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Foreword

It is my pleasure to introduce you to the marvelous world of graph products, as presented by
three experts in a hugely expanded and updated edition of the year 2000 classic by Imrich
and Klavžar. This version, really a new book (thirty-three chapters, up from nine!), contains
streamlined proofs, new applications, solutions to conjectures (such as Vizing’s conjecture
for chordal graphs), and new results in graph minors and flows. Every graph theorist, most
combinatorialists, and many other mathematicians will want this volume in their collection.

Graphs are, of course, basic combinatorial structures; and products of structures are a
fundamental construction in mathematics, for which theorems abound in set theory, cat-
egory theory, and universal algebra. Thus, it is not surprising that good things happen
when we take products of graphs. But the nature of those good things is very surprising
indeed; many unique and new ideas emerge, taking both combinatorialists and algebraists
by surprise.

For example, we expect many of the nice properties of products to be a result of a role
played in some category-theoretic construct, but the authors’ (and my own) favorite graph
product, the Cartesian product, does not arise in that way. Nonetheless, it not only behaves
beautifully, but carries metric space structure with it. Similarly, we might expect it to be
trivial to determine how natural graph parameters like independence number and chromatic
number behave in any product of graphs; but Hedetniemi’s conjecture (Chapter 26), among
other open problems, suggests that something quite deep is happening.

In graph theory, we often expect it to be algorithmically difficult to compute or even
estimate most parameters or to recognize structure in a given graph. If we can’t even get
a decent approximation of the size of the largest clique in a graph, how can we expect to
compute a more complex parameter? If we can’t even tell when a graph is the covering
graph of a partially ordered set, how can we expect to recognize products?

Consider the “windex” problem of Chapter 14. A server resides at a vertex of some fixed
graph, and requested vertices arrive in a stream. At each arrival we pay a cost equal to
the distance of the server to the request; between arrivals we can move the server, again
at distance-cost, to a new vertex. How far in advance must we see the requests in order to
play optimally?

This looks like a tough problem; indeed, it takes some study to see that the answer is
“2” when the graph consists of two vertices connected by an edge. Yet, with the help of
graph product recognition, we can compute this value in polynomial time for an arbitrary
graph!

The authors have paid careful attention to algorithmic issues (indeed, many of the most
attractive algorithms are products of their own research). Readers will find a gentle but
incisive introduction to graph algorithms here, and a persuasive lesson on the insights to
be gained by algorithmic analysis.

In sum—and product—Hammack, Imrich, and Klavžar have put together a world of
elegant and useful results in a cogent, readable text. The old book was already a delight,
and you will want the new one in an accessible place on your bookshelf.

Peter Winkler Hanover, New Hampshire

xiii
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Preface

E
very branch of mathematics employs some notion of a product that enables the com-
bination or decomposition of its elemental structures. In graph theory there are four

main products, each with its own set of applications and theoretical interpretations.

The structure and applicability of these products are full of surprises. For example, large
networks such as the Internet graph, with several hundred million hosts, can be efficiently
modeled by subgraphs of powers of small graphs with respect to the direct product.1 This
is one of many examples of the dichotomy between the structure of products and that of
their subgraphs, which is a main theme of the book.

A second theme is the design of efficient algorithms that recognize products and their
subgraphs; a third, with the deepest results, is the relationship between graph parameters
of the product and those of the factors.

The authors are fascinated by this rich, fertile field and wish to pass this enthusiasm to
the reader. They have done their best to write a comprehensive overview of graph products.

Handbook

The first edition of this book has established itself as a standard reference on graph products.
This second edition, extensively revised, reorganized, updated and expanded, can justly be
called a handbook. It is a thorough introduction to the subject, with full proofs of most of
the important results in the first four of its six parts. It is also an extensive survey of the
field, with up-to-date research results and conjectures.

Contents

The book is organized into six parts. The first three parts present graph products in detail.
They cover algebraic properties such as factorization and cancellation, and treat interesting,
important classes of subgraphs. They contain many new, comprehensive proofs, and a wealth
of new results. The fourth part pertains to algorithms, many of them new, described in such
a way that they can be easily implemented. The fifth part focuses on graph invariants and
the sixth on infinite, directed, and product-like graphs.

Part I prepares the reader for any one of Parts II, III, and V. Other dependencies will be
described in the introduction to the corresponding parts, but we mention here that Part IV
uses some material from Parts I, II, and III, while Part VI employs ideas from throughout
the entire book.

Prerequisites

Part I is a concise introduction to graphs and their products. It is intended to make the book
accessible to the nonspecialist, and requires few mathematical prerequisites. Part II and III
build on Part I but are otherwise essentially self-contained. Part IV focuses on algorithms.
For the reader’s convenience it contains two chapters that introduce graph algorithms and
do not depend on the rest of the book. This part thus requires only very modest previous
knowledge of data structures and algorithms.

Parts V and VI pertain to many different areas of combinatorics and graph theory. While

1Leskovec, Chakrabarti, Kleinberg, Faloutsos, and Ghahramani (2010).

xv
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xvi

the statements of the theorems should be clear, their proofs, when given, require diverse
prerequisites of varying depth.

To the instructor
The book is suitable as a text for a one- or two-semester course at the graduate level.
Such a course would cover Part I, with the remaining material dictated by the interests of
the instructor and students. We recommend Parts I, II, and III as a core. A course that
emphasizes algorithms and complexity would include Part IV, whereas one that highlights
invariants would cover Part V. However, we underscore that any sequence that respects the
dependencies of the chapters could be the foundation of a meaningful course.

The text contains well over 300 exercises, almost all of which have hints or full solutions
in the Appendix. In particular, Part V (on invariants) alone has 80 exercises; combined with
the fact that its chapters are independent of each other, it is ideal for the instructor of an
advanced course who wishes to cover selected topics.

To the student
This book, in particular Parts I through IV, is well-suited for self study. There are numerous
exercises, with generous hints and solutions in the Appendix.

Although algorithms are an integral part of the book, and while the algorithmic material
of Part IV can deepen one’s understanding of product graphs, it should be mentioned that
very little of the book depends directly on Part IV. The reader who chooses to ignore
Part IV will find only several passages, in Part VI, that depend on the omitted material.

New material
We include numerous results and algorithms—some solving long-standing questions—that
have appeared since the publication of the first edition. They include

• Cancellation results in Chapter 9

• A quadratic recognition algorithm for partial cubes in Chapter 11

• Results on the strong isometric dimension in Chapter 15

• Computing the Wiener index via canonical isometric embedding in Chapter 19

• Most of the connectivity results in Chapter 25

• A fractional version of Hedetniemi’s conjecture in Chapter 26

• Results on the independence number of Cartesian powers of vertex-transitive
graphs in Chapter 27

• Verification of Vizing’s conjecture for chordal graphs in Chapter 28

• The majority of the results on minimum cycle bases in Chapter 29

• Numerous selected recent results (for instance, on complete minors and nowhere-
zero flows) in Chapter 30

Applications
Products are often viewed as a convenient language with which to describe structures, but
they are increasingly being applied in more substantial ways. Computer science is one of the
many fields in which graph products are becoming commonplace. As one specific example,
we mention load balancing for massively parallel computer architectures.

While it is not our intention to cover applications in depth, we nonetheless have reserved
separate chapters for two of them, namely, Chapter 14 for the dynamic location problem
and Chapter 19 for chemical graphs. The applications of median graphs in human genetics,
and powers of direct products to model large networks are treated in Sections 12.5 and 30.5,
respectively. We can give only short introductions to these topics, as they are vast enough
to require books of their own.
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Other applications motivate the study of approximate graph products in Chapter 33.
One involves making the definition of traits of species more objective, a second aims for
more effective methods of visualizing graphs, and a third involves applications in struc-
tural mechanics. A similar remark holds for the application of lattice dimension to graph
visualization.

We hope this indicates the wealth and variety of applications. It is gratifying to watch
the applications accumulate, and we sincerely hope that this book provides the impetus for
further growth.

Free, dot, zig-zag, and replacement product
The free product of graphs has recently reappeared in the literature. We provide a concrete
example in the section on median graphs with finite blocks. It is linked to the free product
of groups in combinatorial group theory.

The dot product, the random dot product, and applications to the generation of random
graphs with prescribed properties are briefly described in Section 30.5.

The zig-zag and the more transparent replacement product were introduced for the
creation of expander graphs. They have similarities with products considered in this book
and allow relatively simple proofs of expansion. We define them in Section 33.4.

Caveat
If you find errors or misleading formulations, please send a note to one of the authors. An
errata, sample implementations of algorithms from Part IV, and other useful information
will appear on the Handbook of Product Graphs website. For the actual address follow the
links in the home pages of the authors.
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A Brief Introduction to Graphs
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Introduction to Part I

P
art I is a brief introduction to graph theory and product graphs, with an emphasis
on ideas and constructions that are used throughout the book. The first two chapters

review the elements of graph theory: graphs, subgraphs, homomorphisms, complete and
bipartite graphs, paths and cycles, trees, planar graphs, automorphisms, and invariants.

Chapter 2 also treats symmetries of graphs and group actions on trees and hypercubes.
We prove that a graph with transitive Abelian automorphism group has a spanning hyper-
cube; this shows how the automorphism group, considered as a permutation group on the
vertex set, can decisively determine the structure of a graph. The chapter culminates with
the highly-useful No-Homomorphism Lemma.

Chapter 3 develops themes that are central to the remainder of the book: hypercubes,
isometric subgraphs, median graphs, and retracts.

Our main objects of study appear in Chapter 4, where we introduce three fundamental
graph products, namely the Cartesian product, the direct product, and the strong product.
This is followed by an (optional) classification of certain associative products, providing
an explanation of why the three products mentioned above are the most natural of all
products. The classification also leads to a fourth product worthy of special attention, the
lexicographic product, which is the only noncommutative product studied in this book.

Chapter 5 investigates the metric and connectedness properties of the four standard
products—material that is of utmost importance in the remainder of the book.

We shall see that multiplication and disjoint union of graphs share many properties with
ordinary multiplication and addition. Indeed, the direct product of two relations—and thus
graphs—is first discerned in Whitehead and Russell (1912, p. 384), where the operations of
arithmetic are extended to binary relations. The lexicographic product is due to Hausdorff
(1914). Until the 1950s these concepts were studied mostly in algebraic settings; see Jónsson
(1982) for a survey.

We remark that readers who are well-versed in graph theory may opt to skip Chapter 1,
or just scan it to glean the notation. However, most readers will find new material in the
remaining four chapters of this part.
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Chapter 1

Graphs

1.1 Graphs and Subgraphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.2 Paths and Cycles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.3 Trees and Forests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.4 Planar Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

We begin with a review of the main concept of this book: the idea of a graph. Here we
are concerned with graphs, subgraphs, homomorphisms, complete and bipartite graphs,
paths, cycles, and planar graphs. Because the great majority of the results in this book
pertains to finite, undirected graphs without loops or multiple edges, we focus on this class
of graphs. Occasionally directed graphs or graphs with loops or multiple edges are admitted
in particular when they help to shorten proofs or improve the presentation.

1.1 Graphs and Subgraphs

By a simple graph G we mean a set V (G) of vertices, together with a set E(G) of unordered
pairs [u, v] of distinct vertices of G, the edges of G. We represent graphs graphically by
drawing the vertices as nodes and the edges as line segments connecting the nodes, as in
Figure 1.1. For an edge e = [u, v] we call u and v its endpoints and say e joins them. Two
vertices u and v are adjacent when they are joined by an edge. A vertex u adjacent to v is
a neighbor of v. One says u and v are incident with the edge [u, v]; two edges are incident
if they have a common endpoint. We often denote the edge [u, v] as uv.

A graph is finite if its vertex set is finite, and the set of finite simple graphs is denoted
by Γ. Included in Γ is the empty graph O, for which V (O) = ∅. Unless stated otherwise,
the term graph will always mean a member of Γ. A graph is called nontrivial if |V (G)| > 1.
|V (G)| is also known as the order and |E(G)| as the size of G.

FIGURE 1.1 Simple graphs (left, center) and a graph with loops (right).

5
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6 Graphs

Occasionally we admit edges with identical endpoints, calling them loops; see Figure 1.1.
The set of finite graphs in which loops are admitted is denoted as Γ0. Note that Γ ⊂ Γ0.

Given a vertex v in a graph G, the neighborhood of v is defined as

N(v) = {u | uv ∈ E(G)},

that is, the set consisting of all neighbors of v. Note that if there is a loop at v, then
v ∈ N(v). The set N(v) is sometimes referred to as the open neighborhood of v, in order to
distinguish it from the closed neighborhood

N [v] = N(v) ∪ {v}

of v. If there is danger of ambiguity, we write NG(v) and NG[v] to emphasize the underlying
graph.

Sometimes it is useful to assign directions to the edges of a graph. A digraph (or directed
graph) D consists of vertices V (D) together with a set of arcs A(D) ⊆ V (D) × V (D)1. We
visualize an arc (u, v) as an arrow pointing from u to v. Note that it is possible to have both
(u, v), (v, u) ∈ A(D), that is, we allow for the possibility that there is an arrow pointing
from u to v and another from v to u.

An oriented graph is a digraph obtained from a graph by replacing each edge [u, v] with
exactly one arc (u, v) or (v, u).

We emphasize that for brevity we often write uv instead of [u, v] or (u, v). However,
whenever the possibility of confusion between the directed and undirected case arises, we
revert to the notation (u, v) for ordered pairs of vertices and [u, v] for unordered ones.

Many of the graphs that we investigate are subgraphs of other graphs. By a subgraph H
of a graph G, we mean a graph H for which V (H) ⊆ V (G) and E(H) ⊆ E(G). We write
H ⊆ G to indicate that H is a subgraph of G.

If all pairs of vertices of a subgraph H of G that are adjacent in G are also adjacent in H ,
then H is an induced subgraph. Clearly, an induced subgraph of G is uniquely determined
by its vertices. We write 〈S〉 or 〈S〉G for the subgraph of G induced by S ⊆ V (G). Often
we will consider so-called vertex-deleted subgraphs, namely the subgraphs of G induced by
V (G) \ {v}, where v ∈ V (G). Such a graph is denoted by G − v. Similarly, for e ∈ E(G),
the edge-deleted subgraph G− e is defined by V (G− e) = V (G) and E(G− e) = E(G) \ {e}.
(See Figure 1.2.) In a similar spirit, if X ⊆ V (G), then G−X is the subgraph of G induced
on V (G) \X . If Y ⊆ E(G), then G− Y has vertex set V (G) and edges E(G) \ Y .

v

e

G G − v G − e

FIGURE 1.2 A graph G with vertex- and edge-deleted subgraphs.

A subgraph H of a graph G is a spanning subgraph if it has the same vertex set as G,
that is, if V (H) = V (G). Clearly, edge-deleted subgraphs are spanning subgraphs.

Our definitions imply that two graphs G and H are the same, in symbols G = H , when
V (G) = V (H) and E(G) = E(H). Nonidentical graphs with the same structure are called

1The Cartesian product U × V of two sets U and V is defined as the set of all ordered pairs (u, v) with
u ∈ U and v ∈ V .
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Graphs and Subgraphs 7

isomorphic. More precisely, two graphs G and H are called isomorphic, in symbols G ∼= H , if
there exists a bijection ϕ from V (G) onto V (H) that preserves adjacence and nonadjacence,
in other words, a mapping for which [ϕ(u), ϕ(v)] ∈ E(H) if and only if [u, v] ∈ E(G). Such
a mapping ϕ is called an isomorphism between G and H .

We will often be interested in homomorphic images of graphs. We say that ϕ is a ho-
momorphism from a graph G into a graph H if it is an adjacency preserving mapping from
V (G) into V (H), namely a mapping for which [ϕ(u), ϕ(v)] ∈ E(H) whenever [u, v] ∈ E(G).
Note that ϕ induces a natural mapping from E(G) into E(H), which we also denote by ϕ.
If ϕ is onto, both for vertices and edges, then H is a homomorphic image of G.

Let v be a vertex of a graph G. The degree d(v) of a vertex v is defined as the number
of vertices to which v is adjacent. Vertices of degree 0 are called isolated.

Theorem 1.1 The sum of the degrees of the vertices of a graph is twice the number of its
edges.

Proof Let G be a graph. The sum
∑

u∈V (G) d(u) can be regarded as a counting of the
edges of G, where for each vertex u we count the number of edges incident with u and sum
the result. This counts each edge exactly twice, once for each of its two endpoints. Thus the
sum equals 2|E(G)|. 2

Theorem 1.1 is often called “the first theorem of graph theory.” It implies that the
number of vertices of odd degree in a graph must be even.

A graph in which every vertex has degree r is r-regular. A 3-regular graph is also called
cubic. By Theorem 1.1 every cubic graph has an even number of vertices.

A graph is the complete graph Kn if it is isomorphic to a graph on n vertices for which
any two distinct vertices are adjacent. The graph K1 is also called the trivial graph, K2 an
edge, and K3 a triangle. Figure 1.3 depicts the graphs Ki for 3 ≤ i ≤ 5. Note that Kn has(
n
2

)
edges.

FIGURE 1.3 Complete graphs K3, K4, and K5.

To indicate that G is a complete graph on n vertices, one usually writes G = Kn, and
not G ∼= Kn. Thus the equality sign for graphs can mean that the graphs on both sides
are the same, namely have the same vertex- and edge-sets, or that the graph on the left
side is a member of the class of graphs isomorphic to the graph on the right. In this sense,
statements like G 6= H and G,H = Kn do not contradict each other.

A graph G is called bipartite if its vertex set can be represented as the union of two
disjoint sets V1 and V2, such that every edge of G connects an element of V1 with one of
V2. We call V1, V2 a bipartition of V . All classes of graphs investigated in Chapter 11 are
bipartite.

If every element of V1 is adjacent to every element of V2, then G is called a complete
bipartite graph. It is denoted by Km,n, where m and n are the cardinalities of V1 and V2.
The graph K2,3 will play a special role in the characterization of median graphs, and K3,3

is the well-known utility graph. These graphs are displayed in Figure 1.4.
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FIGURE 1.4 Graphs K2,3 and K3,3.

1.2 Paths and Cycles

The path Pn is the graph whose vertices are 1, 2, . . . , n, and for which two vertices are
adjacent precisely if their difference is ±1. A path in a graph G is a subgraph of G that is
isomorphic to some Pn; in other words, a sequence of distinct vertices v1v2 . . . vn in G where
vivj is an edge of G whenever i − j = ±1. The vertices v1 and vn are called the endpoints
of the path. A path with endpoints u and v is called a u, v-path.

A walk in G is a sequence of (not necessarily distinct) vertices v1v2 . . . vn, such that
vivi+1 ∈ E(G) for i = 1, 2, . . . , n− 1. We call such a walk a v1, vn-walk. If v1 = vn, we say
it is a closed walk. Notice that a walk—unlike a path—is not a subgraph. (A walk contains
information about order of traversal, etc.) However there is no harm in regarding a path as
a walk joining its endpoints.

If P is a path or a walk, then its length |P | is its number of edges. (A given edge of a
walk is counted as many times as it appears on the walk.) Note that |Pn| = n− 1.

Proposition 1.2 Every walk contains a path with the same endpoints.

Proof We use induction on length. The assertion is true for all walks of length zero and
one. Suppose that it holds for all walks of length at most n. Let Q = v1v2 . . . vn+2 be a
walk of length n + 1. If Q is a path, then we are done. Otherwise we have vi = vj , where
1 ≤ i < j ≤ n+2. Removing the edges vivi+1, . . . , vj−1vj and the vertices vk with i < k < j
from Q, we obtain a walk Q′ of length less than n with the same endpoints as Q. By the
induction hypothesis it contains a path with the endpoints v1 and vn+2. 2

A graph is connected if any two of its vertices are the endpoints of one of its paths. Thus
complete graphs, complete bipartite graphs, and paths are connected. A graph is called
disconnected if it is not connected.

A set X of vertices of a connected graph G is a separating set if the graph that we obtain
from G by deleting the vertices of X is disconnected. A vertex x of a connected graph is a cut
vertex if X = {x} is a separating set. For disconnected graphs, it is often useful to consider
the connected subgraphs that are maximal with respect to inclusion. They are uniquely
determined and called connected components or simply components. If every component of
a disconnected graph consists of a single vertex, we say the graph is totally disconnected.
The totally disconnected graph on n vertices is denoted by Dn.

The distance dG(u, v) between vertices u and v of a graph G is the length of a shortest
u, v-path. If no u, v-path exists, then dG(u, v) = ∞. Sometimes we simply write d(u, v)
instead of dG(u, v).
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Paths and Cycles 9

In a connected graph G, the distance function dG is an integer-valued metric, that is,
an integer-valued function with the following properties:

1. dG(u, v) ≥ 0, equality holding if and only if u = v
2. dG(u, v) = dG(v, u)
3. dG(u, v) ≤ dG(u,w) + dG(w, v)

The interval I(u, v) between two vertices u and v of a graph G is the set of vertices on
shortest paths between u and v. Note that I(u, v) contains u and v.

The diameter diam(G) of a connected graph G is the maximum distance between two
vertices of G. Thus diam(Kn) = 1 for n ≥ 2 and diam(Km,n) = 2 if m+ n ≥ 3.

For graphs G and H , we let G + H denote their disjoint union, that is, V (G + H) =
V (G) ∪ V (H) and E(G + H) = E(G) ∪ E(H). (We assume here that V (G) ∩ V (H) = ∅.
Otherwise we first replace G and H by isomorphic copies of themselves with disjoint vertex
sets.) For a positive integer n, we interpret nG as the disjoint union of n copies of G. Thus
Dn = nK1.

For an integer n ≥ 3, the cycle of length n, or n-cycle for short, is the graph Cn whose
vertices are 0, 1, 2, . . . , n− 1, and whose edges are the pairs [i, i+ 1], where the arithmetic
is done modulo n. Clearly each Cn is connected. The cycle C3 is also called a triangle, and
C4 is called a square or 2-cube. (It is a special case of the r-cube Qr, which is treated in
Chapter 2.) A cycle in a graph is a subgraph that is isomorphic to some Cn.

We now prove an analogue to Proposition 1.2.

Proposition 1.3 Every closed walk without subsequences of the form uvu contains a cycle.

Proof The assertion is true for all closed walks of length 3. Suppose that it is true for all
closed walks of length at most n ≥ 3. Let v1v2 . . . vn+1v1 be a closed walk W of length n+1.
If it is not a cycle, not all vi can be distinct. Suppose that vi = vj , where 1 ≤ i < j ≤ n+ 1.
Because there is no subsequence of the form uvu, the walk vivi+1 . . . vj has length at least
3. It cannot contain all edges of W , so its length is at most n, and thus it contains a cycle
by the induction hypothesis. 2

The following result characterizes bipartite graphs:

Proposition 1.4 A graph is bipartite if and only if all of its cycles have even lengths.

