff 1

3 (why?) which is also the payoff to some player j which
is the only player in that component — C1 = {j}. This player has a higher
payoff than 1

3 whenever n exceeds 4 :

1

3
>

1

n− 1 ⇔ n ≥ 5.
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Exercise VIII.8

We have prob (A) = 1
6 and prob (B) = 1

2 for the two events and, by
A ∩B = ∅, prob (A∪B) = prob (A) + prob (B) = 1

6 +
1
2 =

4
6 .

Exercise VIII.9

We have

π (P) = {π (C) : C = {1, 2} or C = {3}}
= {π ({1, 2}) , π ({3})}
= {{1, 3} , {2}}

9. Further exercises without solutions

(1) Assume two men, Max (M) and Onno (O), who both love Ada (A).
Their coalition function is given

v (K) =






0, |K| ≤ 1
6, K = {M,A}
4, K = {O,A}
1, K = {M,O}
2, K = {M,O,A}

• Calculate the Owen payoffs for the partitionP = {{M,O} , {A}}!
• Comment!

The Shapley value on networks
Regulated prices
Giving voluntarily and taking by force
Extensions and vector-measure games
Non-transferable utility
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