Proof Let G be bipartite and V1 and V2 be two disjoint sets into which V (G) can be
partitioned such that every edge has one endpoint in V1 and one in V2. Let v1v2 . . . vkv1 be
a cycle and v1 be an element of, say, V1. Then all vertices with even subscripts are in V2,
and vk can only be adjacent to v1 if k is even.

For the converse, let G be a graph without odd cycles. We can assume that G is con-
nected; otherwise, we consider the connected components of G separately. We choose a
vertex v ∈ V (G) and define V1 as the set of all vertices of G that can be reached from v by
walks of even lengths. All other vertices constitute V2. They can only be reached by walks
of odd lengths, and thus there can be no edge with both endpoints in V2. Hence, if G is
not bipartite, there must be an edge in G with both endpoints in V1, which means that
G contains a closed walk of odd length. Let v1v2 . . . v2k+1v1 be such a walk of minimum
length. If there are indices 1 ≤ i < j < 2k + 1 for which vi = vj , then either vivi+1 . . . vj or
vjvj+1 . . . v2k+1v1 . . . vi is a shorter closed walk of odd length. Hence, v1v2 . . . v2k+1v1 is an
odd cycle, contrary to the assumption that G contains no odd cycles. 2

As the vertices that can be reached by a walk of even length from v are exactly those
that can be reached by a walk of even length from any vertex w in V1, we infer that the
sets V1 and V2 are independent of the choice of v. This leads to the following proposition.

Proposition 1.5 The bipartition of the vertex set of a connected bipartite graph is unique.
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1.3 Trees and Forests

A graph without cycles is called acyclic. Clearly, acyclic graphs are bipartite. They are called
trees when they are connected and forests in general. Hence, the connected components
of forests are trees. Familiar examples of trees are organization charts, genealogies, and
structural formulas for certain chemical compounds. Trees are used to analyze networks or
structures and naturally arise in many areas of computer science. This simple concept is
one of the most important ones in graph theory and its applications.

In this book trees are of interest not only in themselves but also because they are
examples of median graphs and because many of the types of graphs that we will investigate
have treelike structure. Moreover, they are a convenient tool in proofs and are relevant to
the data structures that we will introduce later.

Here we restrict attention to two characterizations and the fact that every connected
graph has a spanning tree.

Proposition 1.6 A graph is a forest if and only if any two vertices are connected by at
most one path.

Proof Suppose that G is not a forest, that is, not acyclic. Let v1v2 . . . vkv1 be a cycle of
G. Then v1v2 . . . vk and v1vk are two distinct paths between v1 and vk.

Conversely, let P = u1u2 . . . ur and Q = u1v2 . . . vsur be two distinct paths from u1 to
ur in G. Let i be the smallest index for which ui+1 6= vi+1 and j > i the smallest index for
which vj ∈ V (P ), say vj = uk. Then uiui+1 . . . ukvj−1vj−2 . . . vi+1vi is a cycle. 2

Corollary 1.7 A graph is a tree if and only if any two of its vertices are connected by
exactly one path.

Proposition 1.8 Let G be a connected graph on n ≥ 1 vertices and m edges. Then n−1 ≤
m, with equality holding if and only if G is a tree.

Proof We first show by induction that the number of edges in a tree on n vertices is n− 1.
This is true for the trivial graph. Suppose that it is true for all trees with fewer than n
vertices. Let G be a tree on n vertices. Clearly, removal of any edge uv disconnects G because
uv is the only u, v-path in G. The resulting graph G− uv has exactly two components, one
consisting of the vertices w of G for which the shortest path in G from w to u meets v and
the other one consisting of the vertices for which this path does not meet v. Because both
components are connected and acyclic, the assertion readily follows.

Next, suppose that G is a connected graph on n vertices with m edges. If it is not a
tree, it must contain a cycle. Removal of an edge from this cycle yields another connected
graph on n vertices with m− 1 edges. We continue this process until all cycles are removed.
Because the resulting graph is connected and acyclic on n vertices, it has n− 1 edges and
we conclude that m must have been at least that large.

Finally, let G be a connected graph with n− 1 = m. Suppose that it has a cycle C. Let
e be an edge of C. Then G − e is a connected graph on n vertices with only n − 2 edges,
which is not possible. 2

Corollary 1.9 Every nontrivial tree has at least two vertices of degree 1.

Proof Let T be a tree. If it is nontrivial it must have at least n ≥ 2 vertices. Suppose that
x of these vertices are of degree 1. Then 2(n− x) + x is a lower bound for the sum of the

© 2011 by Taylor & Francis Group, LLC



Planar Graphs 11

degrees of T . Because the sum of the degrees of the vertices in a graph is twice the number
of edges, we have 2n− x ≤ 2|E(T )| = 2n− 2 and therefore x ≥ 2. 2

The proof of Proposition 1.8 shows that every finite connected graph has an acyclic,
connected spanning subgraph. Such a graph is called a spanning tree. We formulate this as
a proposition.

Proposition 1.10 Every finite connected graph has a spanning tree.

For infinite graphs this result still holds, except that the simple induction proof must be
replaced by transfinite induction or, equivalently, an application of Zorn’s lemma. In fact,
the existence of spanning trees in connected, infinite graphs is equivalent to the axiom of
choice and could therefore be postulated as an axiom.

In Chapter 20 we will investigate when a graph can be represented as the union of k edge-
disjoint spanning trees and as the union of edge-disjoint spanning forests. The minimum
number of edge-disjoint spanning forests that partition the edge set of a graph G will play
a role in bounding the running time of several algorithms. It is called the arboricity a(G)
of G.

1.4 Planar Graphs

A graph G is planar if it can be drawn in the plane such that no two edges cross. More
rigorously, a simple graph is planar if it can be represented in the plane such that the edges
correspond to simple Jordan curves, where each curve has two endpoints. The vertices
correspond to these endpoints, and two curves are either disjoint or meet only at a common
endpoint. Any such drawing is called a plane drawing of G, and a planar graph together
with its plane drawing is a plane graph.

One can show that the study of finite planar graphs does not lead to topological difficul-
ties and that one can even represent them such that the edges are straight line segments.
For a proof of this result, which is due to Fáry (1948) and Wagner (1936), we refer to
West (1996). Below we derive Euler’s formula and some of its consequences, and discuss
Kuratowski’s characterization of planar graphs by forbidden subgraphs.

We begin with the observation that trees and cycles are planar graphs. Another example
is the 3-cube Q3, whose planar representation is shown in the left part of Figure 3.1.

Any plane drawing of a planar graph G divides the plane into regions that are called
faces. For instance, the number of faces of a plane drawing of a tree is one, of a cycle two,
and that of Q3 from Figure 3.1 is six. The following result, known as Euler’s formula for
planar graphs, establishes a connection between the number of vertices, edges, and faces of
any plane drawing of a connected planar graph.

Theorem 1.11 Let G be a connected planar graph on n vertices and m edges, and let f be
the number of faces of a plane drawing of G. Then

n−m+ f = 2 .

Proof We first note that the number of faces of G is one if and only if G is a tree and that
the result is true in this case, because n− 1 = m for trees.

Thus suppose that f > 1. Clearly, G must have a cycle. Consider an edge e on this cycle.
It is on the boundary of two faces. Since these two faces form a single new face when e is
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12 Graphs

removed, the graph G− e has the same number of vertices as G, but one edge and one face
less. Now the result easily follows by induction on the number of faces. 2

Thus no matter how we draw a planar graph in the plane, the number of faces is invariant.

Corollary 1.12 A planar (simple) graph with at least 3 vertices has at most 3n− 6 edges.

Proof Because every face must have at least three boundary edges and because every edge
can be in at most 2 faces, we infer that 3f ≤ 2m. Hence 3(2 +m− n) ≤ 2m, and therefore
m ≤ 3n− 6. 2

This corollary shows that planar graphs have few edges. It will be invoked later to prove
that the arboricity of planar graphs is at most 3.

Corollary 1.13 If a planar graph can be drawn in the plane such that every face is a
k-cycle, then m = k(n− 2)/(k − 2).

Proof We have already noted that every edge of a cycle is in exactly two faces. Thus,
kf = 2m, which immediately implies the corollary. 2

This corollary is often used to prove the nonplanarity of graphs. We apply it to show that
K5 and K3,3 are nonplanar. To see this, we first note that all faces of any planar drawing
of K5 must be triangles and that all faces in a plane drawing of K3,3 must be 4-cycles. Now
the observation that |E(K5)| = 10 6= 9 = 3 (|V (K5)| − 2)/(3 − 2) and |E(K3,3)| = 9 6= 8 =
4 (|V (K3,3)| − 2)/(4 − 2) shows that neither of these graphs can be planar.

It is easy to see that the graphs obtained from K5 or K3,3 by replacing some or all of
their edges by paths of arbitrary lengths that have at most endpoints in common are also
nonplanar. Such graphs are called subdivisions, that is, a graph H obtained in this way from
a graph G is called a subdivision of G. Clearly, no graph containing a subdivision of K5 or
K3,3 can be planar. Surprisingly, the converse also holds.

Theorem 1.14 A graph is planar if and only if it contains no subdivision of K5 or K3,3.

This characterization of planar graphs by forbidden subgraphs is due to Kuratowski
(1930). A (relatively) short proof due to Thomassen that uses a reduction to 3-connected
graphs can be found in West (1996). With this theorem, planarity becomes a purely com-
binatorial concept.

Exercises

1.1. Let G be an r-regular graph on n vertices. Determine |E(G)|.

1.2. Let e be an edge of a connected graph G. Show that G− e has at most two compo-
nents.

1.3. Let e be an edge of a connected graph G. Show that G− e is connected if and only
if e is an edge of a cycle of G.

1.4. Let G be a graph with n vertices. Prove that G is connected if its minimum vertex
degree is at least 1

2 (n− 1).

1.5. Show that every homomorphism of an odd cycle into itself is a bijection.

© 2011 by Taylor & Francis Group, LLC



Exercises 13

1.6. For which integers n is there a cubic graph of order n?

1.7. Find a formula for the number of squares in Km,n.

1.8. Determine the largest number of edges that a bipartite graph on n vertices can have.

1.9. Let T be a tree all of whose vertices are of degree 1 or 3. Determine the relationship
between the number of vertices of degree 1 and the number of vertices of degree 3.

1.10. (Kel′mans, 1967) Let T be a tree with k vertices of degree 1. Let L be a set of k− 1
of them. Show that for any x, y ∈ V (T ) there exists an element v ∈ L such that
d(v, x) 6= d(v, y).

1.11. Prove that a graph is a forest if and only if all of its connected subgraphs are
induced.

1.12. Show that the Petersen graph (see Figure 2.4 in Chapter 2) is not planar.
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In this chapter we introduce the automorphism group of a graph and investigate its action on
trees and hypercubes. We also demonstrate how the structure of the automorphism group,
considered a permutation group on the vertex set, can shed light on a graph’s structure. In
particular, we show that a connected graph with transitive Abelian automorphism group
always has a spanning hypercube.

We also present several graph parameters: the chromatic number, the independence
number, the clique number, and the domination number. These parameters are preserved
under graph automorphisms and are therefore known as invariants. However, they are not
preserved under graph homomorphisms, and this has some interesting consequences.

2.1 Automorphisms

An isomorphism of a graph G onto itself is called an automorphism. In other words, an
automorphism of G is a permutation ϕ of V (G) with the property that [u, v] is an edge if
and only if [ϕ(u), ϕ(v)] is an edge.

For example, the mapping that interchanges the vertices of K2 is an automorphism of
K2; for the cycle Cn = v1v2 . . . vnv1, the mapping ϕ : vi 7→ vi+1, indices taken modulo n,
is an automorphism. Moreover, any permutation of the vertex set of a complete or totally
disconnected graph is an automorphism.

On the other hand, the identity mapping id : V (G) → V (G), defined by id : u 7→ u
for all u ∈ V (G), is the only automorphism of the graph of Figure 2.1. Such graphs are
called asymmetric. Actually, this is the typical situation, as most finite graphs admit only
the identity automorphism.

FIGURE 2.1 Asymmetric tree.

Nonetheless, many graphs are highly symmetric: for example, complete graphs and cy-
cles, but also complete bipartite graphs, hypercubes, Hamming graphs, and many others

15
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16 Automorphisms and Invariants

described in this book. In this section we discuss some basic properties of graph automor-
phisms and continue with automorphisms of trees and hypercubes.

We use juxtaposition to denote the composition of mappings. Thus, for two mappings
ψ : V →W, ϕ : U → V , the mapping ψϕ : U →W is defined by ψϕ : u 7→ ψ(ϕ(u)). We use
Greek or Latin lowercase letters for mappings. For automorphisms ψ and ϕ, the mapping
ψϕ is also called the product of ψ and ϕ. It is an automorphism. Moreover, the identity
map is a unit, and the inverse ϕ−1 of a permutation ϕ is an automorphism if and only if
ϕ is. Thus the set of automorphisms of a graph is closed under composition and inversion.
We have therefore shown the following:

Proposition 2.1 The automorphisms of a graph form a group.

This group is the automorphism group of G and denoted by Aut(G). Sometimes it is
simply called the group of G.

The automorphism group Aut(G) of a graph G is a subgroup of the group of all permu-
tations of V (G), the so-called symmetric group Sym(V (G)).

As we already mentioned, Aut(Kn) = Sym(V (Kn)). The same holds for Aut(Dn). This
is a special case of the fact that a graph and its complement have the same automorphism
group. The complement G of a graph G is defined on V (G) by setting

E(G) = {xy |x, y ∈ V (G), x 6= y, xy 6∈ E(G)}.

In other words, G is obtained from G by making adjacent exactly those pairs of vertices that
are nonadjacent in G. It readily follows that Aut(G) = Aut(G) and Aut(Dn) = Aut(Kn),
as claimed above.

It is easy to see that not every permutation group on a set V can be realized as the
automorphism group of a graph G with vertex set V . For example, one readily checks that
the automorphism groups of the four simple graphs on three vertices, say v1, v2, v3, are either
equal to Sym({v1, v2, v3}) or contain only one nonidentity element, which fixes one vertex
and interchanges the other two. Hence, none of the automorphism groups of these graphs is
a group of order 3 generated by a cycle of length three, say (v1, v2, v3) or (v1, v3, v2). (Note
that “cycle” denotes the cycle of a permutation here, not a cycle of the underlying graph.)

This is a special case of the next proposition about graphs admitting doubly transitive
groups of automorphisms, where a permutation group A on V is doubly transitive if there
is a permutation ϕ ∈ A to any two pairs u, v and x, y of distinct elements of V such that
x = ϕ(u) and y = ϕ(v).

Proposition 2.2 If the automorphism group of a graph G with at least one edge contains
a doubly transitive subgroup, then G is complete.

Proof Let G be a graph with a doubly transitive subgroup A of Aut(G) and uv be an
edge of G. By assumption there is an automorphism ϕ ∈ A to any pair {x, y} of distinct
elements that maps {u, v} into {x, y}. Then xy is an edge too. Because the pair {x, y} was
arbitrarily chosen, G is complete. 2

Clearly the automorphism group of a complete or totally disconnected graph G is
Sym(V (G)). Combining it with Proposition 2.2 we thus obtain Corollary 2.3:

Corollary 2.3 Aut(G) = Sym(V (G)) if and only if G is complete or totally disconnected.

The following theorem of Frucht (1938) for abstract groups contrasts the fact that not
every permutation group on a set V can be realized as the automorphism group of a graph
with vertex set V . We cite it without proof.
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Theorem 2.4 To every finite group A there exists a graph G for which Aut(G) ∼= A.

As we have seen above, none of the automorphism groups of the graphs on three vertices
are the cyclic permutation group of order 3 on these vertices. By Frucht’s theorem there
exists a graph whose automorphism group is isomorphic to the cyclic group of order 3. We
depict such a graph in Figure 2.2 and leave it to the reader to verify that its group is as
asserted. The only thing needed is the obvious fact that automorphisms preserve degrees
and distances.

FIGURE 2.2 Graph with cyclic automorphism group.

The example of Figure 2.2 shows that a graph may contain vertices that are fixed by
every automorphism. If a set of automorphisms maps a set of vertices or edges into itself, we
say this set is stabilized by these automorphisms or invariant under these automorphisms.
Clearly, every maximal set of vertices of equal degree in a graph is invariant under all
automorphisms. In particular, this holds for vertices of degree 1, which are called pendant
vertices.

Theorem 2.5 Every tree T contains an edge or a vertex that is invariant under every
automorphism of T .

Proof We proceed by induction. The assertion is true for trees on one or two vertices.
Suppose that it is true for every tree on at most n−1 vertices. Let T be a tree on n vertices.
Every automorphism of T stabilizes the set of pendant vertices. We delete them and call the
new tree S. By Corollary 1.9, the set of pendant edges is non-empty; thus S has fewer than
n vertices and therefore an edge e or a vertex v that is stabilized by every automorphism of
S. Because the restriction of every automorphism of T to S is an automorphism of S, the
assertion of the theorem also holds for T . 2

The center of a graph is the set of vertices u for which minu∈V (G) maxv∈V (G) d(u, v) is
attained. In the case of trees, the center consists of one vertex or two adjacent ones, see
Exercise 2.1. Clearly, the center is invariant under all automorphisms. It is the invariant
element of Theorem 2.5.

Theorem 2.5 is a special case of the Fixed Cube Theorem 12.21 and of the more gen-
eral “fixed box theorems” from Chapter 16. Because the fixed cubes of Theorem 12.21
are hypercubes, we conclude the section with a few remarks about the hypercube and its
automorphisms.

The hypercube Qr of dimension r is defined on the vectors (v1, v2, . . . , vr) with vi ∈
{0, 1}. Two vertices are adjacent if the corresponding vectors differ in precisely one coor-
dinate. In other words, two vertices u = (u1, u2, . . . , ur), v = (v1, v2, . . . , vr) are adjacent
if there is an index j such that uj 6= vj and ui = vi for all i 6= j, 1 ≤ i ≤ r. Figure 2.3

© 2011 by Taylor & Francis Group, LLC



18 Automorphisms and Invariants

shows several hypercubes, where for simplicity we abbreviate the r-tuples (u1, u2, . . . , ur)
as u1u2 . . . ur. We shall later see that Qr is the Cartesian product of r copies of K2.

Q1

0

1

Q2

00

01

10

11

000

001

010

011

100

101

110

111

Q3 Q4

0011

0111

1110

1111

0000

0001

1000

1100

11010101

10100010

01001001

1011 0110

FIGURE 2.3 Some hypercubes.

Let i < j be two integers between 1 and r. Then the mapping

ϕi,j : (v1, v2, . . . , vi, . . . , vj , . . . , ur) 7→ (v1, v2, . . . , vj , . . . , vi, . . . , vr)

is an automorphism of Qr. Furthermore, for any i, 1 ≤ i ≤ r,

ψi : (v1, v2, . . . , vi, . . . , vr) 7→ (v1, v2, . . . , vi + 1, . . . , vr) ,

where addition is modulo 2, is also an automorphism. Clearly, id = ψ2
i for all i, and ψiψj =

ψjψi for all 1 ≤ i, j ≤ r. Hence, the subgroup of Aut(Qr) generated by the ψi is Abelian,
and each nontrivial element has order 2. Such groups are known as elementary Abelian
2-groups and also called Boolean.

By Corollary 6.11, the ϕi,j and the ψi generate Aut(Qr), but this can also be shown
directly, as in Exercises 2.5 and 2.6.

Furthermore, for any two vertices u, v ∈ Qr that differ in the coordinates i1, i2, . . . , ij ,
we clearly have ψi1ψi2 · · ·ψij (u) = v. This leads to the concept of vertex-transitivity.

2.2 Vertex-Transitivity

This section demonstrates the strong interaction between a graph’s structure and its auto-
morphisms. We define vertex-transitivity and show that every graph whose automorphism
group is transitive and Abelian contains a hypercube as a spanning subgraph.

We wish to note, however, that this is just one aspect of vertex-transitive graphs and
that there exists a huge literature about them; see Babai (1995) and Godsil and Royle
(2001). In this book they also play an important role in Chapter 27, that is, in the chapter
that treats the independence number, and in the classification of infinite median graphs in
Chapter 31.

The automorphism group of a graph G is transitive if there exists an automorphism ϕ to
any pair u, v of vertices in G such that ϕ(u) = v. In this case, G is called vertex-transitive.
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Vertex-Transitivity 19

If one requires the existence of exactly one such automorphism to every pair u, v of vertices,
then one says that Aut(G) is regular or sharply transitive.

For example, Kn and Qr are vertex-transitive, but not sharply vertex-transitive unless
they have only one or two vertices.

Lemma 2.6 A transitive permutation group Γ on a set V is sharply transitive if and only
if the stabilizer Γv = {ϕ ∈ Γ |ϕ(v) = v} is trivial for every v ∈ V .

Proof Suppose that α ∈ Γv for an arbitrarily chosen v. If Γ is sharply transitive, we infer
from α(v) = v and id(v) = v that α = id. Hence, Γv consists only of the identity element.
On the other hand, suppose that |Γv| = 1 for every v ∈ V . Let ϕ(v) = u and ψ(v) = u for
a pair of vertices u, v. Then ψ−1ϕ(v) = v, and thus ψ−1ϕ = id. Therefore, ψ = ϕ and Γ is
sharply transitive. 2

We note that if the automorphism group of a graph is transitive but not sharply tran-
sitive, then it is possible that it has a subgroup whose action is sharply transitive. (For the
smallest vertex-transitive graph that has no sharply transitive subgroup, see Exercise 2.10.)

Lemma 2.7 If Γ is a transitive Abelian permutation group on a set V , then Γ is sharply
transitive.

Proof Let α ∈ Γv. By Lemma 2.6 we have to show that α(u) = u for all u ∈ V . Let u be
arbitrarily chosen. By the transitivity of Γ there exists a ϕ ∈ Γ such that ϕ(v) = u. But
then α(u) = αϕ(v) = ϕα(v) = ϕ(v) = u. 2

Before stating the next theorem—due to Imrich (1970)—we recall that groups in which
every nontrivial element has order 2 are called elementary Abelian 2-groups.

Theorem 2.8 Let G be a nontrivial graph with transitive Abelian automorphism group.
Then Aut(G) is an elementary Abelian 2-group. If G has more than two vertices, then it is
connected and contains a proper spanning hypercube.

Proof Let G be a nontrivial graph with transitive Abelian group. Then Aut(G) is sharply
transitive by Lemma 2.7. If G is disconnected, then it can only be D2 by transitivity
and sharp transitivity. All other graphs with transitive Abelian group are connected; in
particular, all graphs on at least three vertices with transitive Abelian group are connected.

We first show that every element of Aut(G) has order 2. We can assume that G is
connected, and we choose an arbitrary but fixed vertex v in G. Furthermore, we denote the
unique automorphism that maps v to x ∈ V (G) by ϕx. Because every automorphism maps
v into some vertex, the ϕx constitute all automorphisms of G, so |Aut(G)| = |V (G)|.

Let x, y ∈ V (G). Because ϕx and ϕy are automorphisms, [x, y] is an edge if and only if
ϕ−1
x ϕ−1

y [x, y] = ϕ−1
x ϕ−1

y [ϕx(v), ϕy(v)] = [ϕ−1
y (v), ϕ−1

x (v)] is also an edge. Let ψ : V (G) →
V (G) be defined by ψ : x 7→ ϕ−1

x (v). Then [x, y] is an edge if and only if [ψ(y), ψ(x)] is an
edge. Because [ψ(y), ψ(x)] = [ψ(x), ψ(y)] and ψ is bijective, ψ is an automorphism.

We wish to point out that we only needed the existence of a transitive Abelian subgroup
of Aut(G) to show that ψ : x 7→ ϕ−1

x (v) is an automorphism. Because we assume that
Aut(G) itself is transitive and Abelian (and hence sharply transitive), we can say more.

Note that ψ(v) = v and that Aut(G) is sharply transitive. Hence, ψ = id. But then
ψx = x for all x ∈ V (G), which implies that

ϕ−1
x (v) = ψ(x) = x = ϕx(v).

Then ϕ2
x(v) = v, and thus ϕ2

x = id for all x.
We now introduce the notation αu for ϕu if u ∈ N(v). If [x, y] is an edge, then ϕx[x, y] =
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[v, ϕx(y)] = [v, ϕxϕy(v)] and ϕxϕy = αu for some u ∈ N(v). Then αu(x) = ϕxϕy(x) =
ϕyϕx(x) = ϕy(v) = y. Clearly, αu is uniquely determined by [x, y]. Moreover we note that
αu(y) = x, as all elements of Aut(G) have order 2. Thus, to every edge [x, y] corresponds
a unique u ∈ N(v) with αu(x) = y and αu(y) = x. We can therefore mark the edges with
elements from u ∈ N(v) and say [x, y] has color u.

Let Eu be the set of edges of color u in G. Let S ⊆ N(v) be a set of minimum cardinality
such that H , defined by V (H) = V (G) and

E(H) =
⋃

u∈S

Eu ,

is connected. We claim that H is a hypercube.

First, we show that {αu |u ∈ S} generates Aut(G). Let ϕx be an arbitrary automorphism
of G, and P be a path v0v1 . . . vp from v = v0 to x = vp in H . Set αui(vi) = vi+1 for
i = 0, 1, . . . , p− 1. Clearly, the ui are in S and

( p−1∏

i=0

αui

)
v0 = vp.

But then
∏p−1

i=0 αui = ϕx.

Second, H−Eu is disconnected; otherwise k− 1 color classes would suffice. This implies
that {αu |u ∈ S} is a minimal generating set. For a proof, suppose that this is not the case.
Let αu = αu1

αu2
· · ·αuj , where u and u1, u2, . . . , uj are in S. Then H −Eu is connected, as

we can replace every edge of color u by a path consisting of edges of colors u1, u2, . . . , uj ,
but this contradicts the minimality of k.

This means that every element of Aut(G) can be represented as a product of elements
of S. Because Aut(G) is Abelian, and because every nontrivial element has order 2, every
group element corresponds to a subset of S and can be represented as a vector of length
S with entries from {0, 1}. Because every automorphism of G is of the form ϕx, this also
holds for V (H). Clearly, any two vertices of H are connected if their vector representations
differ in exactly one coordinate. As every vertex of H has |S| neighbors, H has no other
edges, so H is a hypercube.

Because every hypercube Qr with r > 1 has nonregular group, we infer that H is a
proper subgraph if G has more than two vertices. 2

This theorem does not tell us much about the existence of graphs with transitive Boolean
groups. Clearly, K1 and K2 are examples; but for larger graphs G, the theorem only asserts
that they must contain a spanning hypercube Qr and that the fixed point-free automor-
phisms of Qr are also automorphisms of G. It is trivial to check that no such graphs exist for
r = 2, less trivial for r = 3 (see Exercise 2.8), and more elaborate for r = 4. The existence
of such graphs for r > 5 has been shown by Imrich (1970), and for r = 5 by Imrich and
Watkins (1976).

Thus, finite graphs G with transitive Abelian automorphism group exist if and only if
Aut(G) = Zk

2 for k 6= 2, 3, 4. This had already been asserted by McAndrew (1965). Proofs
that the groups of such graphs must be elementary Abelian were obtained independently
by Chao (1964) and Sabidussi (1964).

Likewise, for any infinite cardinal n, there exists a graph G on n vertices and transitive
Abelian automorphism group. Any such G must have a spanning hypercube (of dimension n)
and Aut(G) must be elementary Abelian; see Imrich (1969b).

Nowitz and Watkins (1972a,b) call a graph G a Graphical Regular Representation or
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GRR1 of the group A if Aut(G) is sharply transitive and isomorphic to A. Hence, in their
language, every elementary Abelian 2-group of order 2k, k 6= 2, 3, 4 has a GRR.

No other Abelian group and, as shown by Nowitz (1968), no non-Abelian group for
which the mapping a 7→ a−1 is an automorphism, has a GRR. Beyond that, there exist only
eight more exceptional groups, all of order at most 32, without a GRR. Any other group
has a GRR; see Godsil (1981).

For more detailed information about GRRs see Watkins (2004), that is, Section 6.1 in
Gross and Yellen (2004).

We conclude the section with a second look at the proof of Theorem 2.8. It reveals that
the theorem also holds if Aut(G) contains a transitive, elementary Abelian 2-group as a
subgroup.

Corollary 2.9 Let G be a connected graph that admits a transitive, elementary Abelian
2-group of automorphisms. Then G has a spanning hypercube.

2.3 Graph Invariants

An n-coloring of a graph G is a function f from V (G) onto a set X of n elements such that
xy ∈ E(G) implies that f(x) 6= f(y). The elements of X are called colors. Vertices with the
same image (that is, vertices of the same color) are said to form a color class. The smallest
number n for which an n-coloring exists is the chromatic number χ(G) of G.

Clearly, χ(Kn) = n. It is also easily seen that a graph G with at least one edge is
bipartite if and only if χ(G) = 2.

The following result establishes a connection between the chromatic number and graph
homomorphisms:

Proposition 2.10 Let G be a graph. Then

(i) χ(G) is the smallest integer n for which there exists a homomorphism G→ Kn.
(ii) If there exists a homomorphism G→ H, then χ(G) ≤ χ(H).

Proof (i) Let V (Kn) = {1, 2, . . . , n} and f : V (G) → {1, 2, . . . , n} be an n-coloring of G.
Define g : V (G) → V (Kn) by g(u) = f(u) for any u ∈ V (G). Then g is a homomorphism.
Because every such homomorphism gives rise to an n-coloring of G with color classes g−1(i),
the assertion follows.

(ii) Let g be a homomorphism from G into H and χ(H) = n. By (i), there exists a
homomorphism h : H → Kn. Then hg is a homomorphism from G into Kn and by (i)
χ(G) ≤ n. 2

A graph G is called χ-critical if χ(G− v) < χ(G) for every v ∈ V (G). Complete graphs
and odd cycles are χ-critical. It is well-known and easy to see that every nontrivial graph
contains a χ-critical subgraph with the same chromatic number; see also Exercise 2.9.

A graph G is called uniquely n-colorable if any n-coloring of G determines the same par-
tition of V (G) into color classes. Trivial examples of uniquely colorable graphs are complete
graphs and connected bipartite graphs. Using graph products, we demonstrate in Section

1In the theory of algebraic and topological groups, a principal homogeneous space, or torsor, for a group
A is a set X on which A acts fixed point freely and transitively. Hence, GRRs are instances of principal
homogeneous spaces.
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26.4 that to every pair of natural numbers n, s ≥ 3, there is a uniquely n-colorable graph
without odd cycles shorter than s.

In our investigations of the chromatic number in Chapter 26, Kneser graphs play a
special role. They are defined as follows: Let n and k be integers with n ≥ 2k. Then the
vertex set of the Kneser graph K(n, k) consists of all k-subsets of {1, 2, . . . , n}, two vertices
being adjacent if they are disjoint. (Note that if we allowed n < 2k, then the corresponding
graphs would have no edges.) Clearly, K(n, 1) ∼= Kn. The Kneser graph K(5, 2) is better
known as Petersen graph. See Figure 2.4.

{4, 5}

{2, 3}

{1, 2}

{3, 5}

{3, 4}

{1, 5}

{1, 4} {2, 4}

{2, 5} {1, 3}

FIGURE 2.4 The Petersen graph as the Kneser graph K(5, 2).

We already saw in Exercise 1.12 that the Petersen graph is nonplanar. It is known
as a graph that is exceptional in many respects; for example, it is the smallest vertex-
transitive graph that does not contain a subgroup of its automorphism group that is a
sharply transitive subgroup on its vertex set. (See Exercise 2.10.)

A clique of a graph G is a maximal complete subgraph. By maximal we mean maximal
with respect to inclusion. The size of a largest clique, that is, of a maximum complete
subgraph, is called the clique number of G and denoted by ω(G). Clearly, χ(G) ≥ ω(G). The
inequality can be strict, as the example of C2k+1 for k ≥ 2 shows. (Evidently, ω(C2k+1) = 2
and χ(C2k+1) = 3 for k ≥ 2.)

A set X of vertices of a graph G is called independent if no two distinct vertices of X
are adjacent. The size of a largest independent set is called the independence number of G
and denoted by α(G). For instance, α(Kn) = 1 and α(C2k+1) = k. A set F of edges of G is
called independent or a matching if no two (distinct) edges of F have a common endpoint.
A matching that meets every vertex of G is called a perfect matching or a 1-factor.

The chromatic number and the independence number of a graph are related by the
following basic inequality.

Proposition 2.11 For any graph G,

χ(G)α(G) ≥ |V (G)|.

Proof Let X be an arbitrary color class of a χ(G)-coloring of G. Then X is an independent
set of G and thus |X | ≤ α(G). Hence in each color class we have at most α(G) vertices, and
so χ(G) ≥ |V (G)|/α(G). 2

A set D of vertices of a graph G is called dominating if every vertex w ∈ V (G) \ D
is adjacent to a vertex of D. The domination number γ(G) of a graph G is the size of a
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smallest dominating set of G. A dominating set D with |D| = γ(G) is called a minimum
dominating set. For instance, γ(Kn) = 1 and γ(Cn) = dn/3e.

The independence number of a graph and its domination number are related as follows:

Proposition 2.12 For any graph G,

α(G) ≥ γ(G).

Proof Let X be an independent set of G with |X | = α(G). Then any vertex of V (G) \X
must be adjacent to at least one vertex of X , for otherwise X would not be a largest
independent set. Thus X is a dominating set. 2

2.4 The No-Homomorphism Lemma

Proposition 2.10 expresses the close connection between the chromatic number and homo-
morphisms. The next lemma establishes a connection between the independence number
and homomorphisms. It is known as the No-Homomorphism Lemma because it can be used
to show the nonexistence of homomorphisms.

Lemma 2.13 (No-Homomorphism Lemma) Suppose there exists a homomorphism
from a graph G to a vertex-transitive graph H. Then

α(G)

|V (G)| ≥
α(H)

|V (H)| ·

Proof Let {I1, I2, . . . , Iq} be the maximum independent sets of H . Because H is vertex-
transitive, each vertex of H belongs to the same number, say p, of the sets Ii. Therefore,
q α(H) = p |V (H)|, and so p/q = α(H)/|V (H)|.

Now let ϕ be a homomorphism from G to H . Setting Ji = ϕ−1(Ii), and using the fact
again that every vertex of H is in exactly p of the Ii, we obtain

∑

1≤i≤q

|Ji| =
∑

1≤i≤q

|ϕ−1(Ii)| = p
∑

v∈V (H)

|ϕ−1(v)| = p |V (G)| .

Note that this holds even if not every vertex v has a preimage.
Clearly, the Ji are independent, and thus α(G) ≥ |Ji|. Because there are q sets Ji, this

implies that q α(G) ≥∑1≤i≤q |Ji| = p |V (G)| . Thus,

α(G)

|V (G)| ≥
p

q
=

α(H)

|V (H)| ·

2

The quotient α(G)/|V (G)| is also known as the independence ratio i(G). With this
notation, the lemma asserts that i(G) ≥ i(H) if there is a homomorphism from G to H ,
where H is vertex-transitive.

The lemma is due to Albertson and Collins (1985). They present several applications;
for example, they use it to show that there is no homomorphism from the ith Cartesian
power of the Petersen graph into the jth if i > j.
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Another immediate, simple application shows that there is no homomorphism from
C2k+1 to C2n+1 if k < n. For if such a homomorphism exists, then

α(C2k+1)

2k + 1
≥ α(C2n+1)

2n+ 1
·

Because α(C2k+1) = k, this would imply that k ≥ n.
See Exercise 2.11 for the nonexistence of homomorphisms from odd cycles to bipartite

graphs. Moreover, Lemma 2.13 will be used in Exercise 27.6 for a proof of Theorem 27.13.
Our proof of Theorem 27.13 will use a probabilistic argument involving uniformly dis-

tributed sets of vertices in vertex-transitive graphs. For later reference we formulate a lemma
about uniformly distributed sets of vertices. But first a definition. If a random variable x
has any of n possible values that are equally probable, then one says that x is discretely
uniformly distributed.

Lemma 2.14 Let v be a vertex of a vertex-transitive graph G, and ϕ1, ϕ2, . . . , ϕk be
uniformly distributed, randomly and independently chosen automorphisms. Then the vertices
ϕ1(v), ϕ2(v), . . . , ϕk(v) are also uniformly distributed.

Proof We first consider two automorphisms ϕ, ψ that map v into u. Then ψ−1ϕ(v) = v,
hence ψ−1ϕ is in the stabilizer Aut(G)v of v. It follows that for fixed ψ, the map ϕ 7→ ψ−1ϕ
is a bijection from the set of automorphisms mapping v to u onto Aut(G)v.

Hence |Aut(G)v| is the number of automorphisms that map v into u. This implies that
|Aut(G)| = |V (G)| · |Aut(G)v|,2 and thus the probability that an automorphism ϕ maps v
into u is |Aut(G)v|/|Aut(G)| = 1/|V (G)|. 2

Exercises

2.1. Show that the center of a tree consists of a single vertex or the endpoints of an edge.

2.2. Determine the number of automorphisms of Pn and Cn.

2.3. Let G be a connected graph, α ∈ Aut(G), and x ∈ V (G). Show that x is in the
center of G if and only if α(x) is in the center.

2.4. Show that Qr is connected.

2.5. Let ϕ be an automorphism of Qr that fixes a vertex and all of its neighbors. Show
that ϕ is the identity.

2.6. Show that the ϕi,j and the ψi, as defined after the definition of Qr, generate
Aut(Qr).

2.7. Show that Qr has 2rr! automorphisms.

2.8. Show that there is no graph on n vertices, 3 ≤ n ≤ 8, with transitive, Abelian
automorphism group.

2This is a special case of the fact that the size of a group is the size of an orbit of an element v multiplied
by the size of the stabilizer of v.
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2.9. Show that every nontrivial graph contains a χ-critical subgraph with the same
chromatic number.

2.10. Show that the automorphism group of the Petersen graph K(5, 2) contains no sub-
group that is sharply transitive on K(5, 2).

2.11. Show that there is no homomorphism from an odd cycle to a bipartite graph G.

2.12. Let n(X,Y ) denote the maximum number of vertices in an induced subgraph of
X that is homomorphic to Y , that is, for which there exists a homomorphism
ϕ : X → Y . Given graphs G,H,K, show that

n(G,K)

|V (G)| ≥ n(H,K)

|V (H)|

if H is vertex-transitive.
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We continue our investigation of hypercubes, which were introduced in Chapter 2. Hyper-
cubes have numerous applications, for example in coding theory (where Gray codes are
Hamilton cycles in hypercubes), computer architecture, mathematical chemistry, and phy-
logenetics. Hypercubes and their subgraphs are the main topic of interest not only in this
chapter, but also in Chapters 18, 19, and 21. Here we introduce isometric subgraphs of
hypercubes, known as partial cubes, and then continue with median graphs as retracts of
hypercubes and generalizations of trees.

3.1 Hypercubes Are Sparse

As we will see in this chapter, hypercubes, also known as r-cubes, are the simplest class
of Cartesian products. In Chapter 2 we defined the hypercube of dimension r to be the
graph Qr whose vertex set consists of all 0-1 vectors (v1, v2, . . . , vr), where two vertices
are adjacent if and only if they differ in precisely one coordinate. For brevity, we often
abbreviate the vertex (v1, v2, . . . , vr) as v1v2 . . . vr.

Note that the vertices of Qr can also be understood as characteristic vectors of subsets
of an r-set. Specifically, any given vertex v1v2 . . . vr corresponds to the subset {i | vi = 1}
of {1, 2, . . . , r}. Thus the vertices of Qr can be labeled with the subsets of {1, 2, . . . , r},
where two subsets are adjacent provided that one is obtained from the other by deletion
of a single element. Figure 3.1 shows two representations of Q3. On the left, vertices are
shown as 3-tuples; on the right as subsets of {1, 2, 3}. The characteristic vectors of these
subsets are the 3-tuple representations of the corresponding vertices. For example, {2, 3}
corresponds to 011, and ∅ to 000.

If two vertices of Qr are adjacent, then one has an even number of 1’s and the other has
an odd number. It follows that Qr is bipartite. Clearly, it has 2r vertices. Note also that
every vertex is adjacent to r other vertices. Hence the sum of the degrees in Qr is r2r, and
because this is twice the number of the edges, we conclude that |E(Qr)| = r2r−1.

We show now that the distance between any two vertices u = u1u2 . . . ur and
v = v1v2 . . . vr of an r-cube is the number of places in which they differ. To see this,
let i1, i2, . . . , is be the places in which u and v differ, and for k = 1, 2, . . . , s, let uk

be formed from u by replacing ui1 , ui2 , . . . , uik by vi1 , vi2 , . . . , vik . Then the sequence
u, u1, u2, . . . , us = v is a u, v-path. This must be a shortest path because, as adjacent
vertices differ in exactly one space, any u, v-path has length at least s. It is also clear that

27
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000

100

001

100

010

110

011

111

{1, 2, 3}

{1, 2} {1, 3} {2, 3}

{1} {2} {3}

∅

FIGURE 3.1 Representations of Q3.

any shortest u, v-path can be obtained by switching the indices ij in a prescribed order.
(There are thus s! different shortest paths from u to v.) Note that if ui = vi for some i,
then xi = ui = vi for every vertex x on a shortest u, v-path.

Let S be the set {i1, i2, . . . , is} of places in which u and v differ. Then the condition
that xi = vi for all x ∈ I(u, v) whenever i /∈ S and that the places xj can be arbitrarily
assigned the values uj or vj for j ∈ S imply that I(u, v) induces an s-cube. In other words,
the intervals of a hypercube induce the subcubes.

We have thus shown:

Proposition 3.1 Let Qr be a hypercube. Then

(i) Qr is connected, bipartite, r-regular, and has diameter r.
(ii) |V (Qr)| = 2r and |E(Qr)| = r2r−1.

(iii) For any pair of vertices u, v ∈ V (Qr), the subgraph induced by the interval I(u, v)
is a hypercube of dimension d(u, v).

Letting n denote the number of vertices of an r-cube and m its number of edges, we see
that m = 1

2n log2 n. This is quite small, considering the fact that the number of edges in a
complete graph is

(
n
2

)
. In general we call a class of graphs sparse if m is proportional1 to

n logn, so hypercubes are sparse. (Some authors require proportionality to n for sparseness;
for our purposes, n logn suffices.) The next proposition shows that the sparseness property
is inherited by the subgraphs of Qr.

Lemma 3.2 (Density Lemma) Let G be a subgraph of a hypercube. Then

|E(G)| ≤ 1

2
|V (G)| · log2 |V (G)| ,

equality holding if and only if G is a hypercube.

Proof The proof is by induction on the number n of vertices of G. The assertions are
clearly true for n ≤ 2. Let |V (G)| ≥ 3. Because G is a subgraph of a hypercube Qr, every
vertex of G is an r-tuple over {0, 1}. We may assume without loss of generality that the first
coordinates of the vertices of G are not all equal. Let G1 be the subgraph of G induced by
the vertices for which the first place of this r-tuple is 0 and G2 the subgraph induced by the
other vertices of G. Set x = |V (G1)| and y = |V (G2)|, where the indexing is chosen so that

1More precisely, a class is sparse when m = O(n logn); see Chapter 17 for the definition of O(f(n)).
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x ≥ y ≥ 1. Then, by the induction hypothesis, |E(G1)| ≤ x
2 log2 x and |E(G2)| ≤ y

2 log2 y.
As every vertex of G2 has at most one neighbor in G1, it thus is enough to show that

x

2
log2 x+ y +

y

2
log2 y ≤ x+ y

2
log2(x+ y).

We prove that this inequality actually holds for all real numbers x ≥ y ≥ 1. For x = y, both
sides are equal. For x > y, we show strict inequality. It suffices to prove that ∂

∂x of the left

side is strictly smaller than ∂
∂x of the right side, namely that

1

2
log2 x+

1

2
log2 e <

1

2
log2(x + y) +

1

2
log2 e.

Because y ≥ 1, this is indeed the case.
Equality can only occur, when y = x, when every vertex of G2 has a neighbor in G1,

and when |E(G1)| = |E(G2)| = x
2 log2 x. Then G1 and G2 are hypercubes by the induction

hypothesis, and G is a hypercube too. 2

This result has several important implications for algorithms. In particular, it implies
that the arboricity of subgraphs of hypercubes is bounded by dlog2 ne, that subgraphs of
hypercubes cannot have more than m log2 n squares, and that the squares can be found
and listed in time proportional to m logn. (The first assertion is part of Theorem 20.3, the
second is part of Corollary 20.7, and the third a consequence of Proposition 20.6.) For a
sparseness result related to the Density Lemma 3.2 for a larger class of graphs, see Graham
(1970).

3.2 Isometric Subgraphs

For every subgraph H of a graph G, the inequality dH(u, v) ≥ dG(u, v) holds. If dH(u, v) =
dG(u, v) for all u, v ∈ V (H), we say H is an isometric subgraph. More generally, if G and
H are arbitrary graphs, then a mapping f : V (G) → V (H) is an isometric embedding if

dH(f(u), f(v)) = dG(u, v)

for any u, v ∈ V (G). Note that an isometric embedding is necessarily injective.
Not every subgraph is isometric. For example, a path of length 3 in C5 is not isometric,

but paths of lengths 1 or 2 are. All isometric subgraphs are induced, but the converse is
false. For example, the vertex-deleted subgraph in Figure 1.2 is induced but not isometric.

Proposition 3.3 Let C be a shortest cycle or a shortest odd cycle of a graph G. Then C
is isometric in G.

Proof Let C2k+1 be a shortest odd cycle v1v2 . . . v2k+1 of a graph G. In other words, we
assume that there are no shorter cycles of odd length in G, but there may be shorter cycles
of even length. If C2k+1 is not isometric, there must be two vertices, say v1 and vr, for
which dG(v1, vr) < dC2k+1

(v1, vr) = r − 1. Without loss of generality, we can assume that r
is smallest possible. Clearly it is not larger than k. Then there must be an isometric path
P = v1w2 . . . wsvr of length less than r − 1 that meets C only in v1 and vr. But then the
cycles v1v2 . . . vrwsws−1 . . . w2 and v1w2 . . . wsvrvr+1 . . . v2kv2k+1 are both shorter than C.
Because the sum 2s + (2k + 1) of their lengths is odd, at least one of them must be odd,
contradicting the minimality of C2k+1.

© 2011 by Taylor & Francis Group, LLC



30 Hypercubes and Isometric Subgraphs

Now, let C be a shortest cycle in G. If it is odd, there is nothing to show. If it is a cycle
v1v2 . . . v2k of even length and not isometric, an argument analogous to the above yields
two cycles v1v2 . . . vrwsws−1 . . . w2 and v1w2 . . . wsvrvr+1 . . . v2k−1v2k that are both shorter
than C, contradicting the minimality of C. 2

The example of K4 − e, that is, the graph obtained by deleting an edge from K4, shows
that shortest even cycles need not be isometric.

Isometric subgraphs of hypercubes are called partial cubes. They constitute a large class
of graphs with many applications and includes, for example, benzenoid graphs, which will be
treated in Chapter 19. Another subclass of partial cubes are median graphs, the main topic
of the next section. For their characterization, the vertex-deleted subgraph Q−

3 = Q3 − v,
shown in Figure 3.2, plays an important role. It is a partial cube but not a median graph,
as we shall see.

110 011101

100 010 001

000

FIGURE 3.2 Q−
3 as an induced subgraph in Q3.

3.3 Median Graphs

To any triple of vertices u, v, w in an arbitrary tree there exists a unique vertex z that lies
on shortest paths between any two of them. This observation (Proposition 3.4) leads to the
concepts of medians and median graphs.

v

z

u

w

FIGURE 3.3 Median z of the triple u, v, and w.

A median of a triple of vertices u, v, w of a graph G is a vertex z that lies on a shortest
u, v-path, on a shortest u,w-path, and on a shortest v, w-path. Note that z can be one of the
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vertices u, v, w. In Figure 3.3 the vertex z is a median of u, v, w. Alternatively, the medians
of u, v, w can be defined as the vertices in I(u, v) ∩ I(u,w) ∩ I(v, w).

A graph is a median graph if every triple of its vertices has a unique median, namely if

| I(u, v) ∩ I(u,w) ∩ I(v, w) | = 1

for every triple u, v, w ∈ V (G). These graphs were introduced by Avann (1961), Nebeský
(1971), and, independently, by Mulder (1978; 1980b; 1980a).

Neither K2,3 nor Q−
3 is a median graph. The graph K2,3 is not a median graph because

its two vertices of degree 3 are medians of the other three vertices. Likewise, Q−
3 (Figure 3.2)

is not a median graph because the triple 110, 101, 011 has no median. Thus, K2,3 fails to be
a median graph because it has too many medians, and Q−

3 because it does not have enough.

Proposition 3.4 Trees are median graphs.

Proof Let u, v, w, be vertices of a tree T and P,Q,R the unique paths in T from u to v,
from u to w and from v to w, as depicted in Figure 3.4. Because these paths are unique,
they are also shortest paths. The paths P and Q have the vertex u in common. Let z be
the (uniquely defined) vertex on P and Q of largest distance from u. Then the subpaths
Pzv of P from z to v and Qzw of Q from z to w have only z in common. Therefore their
union is a v, w-path, which is the path R. Notice that all vertices of R that are different
from z are either not in P or not in Q. Hence, z is the only vertex that these three paths
have in common and thus a median of u, v, w. Because P,Q,R are the only paths between
u, v, and w, the vertex z is unique. 2

u

w

v

P
Q

R
z

FIGURE 3.4 Median of u, v, w in a tree.

Lemma 3.5 Let u1, u2, u3 be vertices of a graph G. If they have a median z, then

d(ui, z) =
1

2

(
d(ui, uj) + d(ui, uk) − d(uj , uk)

)
,

where {i, j, k} = {1, 2, 3}.

Proof Because d(ui, uj) = d(ui, z) + d(z, uj) for 1 ≤ i, j ≤ 3 and i 6= j, the assertion can
be proved by substitution of the appropriate identities on the right side of the equality. 2

Proposition 3.6 Graphs in which every triple has a median are bipartite.

Proof Let C be a shortest odd cycle v1v2 . . . v2k+1 of a graph satisfying the hypothesis
of the proposition. By Proposition 3.3, it is isometric. Consider the vertices v1, vk+1, vk+2.
Because C is isometric, dG(v1, vk+1) = dG(v1, vk+2) = k. Thus, by Lemma 3.5, the distance
of the median of v1, vk+1, vk+2 from v1 is 1

2 (2k − 1), which is impossible, as this is not an
integer. 2
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Proposition 3.7 Every hypercube is a median graph.

Proof Consider a triple u = u1u2 . . . ur, v = v1v2 . . . vr, and w = w1w2 . . . wr of vertices
of Qr. Form z = z1z2 . . . zr, where each zi is defined by “majority rule,” that is zi = 1 if at
least two of ui, vi, wi are 1, and zi = 0 otherwise. Then, given any two vertices of the triple,
say u and v, differing in (say) k spaces, we have d(u, v) = k = d(u, z) + d(z, v), so z is on a
shortest u, v-path. Thus z is a median of u, v, and w.

On the other hand, if x is on a shortest path from u to v, then ui = vi implies xi = vi,
as noted on p. 28. Similar remarks hold if x is on a shortest u,w- or v, w-path. It follows
that any median of u, v and w obeys majority rule, so the median is unique. 2

3.4 Retracts

Median graphs can be characterized as retracts of hypercubes, a result that we will prove
in Section 12.3 and that could also be deduced from Theorem 14.13. By a retraction ϕ of a
graph G, we mean a homomorphism of G into itself with the property ϕ2(u) = ϕ(u) for all
u ∈ V (G). Notice that the condition ϕ2 = ϕ means ϕ restricts to the identity on its image.
The homomorphic image H of G under ϕ is called a retract. Clearly, retracts are induced
subgraphs.

A homomorphism of a graph into itself is also called an endomorphism. An endomor-
phism ϕ is idempotent if ϕ2 = ϕ. We could therefore have defined retracts as idempotent
endomorphisms.

A similar concept is the weak retract. It is based on weak homomorphisms, where a
weak homomorphism ϕ : G → H is a map ϕ : V (G) → V (H) for which uv ∈ E(G)
implies ϕ(u)ϕ(v) ∈ E(H) or ϕ(u) = ϕ(v). A weak retraction is then an idempotent weak
homomorphism. The image H of G under ϕ is called a weak retract of G. Clearly, every
retract is a weak retract.

Every subgraph K2 of a bipartite graph is a retract. Figure 3.5 shows further examples
of retracts and weak retracts. The retractions are indicated by arrows; the corresponding
retracts are induced by the subgraphs in the shaded regions.

We repeat that every retract is a weak retract. The converse need not be true. For
instance, the path P3 of G2 of Figure 3.5 is not a retract of G2 because a triangle cannot
be mapped onto a path by a homomorphism.

G1 G2

FIGURE 3.5 Retraction and a weak retraction.
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A map ϕ : V (G) → V (H) for which dH(ϕ(u), ϕ(v)) ≤ dG(u, v) for any pair u, v ∈ V (G)
is called a nonexpansive map. This concept is equivalent to that of a weak homomorphism,
as the next result shows.

Proposition 3.8 A map is a weak homomorphism if and only if it is a nonexpansive map.

Proof Clearly, a nonexpansive map is a weak homomorphism.
Suppose now that ϕ : V (G) → V (H) is a weak homomorphism. Let u, v ∈ V (G) and

P be a shortest u, v-path in G. Then ϕ(P ) contains a ϕ(u), ϕ(v)-walk in H . Consequently,
ϕ(P ) contains a ϕ(u), ϕ(v)-path in H , and hence dH(ϕ(u), ϕ(v)) ≤ dG(u, v). 2

Thus, weak retractions, and therefore also retractions, are nonexpansive maps. Because
for a subgraph H of G we clearly have dG(u, v) ≤ dH(u, v) for any u, v ∈ V (G), we infer
the following result about (weak) retracts.

Corollary 3.9 Weak retracts (and thus also retracts) are isometric subgraphs.

Another basic and important property of retractions is that they preserve the chromatic
number.

Proposition 3.10 If H is a retract of G, then χ(H) = χ(G).

Proof Because H is a subgraph of G, we have χ(H) ≤ χ(G). Moreover, a retraction from
G onto H is a homomorphism. Thus, χ(G) ≤ χ(H), by Proposition 2.10 (ii). 2

This property does not hold for weak retracts, as can be seen from the example in
Figure 3.5. While the depicted retract of G2 is bipartite, we have χ(G2) = 3.

It requires some argument to show that median graphs are retracts of hypercubes, but the
converse is easy. Below we show that the class of median graphs is closed under retractions.
Because hypercubes are median graphs, this implies that retracts of hypercubes are median
graphs too.

Proposition 3.11 Retracts of median graphs are median graphs.

Proof Let H be a retract of a median graph G and u, v, w be three vertices of H . Note
that H is isometric by Corollary 3.9. Thus, every median of u, v, w in H is also a median
in G. Hence the median is unique, if it exists.

Let z be the median of u, v, w in G. It lies on shortest u, v-, u,w- and v, w-paths P,Q,
and R. Consider a retraction ϕ from G onto H and the images ϕ(P ), ϕ(Q), and ϕ(R). These
images connect vertices in H and must be shortest paths because H is isometric. But then
ϕ(z) is a median of u, v, w in H . 2

Exercises

3.1. Let G be the graph obtained from K4,4 by removal of an independent set of four
edges. Show that G ∼= Q3.

3.2. Show that Qr is not planar for any r ≥ 4.

3.3. Show that for any r ≥ 3, the vertex-deleted r-cube, Q−
r = Qr − v, is a partial cube

but not a median graph.
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34 Hypercubes and Isometric Subgraphs

3.4. For any r ≥ 2, find an explicit isometric embedding of C2r into Qr.

3.5. Show that C2r is not a retract of Qr for r ≥ 3.

3.6. Let H be a retract of G. Show that ω(H) = ω(G) and that the shortest odd cycles
of H and G have the same lengths.

3.7. Let G be a graph with χ(G) = n. Show that Kn is a retract of G if and only if
χ(G) = ω(G).

3.8. Show that a χ-critical graph contains no proper retract.

3.9. A graph G is a core if no proper subgraph of G is a retract of G. Show that G is a
core if and only if every homomorphism from G to itself is an automorphism of G.

3.10. Let f be a nonexpansive map of Qr and x be the median of u, v, w. Show that f
fixes x if it fixes u, v, and w.

3.11. For r-tuples a, b over the alphabet {0, 1}, let a ∨ b denote the maximum, taken
coordinatewise, and a ∧ b the minimum. For instance, 0011 ∨ 0101 = 0111 and
0011 ∧ 0101 = 0001. Show that the median x of u, v, and w in Qr is (u ∨ v) ∧ (u ∨
w) ∧ (v ∨w) = (u ∧ v) ∨ (u ∧ w) ∨ (v ∧ w).
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We now introduce the primary object of interest in this book: the idea of a graph product.
Broadly speaking, a graph product is a binary operation on Γ or Γ0. However, under rea-
sonable and natural restrictions (such as associativity), the number of different products is
actually quite limited. The chapter begins with definitions of three main products that have
been studied in the literature: the Cartesian product, the direct product, and the strong
product. We then treat the issue of associativity (which allows for the easy extension of
these products to arbitrarily many factors) and we examine the projections of products to
their factors.

This is followed by a section that classifies all associative products, and justifies why
the three main products are in a sense the most natural of all products. Along the way
we will meet one additional product worthy of special attention, the so-called lexicographic
product.

Although many products can be defined on Γ0, for simplicity we assume unless noted
otherwise that all graphs are in Γ, that is, they have no loops.

4.1 Three Fundamental Products

We now introduce three fundamental graph products: the Cartesian product, the direct
product, and the strong product. These products, which have been widely investigated and
have many significant applications, are the central theme of this book. In each case, the
product of graphs G and H is another graph whose vertex set is the Cartesian product
V (G) × V (H) of sets. However, each product has different rules for adjacencies.

The Cartesian product of G and H is a graph, denoted as G2H , whose vertex set is
V (G)×V (H). Two vertices (g, h) and (g′, h′) are adjacent precisely if g = g′ and hh′ ∈ E(H),
or gg′ ∈ E(G) and h = h′. Thus,

V (G2H) = {(g, h) | g ∈ V (G) and h ∈ V (H)},
E(G2H) = {(g, h)(g′, h′) | g = g′, hh′ ∈ E(H), or gg′ ∈ E(G), h = h′}.

The graphs G and H are called factors of the product G2H . As an example, Figure 4.1
(left) shows the Cartesian product P4 2P3. For clarity, P4 and P3 are displayed below and
to the left of the product P4 2P3.

35
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P4

P3
P42P3

Cartesian product

P4

P3
P4 × P3

Direct product

P4

P3
P4 � P3

Strong product

FIGURE 4.1 Examples of products.

The direct product of G and H is the graph, denoted as G × H , whose vertex set is
V (G)×V (H), and for which vertices (g, h) and (g′, h′) are adjacent precisely if gg′ ∈ E(G)
and hh′ ∈ E(H). Thus,

V (G×H) = {(g, h) | g ∈ V (G) and h ∈ V (H)},
E(G×H) = {(g, h)(g′, h′) | gg′ ∈ E(G) and hh′ ∈ E(H)}.

Figure 4.1 (center) shows the direct product P4 × P3. Notice that this particular example
is disconnected. Other names for the direct product that have appeared in the literature
are tensor product, Kronecker product, cardinal product, relational product, cross product,
conjunction, weak direct product, Cartesian product, product, or categorical product. From
the point of view of category theory, only product and categorical product are appropriate.
For details, see p. 54.

Finally, the strong product of G and H is the graph denoted as G�H , and defined by

V (G�H) = {(g, h) | g ∈ V (G) and h ∈ V (H)},
E(G�H) = E(G2H) ∪ E(G×H).

Occasionally one also encounters the names strong direct product or symmetric composition
for the strong product. Note that G2H and G × H are subgraphs of G � H . Figure 4.1
(right) shows the strong product P4 � P3. For clarity, the edges of the subgraph G2H are
drawn in bold.

Figure 4.2 shows other examples of our three fundamental products. Notice that in
general a prism is the Cartesian product of a cycle by an edge, and the square lattice is the
Cartesian product of a two-sided infinite path by itself. Also, note that Km �Kn = Kmn.

We can envision the edges of the Cartesian and strong products as being roughly aligned

C52K2

Cartesian product Direct Product

C5 × K2
C5 � K2

Strong product

FIGURE 4.2 Examples of products.
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Commutativity, Associativity, and Multiple Factors 37

with a Cartesian coordinate axis, and consequently we can often create natural and easily
visualized drawings that highlight these products’ structures. By contrast, the direct product
can present challenges. For instance, note that the drawing of C5×K2 in Figure 4.2 is merely
C10 twisted around on itself, and it would perhaps have a more natural representation as a
ten-sided regular polygon. For another example, consider the direct product in Figure 4.3.
As drawn on the left, the product G×P3 is not very appealing. Its structure is much more
apparent when it is redrawn as on the right.1

G × P3 G × P3

G

P3

FIGURE 4.3 A direct product (left) and a more symmetric representation (right).

Finally, observe that K2 2K2 = C4, K2 × K2 = K2 + K2, and K2 � K2 = K4, as
shown in Figure 4.4. This explains the rationale behind the symbols for the three products:
The square of K2 produces either the shape 2, ×, or �, depending on whether we use the
Cartesian, direct, or strong product. The notation is due to Nešetřil (1981).

K2

K2 K22K2

K2

K2 K2 × K2

K2

K2 K2 � K2

FIGURE 4.4 Rationale for the notation.

We will deduce various elementary properties of the three products in Chapter 5. For
now we turn to the important issue of associativity.

4.2 Commutativity, Associativity, and Multiple Factors

It is immediate from the definitions of the three products that the map (g, h) 7→ (h, g) is
an isomorphism from G ∗H to H ∗G, where ∗ stands for any one of the three fundamental
products. Thus, the three products are commutative in the sense that G ∗H ∼= H ∗ G for
all graphs G and H . Proving associativity needs a little more care.

Proposition 4.1 The Cartesian, the direct, and the strong product are each associative.
In particular, given graphs G1, G2, and G3, the map ((x1, x2), x3) 7→ (x1, (x2, x3)) is an
isomorphism (G1 ∗G2) ∗G3 → G1 ∗ (G2 ∗G3), where ∗ stands for either the Cartesian, the
direct, or the strong product.

1This drawing was the logo for the Sixth Slovenian International Conference on Graph Theory in Bled,
Slovenia, 2007.
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38 Graph Products

Proof Let us first confirm this for the Cartesian product. Referring to the definition of
the Cartesian product, note that ((x1, x2), x3)((y1, y2), y3) ∈ E((G1 2G2)2G3) if and only
if xiyi ∈ E(Gi) for exactly one index i ∈ {1, 2, 3}, and xi = yi for the other two indices.
Similarly, the same conditions characterize (x1, (x2, x3))(y1, (y2, y3)) ∈ E(G1 2 (G2 2G3)).
Thus, the map ((x1, x2), x3) 7→ (x1, (x2, x3)) is indeed an isomorphism, so the Cartesian
product is associative.

According to the definition of the direct product, we have ((x1, x2), x3)((y1, y2), y3) ∈
E((G1 × G2) × G3) if and only if xiyi ∈ E(Gi) for each i ∈ {1, 2, 3}. Similarly, the same
conditions characterize (x1, (x2, x3))(y1, (y2, y3)) ∈ E(G1 × (G2 ×G3)). It follows that the
map ((x1, x2), x3) 7→ (x1, (x2, x3)) is an isomorphism from (G1×G2)×G3 to G1×(G2×G3),
so the direct product is associative.

Turning now to the strong product, its definition gives ((x1, x2), x3)((y1, y2), y3) ∈
E((G1�G2)�G3) if and only if xiyi ∈ E(Gi) or xi = yi for each i ∈ {1, 2, 3}, and xi 6= yi for
at least one index i. Similarly, these same conditions characterize ((x1, x2), x3)((y1, y2), y3) ∈
E(G1 � (G2 �G3)). Thus, the strong product is associative. 2

Associativity gives us license to omit parentheses when dealing with products with more
than two factors. Indeed, Proposition 4.1 and its proof allow us to unambiguously define
G1 2G2 2G3 as the graph with vertex set V (G1) × V (G2) × V (G3), where two vertices
(x1, x2, x3) and (y1, y2, y3) are adjacent if and only if xiyi ∈ E(Gi) for some index i, and
xj = yj for j 6= i. Figure 4.5 is an example of a Cartesian product of three graphs, where,
for brevity, the vertices (x1, x2, x3) are written as x1x2x3.

0

1

0

1

2 2 =

a

b

c
d

e

a00

b00

c00d00

e00

a01

b01

c01d01

e01

a11

b11

c11d11

e11

a10

b10

c10d10

e10

FIGURE 4.5 The product C5 2K2 2K2.

In general, given graphs G1, G2, . . . , Gk, then G1 2G2 2 · · · 2Gk is the graph with ver-
tex set V (G1)×V (G2)×· · ·×V (Gk), where two vertices (x1, x2, . . . , xk) and (y1, y2, . . . , yk)
are adjacent if and only if xiyi ∈ E(Gi) for some index i, and xj = yj for j 6= i. We often

use the notation G1 2G2 2 · · · 2Gk = �
k
i=1Gi.

Generalizing the direct product to multiple factors, G1 × G2 × · · · × Gk = ×k

i=1Gi

is the graph whose vertex set is V (G1) × V (G2) × · · · × V (Gk), and for which vertices
(x1, x2, . . . , xk) and (y1, y2, . . . , yk) are adjacent precisely if xiyi ∈ E(Gi) for each index i.

Finally, G1 �G2 � · · · �Gk = �
k
i=1Gi has vertex set V (G1) × V (G2) × · · · × V (Gk),

and distinct vertices (x1, x2, . . . , xk) and (y1, y2, . . . , yk) are adjacent if and only if either
xiyi ∈ E(G) or xi = yi for each 1 ≤ i ≤ k. We note that in general E(G1 � · · · � Gk) 6=
E(G1 2 · · · 2Gk) ∪E(G1 × · · · ×Gk), unless k = 2.
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000

010

100

110

200

210

001

011

101

111

201

211

002

012

102

112

202

212

FIGURE 4.6 P3 2K2 2K3.

Figures 4.6 through 4.8 show products with three factors P3, K2, and K3, where the
vertices of P3 and K3 are labeled by 0, 1, 2, and those of K2 by 0 and 1.

010 110 210

000 100 200

001 101 201

011 111 211

002 102 202

012 112 212

FIGURE 4.7 P3 ×K2 ×K3.

As we mentioned before, Cartesian products of graphs are often relatively easy to vi-
sualize and draw. (Though of course the images can become increasingly complex as the
number of factors grows.) By contrast, some care may be needed in interpreting the struc-
ture of a direct product of multiple factors. Notice that P3 ×K2×K3 in Figure 4.7 has two
components, each isomorphic to two hexagons joined at alternating vertices.

FIGURE 4.8 P3 �K2 �K3.

The kth power of G with respect to the Cartesian product is denoted as G�,k, that is

G�,k = �
k
i=1G. Similarly, we denote kth powers of G with respect to the direct and strong

products as G×,k and G�,k.
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4.3 Projections and Layers

Here we define the notion of projections from a product to its factors, and note that these
maps respect adjacency in the sense that they are weak homomorphisms. We then introduce
an important notion: the layers of a product.

Let ∗ represent either the Cartesian, the direct, or the strong product operation, and
consider a product G1 ∗ G2 ∗ · · · ∗ Gk. For any index 1 ≤ i ≤ k, there is a projection map
pi : G1 ∗G2 ∗ · · · ∗Gk → Gi defined as pi(x1, x2, . . . , xk) = xi. We call xi the ith coordinate
of the vertex (x1, x2, . . . , xk). (Occasionally, when dealing with a product G ∗H , we may
write the projections as pG and pH , and refer to the corresponding G- or H-coordinate.)

No matter which product ∗ represents, each projection pi is a weak homomorphism. In-
deed, the definitions imply that if (x1, x2, . . . , xk)(y1, y2, . . . , yk) is an edge ofG1∗G2∗· · ·∗Gk,
then either xi = yi or xiyi ∈ E(Gi) for each 1 ≤ i ≤ k, so each pi is a weak homomorphism.
Even more is true for the direct product. Because (x1, x2, . . . , xk)(y1, y2, . . . , yk) is an edge
of G1 ×G2 × · · · ×Gk if and only if xiyi ∈ E(Gi) for each 1 ≤ i ≤ k, each projection pi is
actually a homomorphism.

For Cartesian and strong products, the projections restrict to isomorphisms on certain
subgraphs. Given a vertex a = (a1, a2, . . . , ak) of the product G = G1 ∗ G2 ∗ · · · ∗ Gk, the
Gi-layer through a is the induced subgraph

Ga
i = 〈{x ∈ V (G) | pj(x) = aj for j 6= i}〉

= 〈{(a1, a2, . . . , xi, . . . , ak) | xi ∈ V (Gi)}〉.

Note that Ga
i = Gb

i if and only if pj(a) = pj(b) for each index j 6= i.
If ∗ is either the Cartesian or the strong product, then the restriction pi : Ga

i → Gi is an
isomorphism for each a and i. Figure 4.9 shows the Cartesian product P2 2K2 2K3 and its
P2-, K2-, and K3-layers. Note that these layers are isomorphic to their respective factors.
Gross and Yellen (2006) even use this idea in defining the Cartesian product as

G2H = G× V (H) ∪ V (G) ×H,

emphasizing the H-layers through vertices of G, and G-layers through vertices of H .
While each Gi-layer of a Cartesian or a strong product is isomorphic to Gi, the layers

of a direct product of graphs in Γ are totally disconnected. (However, in Section 5.3 we will

see that a layer G
(a1,...,ak)
i of a direct product in Γ0 is isomorphic to Gi provided that Gj

has a loop at aj for each j 6= i.)

P32K22K3

FIGURE 4.9 Product P3 2K2 2K3, the P3-layers (light), the K2-layers (dashed), and the
K3-layers (bold).

© 2011 by Taylor & Francis Group, LLC



Classification of Products 41

4.4 Classification of Products

Are there other products in addition to the three main ones introduced in the previous
section? The answer depends on what kinds of structures we admit as “graph products.”
To make the question tractable, we concentrate on binary operations on Γ that have the
salient features of the three products introduced in the previous section. Specifically, we
examine associative binary operations ∗ on Γ for which V (G ∗H) = V (G) × V (H) and for
which the projections onto the factors are weak homomorphisms. In the first part of this
section we show that the only “sufficiently interesting” products that meet these criteria
are the Cartesian, direct, and strong products.

We will then relax the requirement that both projections be weak homomorphisms to
obtain a fourth product of interest, called the lexicographic product. Finally, we classify all
associative graph products for which V (G∗H) = V (G)×V (H). We will discover that there
are exactly twenty such products. Of these twenty products, only the Cartesian, direct,
strong, and lexicographic products have the property that at least one projection is a weak
homomorphism, and, in addition, are nontrivial enough to merit further study.

This section justifies the fact that this book mainly treats Cartesian, direct, strong, and
lexicographic products. A reader who does not require such a justification may safely skip
the remainder of this chapter.

We begin by enumerating the associative products having the property that projections
to both factors are weak homomorphisms.

Products for which both projections are weak homomorphisms

We consider graph products ∗ for which V (G ∗H) = V (G) × V (H). Let us say that such a
product ∗ is associative if the map ((g, h), k) 7→ (g, (h, k)) is an isomorphism from (G∗H)∗K
to G ∗ (H ∗K). We seek to classify all such products for which both projections G ∗H → G
and G ∗H → H are weak homomorphisms.

But first, there is an additional criterion for a graph product that is so fundamental
that it might almost be overlooked: The edge set of the product should be determined
by some definite rule. The fact that the projections are weak homomorphisms means that
(g, h)(g′, h′) ∈ E(G∗H) implies gg′ ∈ E(G) or g = g′, and hh′ ∈ E(H) or h = h′. Conversely,
whether (g, h)(g′, h′) is an edge of G∗H should be determined by some definite rule involving
the incidence (or equality) of g and g′, and h and h′. (For example, (g, h)(g′, h′) is an edge
of G×H if and only if gg′ ∈ E(G) and hh′ ∈ E(H).)

To formalize this, we use an incidence function: For any graph G, there is a function
δ : V (G)×V (G) → {∆, 1, 0} defined as follows. (Here ∆ is a previously undefined symbol.)

δ(g, g′) =





∆ if g = g′,
1 if g 6= g′ and gg′ ∈ E(G),
0 if g 6= g′ and gg′ /∈ E(G).

Thus, δ simply encodes the incidence relation of G. We require for any product ∗, that
δ((g, h), (g′, h′)) be a function of δ(g, g′) and δ(h, h′). Such a function is simply a bi-
nary operation on the set {∆, 1, 0}, and with a slight bending of notation we write it
as δ((g, h), (g′, h′)) = δ(g, g′)∗ δ(h, h′). For example, multiplication tables for this operation
are shown below for the Cartesian, direct, and strong products.
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∗ ∆ 1 0

∆ ∆ 1 0
1 1 0 0
0 0 0 0

∗ ∆ 1 0

∆ ∆ 0 0
1 0 1 0
0 0 0 0

∗ ∆ 1 0

∆ ∆ 1 0
1 1 1 0
0 0 0 0

Cartesian product direct product strong product

Looking at it this way, we can enumerate all possible products by simply filling in the
tables in various ways. Fortunately there are some restrictions that make our work even
easier. Note that in a table for any product, the symbol ∆ can appear only in the upper-left
corner. Also, observe that the projections onto the factors are weak homomorphisms if and
only if the third row and column of the table consist entirely of 0’s. This leaves only three
entries to fill in (namely ∆ ∗ 1, 1 ∗ ∆, and 1 ∗ 1), giving potentially 23 = 8 products, three
of which we have already considered.

One possibility is to fill in all entries with 0’s, as illustrated in Table (a) below. This leads
to the “trivial product,” G ∗H = D|V (G)| 2D|V (H)|, which is a totally disconnected graph.
(In this section, we regard the graphs D|V (G)| and K|V (G)| as having vertex set V (G).)
Clearly, the trivial product is associative, and the projections to the factors are (vacuously)
weak homomorphisms. We therefore have a new product, albeit not a very exciting one.

∗ ∆ 1 0

∆ ∆ 0 0
1 0 0 0
0 0 0 0

∗ ∆ 1 0

∆ ∆ 0 0
1 1 1 0
0 0 0 0

∗ ∆ 1 0

∆ ∆ 0 0
1 1 0 0
0 0 0 0

trivial product nonassociative “uninteresting” product
D|V (G)|2D|V (H)| product G2D|V (H)|

(a) (b) (c)

Another possibility is to fill in the missing entries as in Table (b). However, this operation
is not associative, as (1 ∗∆) ∗ 1 = 1 ∗ 1 = 1 6= 0 = 1 ∗ 0 = 1 ∗ (∆ ∗ 1). Likewise, the transpose
of this table is not associative. It is easy to confirm (Exercise 4.15) that the corresponding
graph products are not associative, so we do not consider them worthy of attention.

Table (c) is readily seen to be associative, so it leads to a new product. However, notice
that (g, h)(g′, h′) is an edge of this product if and only if gg′ ∈ E(G) and h = h′. Thus,
G ∗H = G2D|V (H)| merely consists of |V (H)| copies of G. Similarly, the table’s transpose
leads to an associative product G ∗ H = D|V (G)| 2H . Although these are perfectly fine
associative products, they are not particularly interesting, as they completely ignore all
properties of one factor (other than its number of vertices).

We have now exhausted all eight possibilities, and the only sufficiently nontrivial cases
are the Cartesian product, the direct product, and the strong product. We summarize our
findings in Table 4.1 listing the associative products for which both projections are weak
homomorphisms.

TABLE 4.1 Associative Products where Both Projections are Weak Homomorphisms.

G2H G×H G�H D|V (G)|2D|V (H)| G2D|V (H)| D|V (G)|2H
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Products for which only one projection is a weak homomorphism

Let us now turn our attention to associative products for which only one (say the first)
projection is a weak homomorphism. A partial table for such a product looks as follows.
The fact that projection to the first factor is a weak homomorphism is reflected in the
bottom row of 0’s. Because projection to the second factor is not a weak homomorphism,
the third column is not all 0’s, but we do not know a priori if one of its two missing entries
is a 0.

∗ ∆ 1 0

∆ ∆
1
0 0 0 0

Suppose it happens that the upper-right entry is 1, that is, ∆ ∗ 0 = 1. Then for any
x ∈ {∆, 1, 0} we have 1 ∗ x = (∆ ∗ 0) ∗ x = ∆ ∗ (0 ∗ x) = ∆ ∗ 0 = 1, so the second row is
all 1’s. Also ∆ ∗ 1 = ∆ ∗ (∆ ∗ 0) = ∆2 ∗ 0 = 1. Thus, we arrive at Table (c) below, which
describes an associative operation.

On the other hand, suppose the upper-right entry is 0, that is, ∆∗0 = 0. Then 1∗0 = 1,
because the right-hand column must contain a 1. Also, 1 ∗ x = (1 ∗ 0) ∗ x = 1 ∗ (0 ∗ x) =
1 ∗ 0 = 1, so the entire second row consists of 1’s. Thus we arrive at either Table (a) or
Table (b), depending on whether we make ∆ ∗ 1 equal to 1 or 0. Both of these operations
are readily seen to be associative, so they yield associative products.

∗ ∆ 1 0

∆ ∆ 1 0
1 1 1 1
0 0 0 0

∗ ∆ 1 0

∆ ∆ 0 0
1 1 1 1
0 0 0 0

∗ ∆ 1 0

∆ ∆ 1 1
1 1 1 1
0 0 0 0

G ◦H G ◦D|V (H)| G ◦K|V (H)|

(a) (b) (c)

The product corresponding to Table (a) is quite interesting. Here (g, h)(g′, h′) is an edge
of G ∗ H if and only if gg′ ∈ E(G), or g = g′ and hh′ ∈ E(H), so the structures of both
G and H are indeed encoded in the product. This product is often called the lexicographic
product in the literature. Its formal definition follows.

The lexicographic product of graphs G and H is the graph G ◦H with

V (G ◦H) = {(g, h) | g ∈ V (G), h ∈ V (H)},
E(G ◦H) = {(g, h)(g′, h′) | gg′ ∈ E(G), or g = g′ and hh′ ∈ E(H)}.

Figure 4.10 shows P3 ◦K2,2 and K2,2 ◦ P3. One of these products is connected and the
other is not, so the lexicographic product—although associative—is not commutative. This
is also evident by the noncommutative nature of Table (a) above.

The products described in Tables (b) and (c) above are easily seen to be G ∗ H =
G ◦D|V (H)| and G ∗H = G ◦K|V (H)|, respectively. These are not particularly interesting,
as they ignore the structure of the second factor.

Thus we have established that there are exactly three associative products for which
projection to only the first factor is a weak homomorphism; namely, G ∗ H = G ◦ H ,
G ∗H = G ◦D|V (H)|, and G ∗H = G ◦K|V (H)|. Of course we could repeat our reasoning
for products for which projection to only the second factor is a weak homomorphism. The
arguments would be the same as above, but would involve the transposes of the respective
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44 Graph Products

FIGURE 4.10 Lexicographic products P3 ◦K2,2 and K2,2 ◦ P3.

tables. Let us designate the products obtained this way as G ◦T H , as well as D|V (G)| ◦T H
and K|V (G)| ◦T H , where ◦T could be called the transposed lexicographic product. We have
now shown that there are only six associative products with the property that projection
to one factor is a weak homomorphism but projection to the other factor is not. They are
summarized in Table 4.2.

TABLE 4.2 Associative Products where Only One Projection is a Weak Homomorphism.

G ◦H G ◦D|V (H)| G ◦K|V (H)| G ◦T H D|V (G)| ◦T H K|V (G)| ◦T H

The above discussion establishes that there are essentially four associative graph prod-
ucts for which at least one projection is a weak homomorphism, and which employ the
adjacency structure of both factors. They are G2H , G×H , G�H , and G ◦H . (Products
◦ and ◦T are similar enough that we consider ◦ to the exclusion of ◦T .)

All associative graph products

Let us proceed to classify all associative graph products. From the above considerations,
we now need only examine those products for which neither projection is a weak homomor-
phism.

A primary tool in this investigation will be the idea of a complementary product. Given
a graph product ∗, its complementary product ∗ is the product defined as

G ∗H = G ∗H.

It is easy to verify (Exercise 4.16) that if a product is associative, then its complementary
product is also associative. Further, any product is the complement of its complement, that
is, ∗ = ∗.

One checks that ◦ is its own complement, that is, G ◦H = G ◦H = G ◦H . Moreover,
the complementary product of G ∗ H = G ◦ D|V (H)| is G ∗H = G ◦ K|V (H)|. In fact, by
Exercise 4.18, the complementary product of any product in Table 4.2 remains in Table 4.2.

By contrast, we claim that if ∗ is a product in Table 4.1, the complementary product ∗
is such that neither of its projections are weak homomorphisms. To see this, take factors G
and H and edges gg′ ∈ E(G) and hh′ ∈ E(H). Because the first projection of ∗ is a weak
homomorphism, the pair (g, h)(g′, h′) cannot be an edge of G∗H, and hence it is an edge of

G ∗H = G ∗H . But as pH(g, h)pH(g′, h′) = hh′ /∈ E(H), the projection G ∗H → H is not
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a weak homomorphism. Repeating this argument for edges gg′ ∈ E(G) and hh′ ∈ E(H),
we see that the projection G ∗H → G is also not a weak homomorphism.

It follows that if we form the complementary products of the six products in Table 4.1,
then we get six wholly new and distinct associative products that do not appear in either
of the Tables 4.1 or 4.2. So, thus far we have eighteen associative graph products: those in
Tables 4.1 and 4.2, and the complements of those in Table 4.1.

If there is an associative product ∗ that is not one of the eighteen considered above,
then both ∗ and its complement ∗ are such that neither of their projections are weak
homomorphisms. By Exercise 4.19, there are only two such products, which are complements
of each other, and their incidence tables are as follows,

♦ ∆ 1 0
∆ ∆ 1 0
1 1 1 0
0 0 0 1

♦ ∆ 1 0

∆ ∆ 1 0
1 1 0 1
0 0 1 0

The product corresponding to the table on the left is often called the modular product, and
we will denote it by ♦. Note that the edge set of this product is

E(G♦H) = E(G2H) ∪ E(G×H) ∪ E(G×H).

See Imrich (1972a) for further results on the modular product, including issues of prime
factorization.

The following theorem summarizes the above discussion:

Theorem 4.2 There are exactly twenty associative graph products.
Six of these products (those from Table 4.1, including the Cartesian, direct, and strong

products) have the property that projections to both factors are weak homomorphisms.
Another six (those from Table 4.2, including the lexicographic product) have the property

that exactly one projections is a weak homomorphism.
An additional eight (the complementary products of those from Table 4.1, as well as the

modular product and its complementary product) have the property that neither projection
is a weak homomorphism in general.

This classification is based on Imrich and Izbicki (1975). Of course, there is no reason
to restrict the investigation of associative products to simple graphs. The same, or at least
similar, reasoning applies to directed graphs or even to graphs with multiple edges, both
directed and undirected. For example, Imrich and Izbicki (1975) show that the lexicographic
product (and its transpose) is the only associative product that is closed in the class of
tournaments.2

A different approach yielding other products was followed by Pultr (1970, 1972) and
Imrich and Pultr (1991). The latter classification is closer to the one here, because it restricts
attention to products in the category of symmetric graphs defined on the Cartesian product
of the vertex sets of the factors. It requires basic knowledge of category theory.

We conclude with a result about the complexity of finding cliques in graphs. The starting
point is the observation that the weak modular product G∇G, as defined in Exercise 4.23,
has a clique of size |V (G)|. Moreover, the product G∇H of two graphs on n vertices has a
clique of size n if and only if G ∼= H (Exercise 4.24). Kozen (1978) proved the following:

Theorem 4.3 Let G and H be graphs of order n. The problem of finding a clique of order
n in G∇H is equivalent to the isomorphism problem, whereas the problem of determining
whether G∇H has a clique of size n(1 − ε) is NP-complete.

2A tournament is an oriented graph obtained from a complete graph by giving every edge a direction.
By closure in the class of tournaments we mean that the product of two tournaments is a tournament.
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Exercises

4.1. Draw pictures of K3 2P3, K3 × P3, K3 � P3, and K3 ◦ P3.

4.2. Find formulas for |E(G2H)|, |E(G×H)|, |E(G�H)|, and |E(G ◦H)|.

4.3. Show that K3,3 and K3 2K2 are the only cubic graphs on six vertices.

4.4. Find a formula for the number of triangles in Kn ×Km.

4.5. Show that NG×H(g, h) = NG(g) ×NH(h) for any (g, h) ∈ V (G×H).

4.6. Show that NG�H [(g, h)] = NG[g] ×NH [h] for any (g, h) ∈ V (G�H).

4.7. Verify that Km �Kn = Kmn.

4.8. Verify that K2 ◦Dn = Kn,n.

4.9. Show that K3 2K3
∼= K3 2K3.

4.10. Show that for any n ≥ 3 and any m ≥ 3, Km 2Kn = Km ×Kn.

4.11. Show that K3 ×K3
∼= K3 ×K3.

4.12. Show that K3 ×K3
∼= K3 2K3.

4.13. Show that a graph product ∗ is commutative if and only if the corresponding binary
operation ∗ on {∆, 0, 1} is commutative.

4.14. Show that a graph product ∗ has a unit if and only if the corresponding binary
operation ∗ on {∆, 0, 1} has a unit.

4.15. Show that a graph product ∗ is associative if and only if the corresponding binary
operation ∗ on {∆, 0, 1} is associative.

((g, h), k) 7→ (g, (h, k)) is an isomorphism, so the graph product ∗ is associative.

4.16. Verify that if a product is associative, then its complementary product is also asso-
ciative. Also, any product ∗ is the complement of its complement, that is, ∗ = ∗.

4.17. Suppose that ∗ is an associative graph product. Show that the multiplication table
for the complementary product ∗ (as a binary operation on {∆, 0, 1}) is obtained
from the corresponding table for ∗ by interchanging the second and third rows, then
interchanging the second and third columns, and finally changing all 1’s to 0’s and
0’s to 1’s.

4.18. Verify that the complementary product of any product in Table 4.2 is also in Ta-
ble 4.2.

4.19. Suppose ∗ is an associative graph product for which neither the first nor the second
projection is a weak homomorphism, and, in addition, neither the first nor the
second projection of the complementary product ∗ is a weak homomorphism. Show
that ∗ and ∗ are necessarily the modular product and its complementary product.

4.20. Show that the modular product is disconnected if and only if one factor is complete
and the other disconnected, or if both factors have exactly two components, each
complete.
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4.21. Let G and H be nontrivial graphs. Show that G ◦ H ∼= G♦H if and only if H is
complete.

4.22. Give an example of nonunique prime factorization of a graph with respect to the
modular product.

4.23. Is the weak modular product ∇, defined by the following table, associative?

∇ ∆ 1 0

∆ ∆ 0 0
1 0 1 0
0 0 0 1

4.24. Show that the weak modular product G∇H (Exercise 4.23) of two graphs on n
vertices has a clique of size n if and only if G ∼= H .

4.25. Show that the only associative products closed in the class of tournaments (see the
footnote on p. 45) are the lexicographic product and its transpose.

4.26. (Izbicki, private communication) Suppose that G and H have the same vertex set
V . For two distinct vertices u, v ∈ V we have the possibilities uv ∈ E(G) or uv ∈
E(G). Similarly, uv ∈ E(H) or uv ∈ E(H). In how many ways can we determine
a “product” G ·H with vertex set V taking recourse to these possibilities (and no
others)? How many of these products are associative?

4.27. Extend the multiplication table for products of graphs in Γ to graphs in Γ0.

4.28. Extend the multiplication table to products of directed graphs.
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Chapter 4 laid out the definitions of four standard graph products: the Cartesian product,
the direct product, the strong product, and the lexicographic product. It also demonstrated
that it is these four products alone—among all possible associative graph products of the
type considered here—that involve the structure of both factors in a meaningful way, and
have the additional property that at least one projection is a weak homomorphism. For this
reason the four standard products are, by far, the most extensively studied, and have the
widest range of applications. They are thus the primary topics of this book.

This chapter has four sections, one for each of the four standard products. Each is
concerned mainly with the semiring structure over Γ or Γ0, and the metric properties of
distance, connectedness, and bipartiteness.

5.1 The Cartesian Product

The Cartesian product of graphs, introduced in Section 4.1, is a straightforward and natural
construction. It has been widely investigated, has numerous interesting algebraic properties,
and is in many respects the simplest graph product. Many classes of graphs considered in
this book are Cartesian products, isometric subgraphs of Cartesian products, or retracts of
Cartesian products. We now prepare for this by recalling the main results from Section 4.1,
and by proving some fundamental results concerning distance and connectedness.

Recall that if G1, G2, . . . , Gk are graphs in Γ, then their Cartesian product is the graph

G1 2G2 2 · · · 2Gk =
k

�
i=1

Gi

with vertex set {(x1, x2, . . . , xk) |xi ∈ V (Gi)}, and for which two vertices (x1, x2, . . . , xk),
(y1, y2, . . . , yk) are adjacent whenever xiyi ∈ E(Gi) for exactly one index 1 ≤ i ≤ k, and
xj = yj for each index j 6= i. Recall also that the kth power of G with respect to the

Cartesian product is denoted as G�,k, that is, G�,k = �
k
i=1G.

In Section 4.2 we noted that the Cartesian product is commutative and associative in the
sense that the maps (x1, x2) 7→ (x2, x1) and ((x1, x2), x3) 7→ (x1, (x2, x3)) are isomorphisms:

G1 2G2
∼= G2 2G1,

(G1 2G2)2G3
∼= G1 2 (G2 2G3).

49
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50 The Four Standard Graph Products

It is immediate that the Cartesian product distributes over disjoint union:

G1 2 (G2 +G3) = G1 2G2 + G1 2G3.

Moreover, the trivial graph K1 is a unit with respect to the Cartesian product, that is,

K1 2G ∼= G

for any simple graph G. Because Γ is a commutative monoid with respect to disjoint union,
with the empty graph O as the neutral element, and because O2G = G2O = O, we
conclude that Γ is a commutative semiring with unit K1 under the operations 2 and +.

Also, by Section 4.3, each projection pi : G1 2G2 2 · · · 2Gk → Gi is a weak homo-
morphism, that is, if (x1, x2, . . . , xk)(y1, y2, . . . , yk) is an edge of G1 2G2 2 · · · 2Gk, then
xiyi ∈ E(Gi) or xi = yi for each index i.

g g

′

h

h

′

G

H

(g, h)

(g
′
, h

′
)

G 2 H

FIGURE 5.1 Illustration of the formula dG2H((g, h), (g′, h′)) = dG(g, g′) + dH(h, h′).

We next turn our attention to distance in Cartesian products. Figure 5.1 suggests that
if G and H are paths, then dG2H((g, h), (g′, h′)) = dG(g, g′)+dH(h, h′). In fact, this is true
for arbitrary G and H , according to the following proposition. In reading the proof, it may
be useful to keep in mind the simple gestalt illustrated in Figure 5.1.

Proposition 5.1 If (g, h) and (g′, h′) are vertices of a Cartesian product G2H, then

dG2H((g, h), (g′, h′)) = dG(g, g′) + dH(h, h′).

Proof First suppose that dG(g, g′) = ∞. Then G is a disjoint union G = G1 + G2 with
g ∈ V (G1) and g′ ∈ V (G2). Therefore, G2H = (G1 + G2)2H = G1 2H +G2 2H , with
(g, h) ∈ V (G1 2H) and (g′, h′) ∈ V (G2 2H). Hence, dG2H((g, h), (g′, h′)) = ∞, and the
proposition follows. By identical reasoning, the proposition follows if dH(h, h′) = ∞.

Thus we assume that both dG(g, g′) and dH(h, h′) are finite. Let P = a0a1a2 . . . , adG(g,g′)

be a path in G from g = a0 to g′ = adG(g,g′). Let Q = b0b1b2 . . . bdH(h,h′) be a path in H
from h = b0 to h′ = bdH(h,h′). This gives rise to two paths

P × {h} = (g, h)(a1, h)(a2, h) . . . (g′, h)

{g′} ×Q = (g′, h)(g′, b1)(g′, b2) . . . (g′, h′)

in G2H whose concatenation is a path of length dG(g, g′)+dH(h, h′) from (g, h) to (g′, h′).
Hence, dG2H((g, h), (g′, h′)) ≤ dG(g, g′) + dH(h, h′).

Conversely, let R be a shortest path between (g, h) and (g′, h′). Every edge of R is
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mapped into a single vertex by one of the projections pG or pH and into an edge by the
other. This implies that

dG(g, g′) + dH(h, h′) ≤ |E(pG(R))| + |E(pH(R))| = |E(R)| = dG2H((g, h), (g′, h′)),

and the proof is complete. 2

Using associativity and applying Proposition 5.1 inductively, we immediately obtain an
analogue for multiple factors (Exercise 5.10) and a corollary.

Corollary 5.2 (Distance Formula) If G = G1 2G2 2 · · · 2Gk and x, y ∈ V (G), then

dG(x, y) =

k∑

i=1

dGi

(
pi(x), pi(y)

)
.

Corollary 5.3 A Cartesian product of graphs is connected if and only if every one of its
factors is connected.

5.2 The Strong Product

The strong product was introduced in Section 4.1. We now investigate its elementary prop-
erties in greater detail, with particular attention to distance and connectedness.

Recall that if G1, G2, . . . , Gk are graphs in Γ, then their strong product is the graph

G1 �G2 � · · ·�Gk =
k

�
i=1

Gi

with vertex set {(x1, x2, . . . , xk) |xi ∈ V (Gi)}, and for which two distinct vertices
(x1, x2, . . . , xk) and (y1, y2, . . . , yk) are adjacent provided that xiyi ∈ E(Gi) or xi = yi
for each 1 ≤ i ≤ k. As noted in Chapter 4, we use G�,k for the kth power of G with respect

to �, that is, G�,k = �
k
i=1G.

In Section 4.2 we noted that the strong product is commutative and associative in
the sense that the maps (x1, x2) 7→ (x2, x1) and ((x1, x2), x3) 7→ (x1, (x2, x3)) are isomor-
phisms:1

G1 �G2
∼= G2 �G1,

(G1 �G2) �G3
∼= G1 � (G2 �G3).

It is also immediate that the strong product distributes over disjoint union:

G1 � (G2 +G3) = G1 �G2 + G1 �G3.

Again, the trivial graph K1 is a unit, that is,

K1 �G ∼= G.

1The equations are the same as in the case of the Cartesian product; we include them for the sake of
completeness.
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Thus, as with the Cartesian case, Γ is a commutative semiring with unit K1 under the
operations � and +.

Recall from Section 4.3 that each projection pi : G1 � G2 � · · · � Gk → Gi is a weak
homomorphism. In the other direction, given a graph H and a collection of weak homomor-
phisms ϕi : H → Gi, for 1 ≤ i ≤ k, observe that the map x 7→ (ϕ1(x), ϕ2(x), . . . , ϕk(x))
is a weak homomorphism H → G1 � G2 � · · · � Gk. From the two facts just mentioned,
we see that every weak homomorphism ϕ : H → G1 � G2 � · · · �Gk necessarily has form
x 7→ (ϕ1(x), ϕ2(x), . . . , ϕk(x)) for weak homomorphisms ϕi : H → Gi. (Because ϕi = piϕ
is a composition of weak homomorphisms.)

g g

′

h

h

′

G

H

(g, h)

(g
′
, h

′
)

G � H

FIGURE 5.2 Illustration of the formula dG�H((g, h), (g′, h′)) = max{dG(g, g′), dH(h, h′)}.

We next turn our attention to distance in strong products. Figure 5.2 suggests that if
G and H are paths, then dG�H((g, h), (g′, h′)) = max{dG(g, g′), dH(h, h′)}. In fact, this is
true for arbitrary G and H , according to the following proposition, whose proof employs
the idea suggested by Figure 5.2.

Proposition 5.4 If (g, h) and (g′, h′) are vertices of a strong product G�H, then

dG�H ((g, h), (g′, h′)) = max{dG(g, g′), dH(h, h′)}.

Proof First suppose that dG(g, g′) = ∞. Then the graph G is a disjoint union G = G1+G2

with g ∈ V (G1) and g′ ∈ V (G2). Therefore, G�H = (G1 +G2) �H = G1 �H +G2 �H ,
with (g, h) ∈ V (G1 �H) and (g′, h′) ∈ V (G2 �H). Hence, dG�H((g, h), (g′, h′)) = ∞, and
the proposition follows. By identical reasoning, the proposition holds if dH(h, h′) = ∞.

Thus assume that both dG(g, g′) and dH(h, h′) are finite. Let P = a0a1a2 . . . , adG(g,g′)

be a path in G from g = a0 to g′ = adG(g,g′). Let Q = b0b1b2 . . . bdH(h,h′) be a path in H
from h = b0 to h′ = bdH(h,h′). By commutativity, we may assume |P | ≥ |Q|. Consider the
following two paths in G�H :

Q′ = (g, h)(a1, b1)(a2, b2) . . . (adH(h,h′), h
′),

P ′ = (adH(h,h′), h
′)(adH(h,h′)+1, h

′)(adH (h,h′)+2, h
′) . . . (g′, h′).

The concatenation of Q′ and P ′ is a path of length |P | = max{dG(g, g′), dH(h, h′)} from
(g, h) to (g′, h′). Hence, dG�H((g, h), (g′, h′)) ≤ max{dG(g, g′), dH(h, h′)}.

Conversely, because the projection pG is a weak homomorphism, it follows that

dG(g, g′) = dG (pG(g, h), pG(g′, h′)) ≤ dG�H ((g, h), (g′, h′)) .

Also dH(h, h′) ≤ dG�H((g, h), (g′, h′)), so max{dG(g, g′), dH(h, h′)} ≤ dG�H((g, h), (g′, h′)),
and the proof is complete. 2
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Applying Proposition 5.4 inductively, we immediately obtain an analogue for multiple
factors, and a consequent corollary.

Corollary 5.5 (Distance Formula) If G = G1 �G2 � · · ·�Gk and x, y ∈ V (G), then

dG(x, y) = max
1≤i≤k

{
dGi

(
pi(x), pi(y)

)}
.

Corollary 5.6 A strong product of graphs is connected if and only if every one of its factors
is connected.

5.3 The Direct Product

We introduced the direct product in Section 4.1. We now investigate its elementary prop-
erties in greater detail, deducing results analogous to those for the Cartesian and strong
products in the previous two sections. Whereas the Cartesian and the strong products are
usually regarded as operations on the class of simple graphs Γ, the most natural setting
for the direct product (as we shall see) is the class of graphs Γ0. Therefore, although we
initially defined it as a product on Γ, we broaden our definition slightly, allowing it to apply
to graphs in Γ0:

If G1, G2, . . . , Gk are graphs in Γ0, then their direct product is the graph

G1 ×G2 × · · · ×Gk =
k×

i=1

Gi

with vertex set {(x1, x2, . . . , xk) |xi ∈ V (Gi)}, and for which vertices (x1, x2, . . . , xk) and
(y1, y2, . . . , yk) are adjacent precisely if xiyi ∈ E(Gi) for every 1 ≤ i ≤ k. As noted earlier,
the kth power of a graph G with respect to the direct product is denoted as G×,k.

Figure 5.3 shows two examples. Observe that P5 × P3, displayed on the left, is discon-
nected. (For clarity, one component is drawn bold.) The example on the right illustrates
several noteworthy facts, which follow immediately from the definitions: A product G×H
has a loop at (g, h) if and only if both G and H have loops at g and h, respectively. More-
over, if G has no loop at g, then the H-layer H(g,h) is totally disconnected; whereas if G
has a loop at g, then H(g,h) is isomorphic to H . (Analogous remarks hold for the G-layers.)

FIGURE 5.3 Two examples of direct products.

In Section 4.2 we proved that the direct product is commutative and associative.
Although our reasoning was then restricted to graphs in Γ, a review of the proof re-
veals that it remains valid in the class Γ0. Thus the maps (x1, x2) 7→ (x2, x1) and
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((x1, x2), x3) 7→ (x1, (x2, x3)) give rise to the following isomorphisms, where all factors
belong to Γ0.

G1 ×G2
∼= G2 ×G1,

(G1 ×G2) ×G3
∼= G1 × (G2 ×G3).

Clearly, the direct product distributes over the disjoint union:

G1 × (G2 +G3) = G1 ×G2 + G1 ×G3.

Although the trivial graph K1 is a unit for both the Cartesian product and the strong prod-
uct, this is decidedly not the case for the direct product. Indeed, K1 ×G is the completely
disconnected graph on |V (G)| vertices, so K1 × G 6∼= G in general. However, let Ks

1 ∈ Γ0

denote the graph with exactly one vertex, on which there is a loop. Observe that

Ks
1 ×G ∼= G

for any G ∈ Γ0. Therefore, under the operations × and +, the set Γ0 is a commutative
semiring with unit Ks

1 .
Let G = G1 × G2 × · · · × Gk. By simple rewording of the definitions, each projection

pi : G→Gi is a homomorphism. Furthermore, given a graphH and a collection of homomor-
phisms ϕi : H → Gi, for 1 ≤ i ≤ k, observe that the map ϕ : x 7→ (ϕ1(x), ϕ2(x), . . . , ϕk(x))
is a homomorphism H → G. From the two facts just mentioned, we see that every homo-
morphism ϕ : H → G has the form ϕ : x 7→ (ϕ1(x), ϕ2(x), . . . , ϕk(x)), for homomorphisms
ϕi : H → Gi, where ϕi = piϕ. Clearly ϕ is uniquely determined by the pi and ϕi.

Notice that this property makes the direct product the product of graphs in the sense
of category theory, justifying the name categorical product.2

The question of distance in direct products, although simple, is somewhat more subtle
than for other products. Consider the distance between vertices (g, h) and (g′, h′) in G×H .
Take a walkW : (g, h)(a1, b1)(a2, b2) . . . (an−1, bn−1)(g′, h′) of length n joining these vertices.
Because the projections are homomorphisms, it follows that pG(W ) : ga1a2 . . . an−1g

′ and
pH(W ) : hb1b2 . . . bn−1h

′ are g, g′- and h, h′-walks of length n in G and H , respectively.
Conversely, given walks ga1a2 . . . an−1g

′ in G and hb1b2 . . . , bn−1h
′ in H , both of length n,

we can construct a walk (g, h)(a1, b1)(a2, b2) . . . (an−1, bn−1)(g
′, h′) of length n in G × H .

We have thus proved the following proposition.

Proposition 5.7 Suppose (g, h) and (g′, h′) are vertices of a direct product G×H, and n
is an integer for which G has a g, g′-walk of length n and H has an h, h′-walk of length n.
Then G×H has a walk of length n from (g, h) to (g′, h′). The smallest such n (if it exists)
equals dG×H((g, h), (g′, h′)). If no such n exists, then dG×H((g, h), (g′, h′)) = ∞.

Figure 5.4 illustrates this proposition. The set of integers n for which the factor G = C9

has a g, g′-walk of length n is {2, 4, 6, 7, 8, 9, 10, . . .}. The set of integers n for which H = P4

has an h, h′-walk of length n is {3, 5, 7, 9, 11, 13, . . .}. Because 7 is the smallest integer in
both of these sets, we have dG×H((g, h), (g′, h′)) = 7. The figure shows a shortest path (of
length 7) from (g, h) to (g′, h′). Notice that this path projects to a g, g′-walk of length 7 in
G and an h, h′-walk of length 7 in H .

By associativity, the previous proposition has an extension to arbitrarily many factors.

2Let C be a category and {Xi|i ∈ I} a family of (not necessarily distinct) objects in C, X ∈ C and
pi : X → Xi a collection of morphisms (called the canonical projections). Then X is the product of the Xi

(with respect to the pi) if they satisfy the following universal property: for any object Y and any collection
of morphisms ϕi : Y → Xi, there exists a unique morphism ϕ : Y → X such that ϕi = piϕ for all i ∈ I.
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FIGURE 5.4 Illustration of Proposition 5.7.

Proposition 5.8 Suppose x and y are vertices of G = G1 ×G2 × · · · ×Gk. Then

dG(x, y) = min
{
n ∈ N | each factor Gi has a walk of length n from pi(x) to pi(y)

}
,

where it is understood that dG(x, y) = ∞ if no such n exists.

For other formulations of distance in the direct product, see Kim (1991) and Lamprey,
and Barnes (1974).

The connectedness properties of the direct product are much richer than those of the
Cartesian and the strong product. Although all factors of a connected direct product must
be connected, as one can see by projection into the factors, the converse is not true. For
instance, suppose G and H are connected bipartite graphs with bipartitions V (G) = G0∪G1

and V (H) = H0 ∪H1. Take vertices (g, h), (g′, h′) ∈ V (G×H) for which g, g′ ∈ G0, h ∈ H0

and h′ ∈ H1. Then any g, g′-walk in G has even length, while any h, h′-walk in H has
odd length. Thus the lengths of a g, g′-walk and an h, h′-walk are never equal, and the
Proposition 5.7 produces dG×H ((g, h), (g′, h′)) = ∞. Consequently, the direct product of
any two bipartite graphs is disconnected. The following theorem, first proved by Weichsel
(1962), characterizes connectedness in direct products of two factors.

Theorem 5.9 (Weichsel’s Theorem) Suppose G and H are connected nontrivial graphs
in Γ0. If at least one of G or H has an odd cycle, then G ×H is connected. If both G and
H are bipartite, then G×H has exactly two components.

Proof Suppose H has an odd cycle. Given two vertices (g, h) and (g′, h′) in G×H , we wish
to show that there is a walk from one to the other. By assumption, there is a nontrivial
g, g′-walk P in G and a nontrivial h, h′-walk Q in H . If they have the same parity, we extend
the shorter one to a walk of the same length as the longer one by traversing the last edge
backward and forward as many times as necessary. Proposition 5.8 then guarantees a walk
from (g, h) to (g′, h′).

If the parities are different, then we extend Q by walking from h to an odd cycle of H ,
traversing the odd cycle once, returning to h along the same route, and then traversing Q.
Thus we obtain a new h, h′-walk Q′ that has the same parity as P , and we proceed as in
the previous paragraph. This completes the proof of the first statement.

For the second statement, suppose both G and H are connected and bipartite. We have
already noted that G×H is disconnected. Now we show it has just two components. Take
any vertex (g, h), and let (g′, h′) and (g′′, h′′) be vertices that are not in the same component
as (g, h). It suffices to prove d((g′, h′), (g′′, h′′)) <∞. Take g′, g- and h′, h-walks P ′ and Q′
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in G and H . These walks have opposite parity, for otherwise we would get a walk from (g, h)
to (g′, h′), as in the first paragraph of the proof. Similarly, we have g, g′′- and h, h′′-walks
P ′′ and Q′′ of opposite parity. Then the concatenations P ′ +P ′′ and Q′ +Q′′ have the same
parity. Arguing as in the first paragraph, we get a walk from (g′, h′) to (g′′, h′′). 2

Corollary 5.10 A direct product of connected nontrivial graphs is connected if and only if
at most one of the factors is bipartite. In fact, the product has 2k−1 components, where k
is the number of bipartite factors.

Finally, we point out a connection between the direct product of graphs and the Kro-
necker product of matrices. Recall that the Kronecker product of matrices U and V is the
matrix U ⊗ V obtained by replacing each entry uij of U with the block uijV . The rows of
U ⊗ V can be indexed by ordered pairs, so that (i, j) indexes the row corresponding to the
jth row of V in the ith row block. Columns can be indexed similarly. Thus the entry of
U ⊗ V in row (i, j) and column (k, `) equals uikvj`.

Suppose G and H have adjacency matrices3 U and V , respectively, relative to vertex
orderings g1, g2, . . . , gm and h1, h2, . . . , hn, respectively. Then it is simple to verify that
G × H has adjacency matrix U ⊗ V relative to the ordering (g1, h1), (g1, h2), . . . , (g1, hn),
(g2, h1), (g2, h2), . . . ,(g2, hn), . . . , (gm, h1), (gm, h2), . . . , (gm, hn) of its vertices.

This point of view can yield quick proofs. For example, suppose G is bipartite, so it
has an adjacency matrix with block form U =

(
0 A

AT 0

)
, where the T indicates transpose.

If H is another graph, with matrix V , then G × H has matrix U ⊗ V =
(

0 A
AT 0

)
⊗ V =(

0 A⊗V

AT⊗V 0

)
. The block form reveals that G×H is bipartite. Thus the direct product of

a bipartite graph with an arbitrary graph is always bipartite.

5.4 The Lexicographic Product

We met the lexicographic product in Section 4.4. The lexicographic product of graphs G
and H is the graph G ◦H whose vertex set is V (G) × V (H), and for which (g, h)(g′, h′) is
an edge of G ◦H precisely if gg′ ∈ E(G), or g = g′ and hh′ ∈ E(H).

This product was introduced as the composition of graphs by Harary (1959); see also
Harary (1969). Although it essentially dates back to Hausdorff (1914), it was Harary’s paper
that initiated the investigations by graph theorists, independent of the work of C. C. Chang
and Morel (1960) and C. C. Chang (1961). The lexicographic product is also known as graph
substitution, a name that bears witness to the fact that G ◦H can be obtained from G by
substituting a copy Hg of H for every vertex g of G and then joining all vertices of Hg with
all vertices of Hg′ if gg′ ∈ E(G). This is illustrated in Figure 5.5. In this figure, the copies
of H in G ◦H are indicated by dashed lines.

Figures 4.10 and 5.5 underscore that the lexicographic product is not commutative. We
mentioned in passing that it is associative, but a proof is in order.

Proposition 5.11 The lexicographic product is associative. In particular, the map
((x1, x2), x3) 7→ (x1, (x2, x3)) is an isomorphism from (G1 ◦G2) ◦G3 to G1 ◦ (G2 ◦G3).

Proof From the definition, ((x1, x2), x3)((y1, y2), y3) is an edge of (G1 ◦G2) ◦G3 precisely
if one of the following three conditions holds: x1y1 ∈ E(G1), or x1 = y1 and x2y2 ∈ E(G2),

3The adjacency matrix and some of its fundamental properties are covered in Section 17.4.
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FIGURE 5.5 Lexicographic products K3 ◦ P3 and P3 ◦K3.

or x1 = y1 and x2 = y2 and x3y3 ∈ E(G3). On the other hand we readily confirm that these
same conditions characterize (x1, (x2, x3))(y1, (y2, y3)) ∈ E(G1 ◦ (G2 ◦G3)). 2

Proposition 5.11 and its proof allow us to unambiguously extend the definition of the
lexicographic product to more than two factors. Given graphs G1, G2, . . . , Gk, we define
G1 ◦ G2 ◦ · · · ◦ Gk as follows: the vertex set is V (G1) × V (G2) × · · · × V (Gk), and two
vertices (x1, x2, . . . , xk), (y1, y2, . . . , yk) are adjacent if for some index j ∈ {1, 2, . . . , k} we
have xjyj ∈ E(Gj) and xi = yi for each 1 ≤ i < j.

Notice that this definition is analogous to the lexicographic ordering of the Cartesian
product of ordered sets X1, X2, . . . , Xk, where (x1, x2, . . . , xk) ≺ (y1, y2, . . . , yk) provided
that for some index 1 ≤ j ≤ k we have xj ≺ yj , and xi = yi for each 1 ≤ i < j. Replacing
the Xi with graphs and ≺ with the adjacency relation, we get the lexicographic product;
hence its name.

Let us summarize what we have seen of the algebraic properties of the lexicographic
product. It is not commutative, but it is associative and it is easily seen to have K1 as both
a left and right unit:

(G1 ◦G2) ◦G3
∼= G1 ◦ (G2 ◦G3),

K1 ◦G ∼= G,

G ◦K1
∼= G.

It is also very easy to establish the following right-distributive rule, which holds for all
graphs G,H , and K:

(G+H) ◦K = G ◦K +H ◦K .

However, there is no corresponding left-distributive rule: Consider that K2◦(K1+K1) = C4,
but K2 ◦K1 +K2 ◦K1 = K2 +K2. Nonetheless, algebraically speaking, Γ is a near-semiring
with respect to the operations + and ◦.

The breakdown of such fundamental properties makes the algebraic structure of the lex-
icographic product exceedingly rich, and there are many properties that have no analogues
in the other products. For instance, we have

G ◦H = G ◦H,

as the reader is invited to verify. (In fact, we noted this equation in Section 4.4 when we
remarked that the lexicographic product is its own complementary product.) We will meet
this equation again, along with many new ones, in Chapter 10, where we investigate the
deeper algebraic properties of the lexicographic product. For now we turn to distance and
connectedness.

Observe that the first projection p1 : G1 ◦G2 ◦ · · · ◦Gk → G1 is a weak homomorphism,
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though in general the projections to the other factors are not. However, by associativity,
any projection G1 ◦G2 ◦ · · · ◦Gk → G1 ◦G2 ◦ · · · ◦Gi is a weak homomorphism for i ≤ k.
Also, it follows from the definitions that given vertex a = (a1, a2, . . . , ak), the map pi is
an isomorphism from any Gi-layer Ga

i = 〈{(a1, a2, . . . , xi, . . . ak) |xi ∈ V (Gi)〉 to the factor
Gi. These observations are used in the proof of the following distance formula. Recall that
dG(g) denotes the degree of the vertex g of G.

Proposition 5.12 Suppose (g, h) and (g′, h′) are two vertices of G ◦H. Then

dG◦H ((g, h), (g′, h′)) =





dG(g, g′) if g 6= g′ ,
dH(h, h′) if g = g′, and dG(g) = 0 ,
min{dH(h, h′), 2} if g = g′, and dG(g) 6= 0 .

Proof Let (g, h) and (g′, h′) be as stated. Let M be the value of the right-hand side of the
equation in the proposition.

First suppose g 6= g′. Because p1 is a weak homomorphism, we have dG◦H((g, h), (g′, h′)) ≥
dG(g, g′) = M . Conversely, let P = ga1a2 . . . g

′ be a shortest g, g′-path in G. Then
(g, h)(a1, h

′)(a2, h
′)(a3, h

′) . . . (g′, h′) is a path of length dG(g, g′) in G ◦ H ; therefore
dG◦H((g, h), (g′, h′)) ≤ dG(g, g′) = M . Thus the proposition is true when g 6= g′.

Next suppose g = g′ and dG(g) = 0. Because g is isolated, each component of the layer
H(g,h) is a component of G ◦ H . By virtue of the isomorphism p2 : H(g,h) → H , we now
have M = dH(h, h′) = dG◦H((g, h), (g′, h′)).

Finally, if g = g′ and dG(g) ≥ 0, then there is an edge gc ∈ E(G), and (g, h)(c, h′)(g, h′) is
a path of length 2 joining (g, h) to (g′, h′). Combined with the isomorphism p2 : H(g,h) → H ,
this yields dG◦H((g, h), (g′, h′)) = min{dH(h, h′), 2} = M . 2

By associativity, we have the following immediate generalization to multiple factors.

Corollary 5.13 Suppose x = (x1, x2, . . . , xk) and y = (y1, y2, . . . , yk) are distinct vertices
of G = G1 ◦G2 ◦ · · · ◦Gk, and let i be the smallest index for which xi 6= yi. Then

dG(x, y) =

{
dGi(xi, yi) if dG`

(x`) = 0 for each 1 ≤ ` < i ,
min{dGi(xi, yi), 2} if dG`

(x`) 6= 0 for some 1 ≤ ` < i .

Finally, we get a characterization of connectedness.

Corollary 5.14 A lexicographic product G1 ◦G2 ◦ · · · ◦Gk of nontrivial graphs is connected
if and only if G1 is connected.

Exercises

5.1. Show that C2k+1 × C2k+1
∼= C2k+1 2C2k+1 for any k ≥ 1. What happens if we

replace odd cycles with even cycles?

5.2. Strengthen Proposition 5.3 as follows: G2H is connected and has no cut vertex if
and only if G and H are connected.

5.3. Verify that the connected components of Km,n×Km′,n′ are Kmm′,nn′ and Kmn′,nm′ .
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5.4. A graph G is called antipodal if there exists a vertex v to any vertex u ∈ V (G),
such that V (G) = I(u, v). Show that the Cartesian product of antipodal graphs is
antipodal.

5.5. Let G be an isometric subgraph of a Cartesian product �
k
i=1Gi, such that pi(G) =

Gi for i = 1, . . . , k. Show that the Gi are antipodal if G is antipodal. Find a
counterexample to the converse.

5.6. Show that, given vertices u, v ∈ V (G2H), there is a unique vertex x ∈ Gu such
that d(v, x) = min{d(v, y) | y ∈ V (Gu)}. Moreover, pG(v) = pG(x).

5.7. (Behzad and Mahmoodian, 1969) Let G and H be connected graphs different from
K1 and K2. Show that G2H is planar if and only if both factors are paths, or one
is a path and the other a cycle.

5.8. (Behzad and Mahmoodian, 1969) A graph is outerplanar if it is planar and embed-
dable into the plane such that all vertices lie on the outer face of the embedding.
Let G be an outerplanar graph. Show that G2K2 is planar.

5.9. (Jha and Slutzki, 1993) Show that the Cartesian product of two graphs is outer-
planar if and only if one factor is a path and the other a K2.

5.10. Prove by induction that if G = G1 2G2 2 · · · 2Gk and x, y ∈ V (G), then

dG(x, y) =
∑k

i=1 dGi

(
pi(x), pi(y)

)
.

5.11. Show that the diameter of a strong product of k graphs is the maximum of the
diameters of the factors.

5.12. (Abay-Asmerom, Hammack, and D. T. Taylor 2009) A perfect r-code of a graph G is
a subset C of V (G) such that each vertex of G is of distance at most r from exactly
one vertex of C. Show that each G1, G2, . . . , Gn has a perfect r-code if and only if
G1 �G2 � · · ·�Gn has a perfect r-code.

5.13. (Jha and Slutzki, 1993) Show that the strong product of two connected graphs is
planar if and only if one of the following conditions is satisfied:

a. One factor is a tree and the other a K2.
b. Both factors are P3’s.

5.14. Show that diam(G×,k) ≤ 2 diam(G) + c, where c is the length of a shortest odd
cycle of G.

5.15. (Farzan and Waller, 1977) Let G be a connected graph. Show that C4×G is planar
if and only if G is a tree.

5.16. (Farzan and Waller, 1977) Show that the direct product G × H of connected
graphs G and H on at least five vertices is planar if and only if one of the following
conditions is satisfied:

a. One factor is a path, and removal of pendant vertices from the other
produces a path or a cycle.

b. One factor is a cycle, and removal of pendant vertices from the other
produces a path.

5.17. This problem concerns the graphs illustrated in Figure 5.6.
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(a) (Bottreau and Métivier, 1998) Let G be the graph obtained by subdivid-
ing two independent edges of K3,3, as illustrated in Figure 5.6, left. Show
that G×K2 is planar.

(b) (Beaudou, Dorbec, Gravier, and Jha, 2009) Let H be the graph obtained
by subdividing two incident edges of K5, as illustrated in Figure 5.6, right.
Show that H ×K2 is planar.
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FIGURE 5.6 Subdivided K3,3 and K5.
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Introduction to Part II

G
raph products, as we have seen, obey fundamental algebraic laws such as identity,
associativity, and commutativity. It is natural to seek the extent of these algebraic

connections. Do graphs factor uniquely into primes over a given product? Does cancellation
hold? Part II answers these questions affirmatively, given certain mild restrictions such as
connectedness and nonbipartiteness. As a dividend, we are able to describe the automor-
phism group of a graph in terms of the automorphisms of its prime factors.

We begin, in Chapter 6, with the Cartesian product. Uniqueness of prime factorization
of connected graphs over this product was discovered in the early 1960s, independently by
Sabidussi and Vizing. Our proof (which uses convexity arguments) leads immediately to
automorphism and cancellation results.

Chapter 7 deduces analogous results for the strong product and follows the approach of
Dörfler and Imrich (1970).

Chapter 8 proves that connected nonbipartite graphs factor uniquely into primes over the
direct product. The primary tool is the so-called Cartesian skeleton operation S : Γ0 → Γ,
which, under suitable conditions, satisfies S(G ×H) = S(G)2S(H). This reduces factor-
ization over the direct product to the more manageable Cartesian product. Once developed,
this theory easily describes the automorphism structure of direct product graphs and pro-
vides an alternative path to the results of Chapter 7.

The cancellation properties of the direct product are exceedingly rich, and Chapter 9 is
devoted to characterizing the conditions under which cancellation in this product holds or
fails. This also leads to a cancellation law for the strong product.

Chapter 10 treats the lexicographic product. Here, prime factorization is not unique but
there is a strong and predictable connection between different prime factorizations of the
same graph. We also deduce surprisingly strong cancellation results and characterize the
conditions under which G ◦H ∼= H ◦G.

Part II depends directly on the material presented in Part I. Within Part II, the mate-
rial in Chapter 6 (Cartesian Product) is needed in both Chapter 7 (Strong Product) and
Chapter 8 (Direct Product). In other respects the chapters are independent of one another,
with the exception that insights gained in one chapter may facilitate (but are not essential
to) the understanding of other chapters.
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The uniqueness of the prime factor decomposition of connected graphs with respect to the
Cartesian product was first shown by Sabidussi (1960), and independently by Vizing (1963).
This book presents two proofs, one here and the other in Chapter 23. The proof in this
chapter invokes the convexity of layers and the fact that convex subgraphs are subproducts.

We show that the automorphism group of a graph is determined by the groups of its
prime factors. We also characterize Cartesian products with transitive or Abelian automor-
phism groups and consider cancellation with respect to the Cartesian product. Finally we
consider graphs that are nontrivial subgraphs of Cartesian products.

6.1 Prime Factor Decompositions

A graph is prime with respect to a given graph product if it is nontrivial and cannot be
represented as the product of two nontrivial graphs. For the Cartesian product, this means
that a nontrivial graphG is prime if G = G1 2G2 implies that G1 or G2 is K1. We show first
that every graph has a prime factor decomposition with respect to the Cartesian product.

Proposition 6.1 Every nontrivial graph G has a prime factor decomposition with respect
to the Cartesian product. The number of prime factors is at most log2 |V (G)|.
Proof Because the product of k nontrivial graphs has at least 2k vertices, a graph G
can have at most log2 |V (G)| factors. Thus there is a presentation of G as a product
G1 2G2 2 · · · 2G` with a maximal number of factors. Clearly, every factor is prime. 2

Note that the same argument holds for all standard products.
As we will prove shortly, any connected graph factors uniquely into prime graphs with

respect to the Cartesian product. In other words, if a connected graph G factors into primes
as G = G1 2G2 2 · · · 2Gk and G = H1 2H2 2 · · · 2H`, then k = ` and the indices can
be ordered so that Gi

∼= Hi. However, for disconnected graphs, this need not be the case.

Theorem 6.2 Prime factorization is not unique for the Cartesian product in the class of
possibly disconnected simple graphs.

65
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Proof It is easy to see that

(K1 +K2 +K�,2
2 )2 (K1 +K�,3

2 ) = (K1 +K�,2
2 +K�,4

2 )2 (K1 +K2) .

We just need to show that the factors on the left- and right-hand sides are prime.
To see this, we observe that the number of components of a Cartesian product is the

product of the numbers of components in the factors. Thus, if a graph consisting of two or
three components is represented as a product of two graphs, one of these graphs must have
one component and the other two or three. The graphs to be investigated are of the form
K1+A1 +A2, where A1 has as least two vertices, the same holding for A2 if it is present. Its
representation as a product of two factors must be of the form B2 (C1 + C2 + C3). Hence

K1 +A1 +A2
∼= B2C1 +B2C2 +B2C3.

Then K1
∼= B2Ci for some i. Thus B is trivial, so K1 +A1 +A2 is prime. 2

The decomposition used in the proof of Theorem 6.2 is of the form

(1 + x+ x2)(1 + x3) = (1 + x2 + x4)(1 + x) .

This is an example of nonunique prime factorization in the subsemiring Z+[x] of nonzero
polynomials with positive coefficients in the polynomial ring Z[x] with integer coefficients
over the indeterminate x. It seems to have been first exploited by Nakayama and Hashimoto
(1950) for the construction of finite reflexive structures without unique prime factor decom-
position in the ring of polynomials in an indeterminate x over the set of positive integers.

Notice that by Exercises 6.12 and 6.13 the prime factorization of every graph with
fewer than six connected components is unique with respect to the Cartesian product.
In fact, Exercise 6.13 implies that all polynomials in the subsemiring Z+[x1, x2, x3, . . .] of
Z[x1, x2, x3, . . .] that are the sum of four monomials (with coefficient 1) have unique prime
factorizations in Z+[x1, x2, x3, . . .].

For a more algebraic treatment that reduces the problem to a system of linear equations,
which has a unique solution, and for further results about nonunique prime factorizations
of disconnected graphs, see van de Woestijne (2011).

An important concept for all products are subproducts, which we call boxes: A box in
a product G = G1 2 · · · 2Gk is a subgraph of form U1 2 · · · 2Uk, where Ui ⊆ Gi for each
index i. In order to characterize boxes of Cartesian products, we first prove the following
lemma:

Lemma 6.3 (Unique Square Lemma) Let e and f be two incident edges of a Cartesian
product G1 2G2 that are in different layers, that is, one in a G1-layer and the other one
in a G2-layer. Then there exists exactly one square in G1 2G2 containing e and f . This
square has no diagonals.

Proof We may assume e = uw = (u1, u2)(v1, u2) and f = wv = (v1, u2)(v1, v2). In
particular, this means u1 6= v1 and u2 6= v2. Suppose z = (z1, z2) is adjacent to both u
and v. As z is adjacent to u = (u1, u2), we have z1 = u1 or z2 = u2. As z is adjacent to
v = (v1, v2), we have z1 = v1 or z2 = v2. These constraints force either z = (v1, u2) = w or
z = (u1, v2). We now have a unique (and diagonal-free) square (u1, u2)(v1, u2)(v1, v2)(u1, v2)
containing e and f . 2

Notice that this lemma also holds for arbitrarily many factors.
We say a subgraph W of a Cartesian product G has the square property if for any two

adjacent edges e, f that are in different layers, the unique square of G that contains e and
f is also in W .
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Lemma 6.4 A connected subgraph W of a Cartesian product is a box if and only if it has
the square property.

Proof Boxes have the square property by Lemma 6.3.
Suppose W is a connected subgraph of a Cartesian product G with the square property.

It suffices to prove the lemma for G = G1 2G2. Let a = (a1, a2) and b = (b1, b2) be two
vertices of W . We have to show that (a1, b2) and (b1, a2) are also in W . We may suppose
that the vertices (a1, a2), (b1, a2), (a1, b2), and (b1, b2) are distinct. Because W is connected,
there is a path P from a to b. Let us call an edge e of P a G1-edge, if p2(e) consists only of
one vertex, and a G2-edge otherwise. By Lemma 6.3, we can replace every sequence e, f of
two edges in P , where e is a G1-edge and f a G2-edge, by two edges e′, f ′ in W , where e′ is
a G2-edge and f ′ a G1-edge. Thus we can assume that P consists of a sequence of G1-edges
followed by a sequence of G2-edges, and that there also exists a path P ′ from a to b in W
in which a sequence of G2-edges is followed by a sequence of G-edges. But then the vertex
(a1, b2) is on P and (b1, a2) on P ′, whence both are in W . 2

For the uniqueness proof of the prime factor decomposition for connected graphs, we
continue with a lemma about convex subgraphs. A subgraph W ⊆ G is convex in G if every
shortest G-path between vertices of W lies entirely in W . Notice that convex subgraphs of
Cartesian products have the square property.

Lemma 6.5 A subgraph W of G = G1 2 · · · 2Gk is convex if and only if W =
U1 2 · · · 2Uk, where each Ui is convex in Gi.

Proof Suppose W is convex in G. Then it is connected and has the square property, and
it is a box by Lemma 6.4. It follows that W = p1(W )2 · · · 2 pk(W ). We have to show that
each pi(W ) is convex. Fix i and take vertices ai and bi of pi(W ). Let xi be on a shortest
ai, bi-path in Gi. We must show that xi belongs to pi(W ).

Choose vertices a = (a1, . . . , ak) and b = (b1, . . . , bk) of W with pi(a) = ai and pi(b) = bi.
Define x = (x1, . . . , xk) as follows. For each index j 6= i, let xj be on a shortest aj, bj-path
in Gj . Thus dGs(as, bs) = dGs(as, xs) + dGs(xs, bs) for each 1 ≤ s ≤ k. From this, Corollary
5.2 implies dG(a, b) = dG(a, x) + dG(x, b). It follows that x lies on a shortest a, b-path in G,
so x ∈ W by convexity of W . Hence xi = pi(x) ∈ pi(W ).

The converse is reserved for Exercise 6.1. 2

Notice that Lemma 6.5 implies that every layer Ga
i = {a1}2 · · · 2Gi 2 · · · 2 {ak} in

G1 2 · · · 2Gk is a convex box.

We are now ready for the main result of this section.

Theorem 6.6 (Sabidussi-Vizing) Every connected graph has a unique representation as
a product of prime graphs, up to isomorphism and the order of the factors.

Because we already know that every finite graph has a prime factorization, we only have
to show that it is unique. To this end, the next lemma completes the proof of Theorem 6.6.

Lemma 6.7 Let ϕ be an isomorphism between the connected graphs G and H that are
representable as products G = G1 2 · · · 2 Gk and H = H1 2 · · · 2 H` of prime graphs.
Then k = `, and to any a ∈ V (G) there is a permutation π of {1, 2, . . . , k} such that

ϕ(Ga
i ) = H

ϕ(a)
π(i) for 1 ≤ i ≤ k.

Proof Fix a = (a1, . . . , ak), and say ϕ(a) = b = (b1, . . . , b`). As mentioned above, any Ga
i

is convex in G, so its image ϕ(Ga
i ) is convex in H . Lemma 6.5 implies

(b1, . . . , b`) ∈ ϕ(Ga
i ) = U1 2 · · · 2U`.
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But Gi
∼= Ga

i
∼= ϕ(Ga

i ) is prime, so Ui = {bi} for all but one index, call it π(i). In other

words, ϕ(Ga
i ) ⊆ H

ϕ(a)
π(i) . But then Ga

i ⊆ ϕ−1
(
H

ϕ(a)
π(i)

)
. Because ϕ−1

(
H

ϕ(a)
π(i)

)
is convex, it is a

box; and because it is prime, it must be contained in Ga
i . Therefore, ϕ(Ga

i ) = H
ϕ(a)
π(i) .

We claim that the map π : {1, 2, . . . , k} → {1, 2, . . . , `} is injective. If π(i) = π(j), then

ϕ(Ga
i ) = H

ϕ(a)
π(i) = ϕ(Ga

j ) .

Becuase H
ϕ(a)
π(i) is nontrivial (it is prime), it follows that Ga

i and Ga
j have a nontrivial

intersection. This means i = j, so π is injective. Thus k ≤ `.
Repeating the above argument for ϕ−1 gives ` ≤ k, so k = ` and π is a permutation. 2

Figure 6.1 depicts a graph and its prime factors. We will also use it to illustrate the
action of the automorphism group on a product of prime graphs; see Exercise 6.4.
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FIGURE 6.1 A graph and its prime factors.

We continue with a theorem that describes the structure of isomorphisms between con-
nected Cartesian products.

Theorem 6.8 Let G and H be isomorphic connected graphs with prime factorizations G =
G1 2 · · · 2Gk and H = H1 2 · · · 2Hk. Then for any isomorphism ϕ : G → H, there is a
permutation π of {1, 2, . . . , k} and isomorphisms ϕi : Gπ(i) → Hi for which

ϕ(x1, x2, . . . , xk) =
(
ϕ1(xπ(1)), ϕ2(xπ(2)), . . . , ϕk(xπ(k))

)
. (6.1)

Proof Fix a vertex a = (a1, . . . , ak) of G. By Lemma 6.7, there is a permutation π of

{1, 2, . . . , k} for which ϕ restricts to an isomorphism Ga
i → H

ϕ(a)
π(i) for each index i. Replacing

π with π−1, we can say that, for each i, ϕ restricts to an isomorphism

Ga
π(i) → H

ϕ(a)
i .

To finish the proof, we will show that piϕ(x1, . . . , xk) depends only on xπ(i). Then we can
just put ϕi(xπ(i)) = piϕ(x1, . . . , xk), which yields Equation (6.1), and it is immediate that
the ϕi are isomorphisms.
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For any xπ(i) ∈ V (Gπ(i)), consider the boxB[xπ(i)] = G1 2G2 2 · · · 2 {xπ(i)}2 · · · 2Gk

whose π(i)th factor is the single vertex xπ(i). This box is convex, so by Lemma 6.5 its image
ϕ(B[xπ(i)]) is a box in H .

Now, B[xπ(i)] ∩ Ga
π(i) = {(a1, a2, . . . , xπ(i), . . . , ak)}. Thus the box ϕ(B[xπ(i)]) meets

the box ϕ(Ga
π(i)) = H

ϕ(a)
i at the single vertex ϕ(a1, a2, . . . , xπ(i), . . . , ak). This means all

vertices in ϕ(B[xπ(i)]) have the same ith coordinate piϕ(a1, a2, . . . , xπ(i), . . . , ak), so

pi
(
ϕ(B[xπ(i)])

)
= piϕ(a1, a2, . . . , xπ(i), . . . , ak).

Now, any (x1, . . . , xπ(i), . . . , xk) ∈ V (G) belongs to B[xπ(i)]. Thus piϕ(x1, . . . , xπ(i), . . . , xk)
= piϕ(a1, a2, . . . , xπ(i), . . . , ak), which depends only on xπ(i). 2

Because we can replace any factor of a graph by an isomorphic copy without changing
the structure of the product, we often relabel the vertices Hi such that the ϕi are the identity
mapping. This yields a much more agreeable version of Equation (6.1). We formulate this
observation as a corollary:

Corollary 6.9 Suppose there is an isomorphism ϕ : G1 2 · · · 2Gk → H1 2 · · · 2Hk,
where each Gi and Hi is prime. Then the vertices of the Hi can be relabeled such that

ϕ(x1, x2, . . . , xk) = (xπ(1), xπ(2), . . . , xπ(k))

for some permutation π of {1, . . . , k}.

6.2 Cartesian Product and Its Group

The automorphisms of a graph G are the isomorphisms of G to itself. Therefore, in the
present development, the description of the automorphisms of the Cartesian product of
connected prime graphs is an immediate corollary of Theorem 6.8. It is due to Imrich
(1969a) and Miller (1970a).

Theorem 6.10 Suppose ϕ is an automorphism of a connected graph G with prime factor
decomposition G = G1 2G2 2 · · · 2Gk. Then there is a permutation π of {1, 2, . . . , k} and
isomorphisms ϕi : Gπ(i) → Gi for which

ϕ(x1, x2, . . . , xk) =
(
ϕ1(xπ(1)), ϕ2(xπ(2)), . . . , ϕk(xπ(k))

)
.

We consider two special cases now:

1. The permutation π is the identity. Then every ϕi is an automorphism of Gi. We
say ϕ is generated by automorphisms of the factors Gi. If all factors are pairwise
nonisomorphic, these automorphisms already generate the full automorphism group
of G.

2. At least two prime factors Gr and Gs are isomorphic. Let π be the transposition (r s),
and ϕr, ϕs be a pair of isomorphisms from Gr onto Gs, respectively from Gs onto Gr.
Furthermore, for indices i other than r or s, let ϕi be the identity on V (Gi). Then
the map ϕ corresponding to π, ϕr , ϕs and the ϕi for i 6= r, s is an automorphism. We
call it a transposition of two isomorphic prime factors of G.
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Corollary 6.11 The automorphism group of a connected graph with prime factor decom-
position G1 2G2 2 · · · 2Gk is generated by automorphisms and transpositions of the prime
factors.

Because only isomorphic prime factors can be transposed, we obtain a corollary for
relatively prime graphs, where two graphs are called relatively prime if there exists no
nontrivial graph that is a factor of both of them.

Corollary 6.12 Let G be the Cartesian product G1 2G2 2 · · · 2Gk of connected, relatively
prime graphs. Then every automorphism ϕ of G preserves the layer structure of G with
respect to the given product decomposition and can be written in the form

ϕ(x1, x2, . . . , xk) =
(
ϕ1(x1), ϕ2(x2), . . . , ϕk(xk)

)
,

where the ϕi are automorphisms of Gi. In this case, Aut(G) is the direct product of the
automorphism groups of the factors.

These results imply a simple theorem, which helps us visualize the structure of the
automorphism group of a product of prime graphs.

Theorem 6.13 The automorphism group of the Cartesian product of connected prime
graphs is isomorphic to the automorphism group of the disjoint union of the factors.

Proof Let G1, G2, . . . , Gk be the connected components of a graph G. Assume each of
these components is prime. Then an automorphism ϕ of Gi yields an automorphism of G by
applying ϕ on Gi and fixing all vertices of the other components. In addition, if components
Gi and Gj are isomorphic, interchanging Gi with Gj and fixing all other vertices also gives
an automorphism of G. Every other automorphism of G is generated by automorphisms of
these two types. Hence, the structure of the automorphism group of G is the same as that
of the automorphism group of the corresponding Cartesian product. 2

In other words, the automorphism group is the direct product of the wreath products
on the sets of pairwise isomorphic factors.

Distinguishing number of Cartesian products

Albertson and Collins (1996) introduced the distinguishing number D(G) of a graph G as
the smallest number of labels that can destroy all of G’s nontrivial automorphisms. More
precisely,D(G) is the least integer d such thatG has a labeling with d labels that is preserved
only by the trivial automorphism. This concept has received a lot of attention; for some
recent developments, see Arvind, Cheng, and Devanur (2008) and references therein. Here
we list what is known about the distinguishing number of Cartesian product graphs.

Based on the work of Bogstad and Cowen (2004), Albertson (2005), and Klavžar and
Zhu (2007), the final result about the distinguishing number of Cartesian graph powers was
established by Imrich and Klavžar (2006):

Theorem 6.14 If k ≥ 2, then D(G�,k) = 2 for all nontrivial, connected graphs G 6=
K2, K3. Furthermore, D(K�,k

n ) = 2 if n = 2, 3 and n+ k ≥ 6.

Hence, all but three Cartesian powers can be distinguished with two labels, the excep-
tions being K�,2

2 , K�,3
2 , and K�,2

3 , each of which has distinguishing number 3. This situation
is typical; usually most graphs in a given family can be distinguished by two labels. Not
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surprisingly, Theorem 6.10 is an indispensable tool in the proof of Theorem 6.14 and related
results.

As Aut(Kk 2Kn) is very rich, it takes some effort to determine D(Kk 2Kn). The next
result was obtained independently by M. J. Fisher and Garth (2008) and by Imrich, Jerebic,
and Klavžar (2008):

Theorem 6.15 Let k, n, d be integers with 2 ≤ d, k < n and (d− 1)k < n ≤ dk. Then

D(Kk 2Kn) =

{
d if n ≤ dk − dlogd ke − 1 ,

d+ 1 if n ≥ dk − dlogd ke + 1 .

If n = dk − dlogd ke, then D(Kk 2Kn) is either d or d+ 1. It can be computed recursively
in O(log∗ n) time, where log∗ denotes the iterated logarithm.

For a more detailed treatment (including proofs) of the distinguishing number of Carte-
sian products, see Chapter 17 of the book by Imrich, Klavžar, and Rall (2008).

6.3 Transitive Group Action on Products

We now apply the above results to Cartesian products with transitive and sharply transitive
automorphism groups. In particular, we show that a Cartesian product, connected or not,
has transitive automorphism group if and only if every factor has transitive automorphism
group. Moreover, we prove that connected or disconnected graphs with transitive auto-
morphism groups have unique prime factor decompositions with respect to the Cartesian
product.

Proposition 6.16 A Cartesian product of connected graphs has transitive automorphism
group if and only if every factor has transitive automorphism group.

Proof Suppose that G = G1 2G2 2 · · · 2Gk. Let v = (v1, v2, . . . , vk), u = (u1, u2, . . . , uk)
be arbitrary vertices of G. If all Gi have transitive group, there are automorphisms ϕi ∈
Aut(G) with ϕi(vi) = ui, so the automorphism ϕ = (ϕ1, ϕ2, . . . , ϕk) of G maps v to u. Thus
Aut(G) is transitive if all Aut(Gi) are transitive.

For the converse, let G be a connected graph with transitive automorphism group.
Suppose that G is the Cartesian product G1 2G2 2 · · · 2Gk of relatively prime graphs and
that we are given vertices vi, ui ∈ V (Gi) for every i ∈ {1, 2, . . . , k}. Because G has transitive
group, there is an automorphism ϕ of G that maps (v1, v2, . . . , vk) into (u1, u2, . . . , uk). By
Corollary 6.12, ϕ can be represented in the form

ϕ(v1, v2, . . . , vk) = (ϕ1(v1), ϕ2(v2), . . . , ϕk(vk)),

where the ϕi are automorphisms of Gi. Hence ϕi(vi) = ui for each i. In other words, each
Gi has transitive group.

If some of the prime factors of G are isomorphic, we can collect them together into
relatively prime collections of factors. Hence it remains to show that a connected graph has

transitive group if a Cartesian power of it has transitive group. Thus let G = �
k
i=1Gi,

where all Gi are isomorphic. There is no loss of generality in assuming that all the Gi are,
in fact, equal, so G = G1 2G1 2 · · · 2G1. For arbitrary vertices a, b ∈ V (G1), let ϕ be
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the automorphism of G with ϕ(a, a, a, . . . , a) = (b, a, a, . . . , a). By Theorem 6.10, there are
isomorphisms (in this case, automorphisms) ϕi : G1 → G1 for which

(
ϕ1(a), ϕ2(a), . . . , ϕk(a)

)
= (b, a, a, . . . , a).

Thus the automorphism ϕ1 of G1 maps a to b. 2

This result does not hold for infinite graphs. By the results of Chapter 31, a connected
infinite graph can have transitive automorphism group even if all of its prime divisors with
respect to the Cartesian product have trivial automorphism groups; see Exercise 31.15. In
the case of finite graphs, however, we have the following theorem:

Theorem 6.17 A Cartesian product has transitive automorphism group if and only if every
factor has transitive automorphism group.

Proof If every factor has transitive group, we argue as in the first paragraph of the proof
of Proposition 6.16 to conclude that the product has transitive group.

Conversely, Proposition 6.16 takes care of the connected case. To complete the proof,
we need only show that transitivity of Aut(G2H) implies the transitivity of Aut(G) and
Aut(H) for disconnected G2H . Denote the components of G by X1, . . . , Xg and those of H
by Y1, . . . , Yh. Clearly, all components of G2H must have transitive automorphism group,
and they are all isomorphic. Because they are of the form Xi2Yj , all components of G and
H must have transitive group, by Proposition 6.16. We have to show that any two Xi are
isomorphic, and likewise for any two Yj .

Without loss of generality, we can assume that G is disconnected. It suffices to show that
X1 and X2 are isomorphic, namely that any prime factor of X1 is also a prime factor of X2

and has the same multiplicity. Let X1 = P r
2U ,X2 = P s

2W , and Y1 = P t
2Z, where P is

not a divisor of U,W, or Z. Because X1 2Y1 = P r+t
2U 2Z and X2 2Y1 = P s+t

2W 2Z
are isomorphic, we conclude that r + t = s+ t, and hence that r = s. 2

Corollary 6.18 Every graph with transitive automorphism group has unique prime factor
decomposition with respect to the Cartesian product.

Proof It suffices to prove the theorem for disconnected G. Suppose that X1, . . ., Xr are
the components of G and that P1 2P2 2 · · · 2Pk is the prime factor decomposition of X1.

We first show that every disconnected prime factor must be totally disconnected. For,
if
∑r

i=1 Yi is a factor, then any two Yi, Yj must be isomorphic by Theorem 6.17. Hence∑r
i=1 Yi = rY1 = Dr 2Y1. Because r 6= 1, this can only be prime if Y1 = K1. Therefore the

product of all disconnected prime factors is a totally disconnected graph Ds for some s, and
because of the unique prime factorization of s, the prime factors are uniquely determined.
From Ds 2Y ∼= G follows Y ∼= X1, and this determines the connected prime factors. 2

Corollary 6.19 The automorphism group of a connected graph G with prime factor de-
composition H1 2H2 2 · · · 2Hk is sharply transitive if and only if the prime factors are
pairwise nonisomorphic and have sharply transitive automorphism groups.

Proof The proof follows from the above considerations and the observation that
Aut(H 2H) cannot be regular if H is nontrivial because transpositions of the two factors
have fixed points but are not the identity. 2

Similarly one proves that this corollary remains true if the term “sharply transitive” is
replaced by “fixed point-free.”

Corollary 6.20 The automorphism group of connected graph G with prime factor decom-
position H1 2H2 2 · · · 2Hk is Abelian if and only if the following conditions are satisfied:
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(i) Every prime factor has Abelian automorphism group.
(ii) Prime factors with nontrivial groups are pairwise nonisomorphic.

(iii) There are no three pairwise isomorphic factors with trivial automorphism group.

Proof Note that H 2H 2H has non-Abelian group for nontrivial H because the transpo-
sitions of the factors generate the symmetric group on three elements, which is not Abelian.

If ϕ is a nontrivial automorphism of H mapping a into b, we consider H 2H , denote
the transposition of the two factors by α and the mapping (u, v) 7→ (ϕ(u), v) by β. Then
αβ(a, a) = (b, a), but βα(a, a) = (a, b), so Aut(H 2H) is not Abelian. 2

Proposition 6.16 and Corollaries 6.19 and 6.20 are from Imrich (1969a), and Theo-
rem 6.17 with Corollary 6.18 is from Imrich (1972a).

6.4 Cancellation

If G, H , and K are connected graphs, and G2K ∼= H 2K, then Theorem 6.6 immediately
guarantees that G ∼= H , that is, the common factor can be cancelled from the product. In
fact, this cancellation property holds even if the assumption of connectedness is removed.
The following proof is based on the approach of Fernández, Leighton, and López-Presa
(2007). Recall that O denotes the empty graph.

Theorem 6.21 Suppose G,H,K ∈ Γ and K 6= O. If G2K ∼= H 2K, then G ∼= H.

Proof The idea is to embed Γ in the ring R = Z[x1, x2, x3, . . .] of polynomials in countably
many indeterminates, and then transfer cancellation in R back to Γ.

Let G1, G2, G3, . . . be a list of all connected prime graphs in Γ. Define a map
ϕ : Γ → R as follows. Any connected nontrivial graph G factors uniquely as G =
G�,j1

i1
2G�,j2

i2
2 · · · 2G�,jk

ik
, where the Gis are prime and pairwise nonisomorphic, and we

set ϕ(G) = xj1i1x
j2
i2
· · ·xjkik . Thus, in particular, ϕ(Gi) = xi for i ≥ 1, and we further define

ϕ(K1) = 1 and ϕ(O) = 0. Thus ϕ is well-defined on the set of connected graphs. Finally,
any arbitrary G can be decomposed uniquely as a disjoint union G = H1 + H2 + · · · + Hk

of connected components, and we set ϕ(G) =
∑k

i=1 ϕ(Hi).
The map ϕ is well-defined and is a bijection of Γ onto the set polynomials in

Z[x1, x2, x3, . . .] with nonnegative coefficients. Moreover, the distributive and commutative
properties of the Cartesian product yield ϕ(G2H) = ϕ(G)ϕ(H) for all G,H ∈ Γ.

Now, if G2K ∼= H 2K, we have ϕ(G2K) = ϕ(H 2K), so ϕ(G)ϕ(K) = ϕ(H)ϕ(K).
If K 6= O, then ϕ(K) 6= 0, and ϕ(G) = ϕ(H) by cancellation in the integral domain R.
Finally, G ∼= H because ϕ is injective. 2

Certain cancellation-type results also hold for graph homomorphisms. Suppose G is a
connected graph with odd girth at least 2k+ 1. (Recall that the odd girth of a graph is the
length of its shortest odd cycle.) The graph G is called strongly (2k+ 1)-angulated if for all
pairs u, v ∈ V (G) there is a sequence of (2k+ 1)-cycles C1, . . . Ct such that u ∈ C1, v ∈ Ct,
and Ci and Ci+1 share at least one edge for every 1 ≤ i < t. The following is a typical result
from Che, Collins, and Tardif (2008):

Theorem 6.22 Let G be a strongly (2k + 1)-angulated graph with a vertex that is fixed by
every endomorphism of G. Suppose that H is a strongly (2k + 1)-angulated graph and T a

© 2011 by Taylor & Francis Group, LLC



74 Cartesian Product

graph with the odd girth at least 2k + 1. If there exists a homomorphism G2H → G2T ,
then there is also a homomorphism H → T .

The key insight of the proof of this theorem (as well as for other theorems in the paper)
is that, roughly speaking, strongly (2k + 1)-angulatedness assures that homomorphisms
preserve layers of Cartesian products.

6.5 S-Prime Graphs

Given a graph product ∗, it is natural to ask which graphs are nontrivial subgraphs of
∗-products. As we will see, the answer is not difficult for the direct product, the strong
product, and the lexicographic product. This section suggests that the question for the
Cartesian product is quite intriguing.

If G and H are graphs on at least two vertices, then a subgraph X of G ∗H is called
nontrivial if each of pG(X) and pH(X) has at least two vertices. A graph X is called ∗-S-
prime1 if it cannot be represented as a nontrivial subgraph of a ∗-product graph. Graphs
that are not ∗-S-prime are called ∗-S-composite. Clearly, ∗-S-prime graphs are prime with
respect to ∗.

Sabidussi (1975) proved that complete graphs and complete graphs with an edge removed
are the only ×-S-prime graphs. (He named these graphs subdirectly irreducible, see p. 104.)
Lamprey and Barnes (1981) followed by noting that the only �-S-prime graphs and ◦-
S-prime graphs are K1, K1 + K1, and K2. (Exercise 6.14.) Hence it remains to consider
2 -S-prime graphs; for simplicity we will call them S-prime henceforward. Likewise, 2 -S-
composite graphs will be called S-composite.

This section describes four different approaches to S-prime graphs (equivalently S-
composite graphs), the first one being rather trivial.

Plottings

A plotting of a graph is a drawing of it on the plane such that the endpoints of each edge
either have the same abscissa or the same ordinate. Note that a standard coordinate drawing
of a product graph is a plotting. Thus, clearly, a graph is S-prime if and only if in any of its
possible plottings, all the vertices are either plotted on the same horizontal or on the same
vertical line.

Basic S-prime graphs

For a nontrivial characterization of S-prime graphs, Lamprey and Barnes (1995) introduced
basic S-prime graphs as S-prime graphs on at least three vertices that contain no proper
basic S-prime subgraphs. They proved that a graph on at least three vertices is either a
basic S-prime graph or can be constructed from such graphs by two special rules.

This characterization prompts us to list all basic S-prime graphs. However, the task seems
to be quite difficult. Lamprey and Barnes (1995) noted that K3 and K2,3 are the only basic
S-prime graphs on at most six vertices and provided two more sporadic examples, one of
them shown on the left of Figure 6.2.

Klavžar, Lipovec, and Petkovšek (2002) proved that basic S-prime graphs are precisely

1S stands for subgraph.
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FIGURE 6.2 Basic S-prime graphs.

the graphs on at least three vertices that contain no proper S-prime subgraph on at least
three vertices. Using this simplified definition, an infinite family of basic S-prime graphs
was constructed. The line of research was continued by Brešar (2004), who gave several
characterizations of basic S-prime graphs. This in particular enabled him to construct several
infinite families of basic S-prime graphs. (The graph on the right of Figure 6.2 is an example
from such a series.) Moreover, there exist basic S-prime graphs of arbitrary diameter. (The
one in the figure has diameter 4.) Brešar also noticed that the graph on the left of Figure 6.2
is the only known basic S-prime graph that is 3-connected; he posed the problem of whether
there are more such graphs, in particular whether the number of such graphs is finite.

The above investigations lend the impression that the variety of basic S-prime graphs is
probably too complicated to allow a clear classification.

Vertex labelings

Let X be a graph and c : V (X) → {1, 2, . . . , k} a surjective mapping. A nontrivial path
P of X is well-colored if c(u) 6= c(v) holds for any consecutive vertices u and v of P . The
mapping c is a path k-coloring if c(u) 6= c(v) holds for any well-colored u, v-path of X . Using
this concept, Klavžar et al. (2002) characterized S-composite graphs as follows:

Theorem 6.23 Let X be a connected graph on at least three vertices. Then X is S-
composite if and only if there exists a path k-coloring of X with 2 ≤ k ≤ |V (X)| − 1.

Proof Let X be S-composite. Then X is a subgraph of a Cartesian product G2H such that
X intersects at least two G-layers and at least two H-layers. Let V (G) = {g1, . . . , gk} and
V (H) = {h1, . . . , h|V (H)|}. Consider X as a subgraph of G2H and for a vertex (gi, hj) ∈
V (X) set c(gi, hj) = i. Then c : V (X) → {1, . . . , k}. An arbitrary well-colored path P of
X (with respect to the labeling c) must necessarily lie within a fixed G-layer. But then
the endvertices of P have different labels. So c is a path k-coloring of X . Clearly, 2 ≤ k ≤
|V (X)| − 1.

For the converse, assume that c is a path k-coloring of X with 2 ≤ k ≤ |V (X)| − 1.
Remove from X all edges uv such that c(u) = c(v) to obtain a spanning subgraph X ′. Let
C1, . . . , Ct be the connected components of X ′. As k ≤ |V (X)| − 1, there are vertices u and
v of X with c(u) = c(v). Then u and v belong to different connected components of X ′ for
otherwise a well-colored u, v-path would exist. It follows that t ≥ 2.

We claim that X is a subgraph of Kk2Kt. Let V (Kn) = {1, . . . , n} and let g : V (X) →
V (Kt) be the natural contraction: for u ∈ Ci, set g(u) = i. Then define

f : V (X) → V (Kk2Kt)
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with

f(u) = (c(u), g(u)) .

The claim follows after verifying that f is injective and that it maps edges to edges. The
details are not difficult and are left to the reader.

Because the image of c consists of at least two elements, X lies in at least two Kt-layers.
The same argument applied to the image of g implies that X lies in at least two Kk-layers.
Hence, X is S-composite. 2

Hellmuth, Gringmann, and Stadler (2011) obtained a (technical) characterization of
path k-colorings in the class of Cartesian products of S-prime graphs. Combining their
characterization with Theorem 6.23, they deduced the following appealing result, where
a diagonalized Cartesian product is a graph obtained from a Cartesian product graph by
adding an edge between two of its diametrical vertices.

Theorem 6.24 A diagonalized Cartesian product of S-prime graphs is S-prime.

Edge labelings

Klavžar and Peterin (2005) showed that S-composite graphs can also be characterized in
terms of edge labelings:

Theorem 6.25 Let X be a connected graph. Then X is S-composite if and only if E(X)
can be labeled with two labels such that on any induced cycle of X on which both labels
appear, the labels change at least three times while passing the cycle.

One direction of the proof of Theorem 6.25 is easy. First observe (Exercise 6.15) that
it suffices to consider nontrivial subgraphs of products of complete graphs. Then, if X is
a subgraph of Kk 2Kt, label its edges that project to Kk with 1 and the remaining edges
with 2. The other direction uses techniques similar to those that will be introduced for the
canonical isometric embedding in Chapter 13.

In the above paper, characterizations via edge labelings are also obtained for induced
and isometric subgraphs of Cartesian products of complete graphs.

Exercises

6.1. Prove the converse of Lemma 6.5.

6.2. Let G be a connected graph with a vertex that is contained in no square of G. Show
that G is prime with respect to the Cartesian product. Find an example of a graph
demonstrating that the converse is not true in general.

6.3. (Imrich, 1972b) Show that the complement of a Cartesian product of a graph on
at least ten vertices is prime.

6.4. Show that the automorphism group of the graph in Figure 6.1 is Z3
2.

6.5. Give an example of two nonisomorphic connected graphs G and H for which
Aut(G2H) is not the direct product Aut(G) × Aut(H).
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6.6. Let G be a connected graph on at least ten vertices with automorphism group A.
Construct a graph whose group is the direct product A×A.

6.7. Let n, k, and m be integers with k ≤ n. Prove that there exists a homomorphism
C2k+1 2C2n+1 → C2m+1 if and only if k = m.

6.8. (Baron, 1968) For a connected graph G, the tree graph of G is defined on the set of
spanning trees of G. Two spanning trees S, T of G are adjacent in the tree graph if
there are edges e ∈ E(S) and f ∈ E(T ), such that T = (S \e) ∪ f . Also, a subgraph
of G is a block of G if it is a maximal subgraph without cut vertices or edges whose
removal increases the number of components.

Show that the tree graph of a graph G is the Cartesian product of the tree graphs
of the blocks of G.

6.9. Let G be a cycle. Show that the tree graph of G (as defined in Exercise 6.8) is prime.

6.10. (Nowakowski and Rival, 1988) Let G be a connected graph such that each edge of
G is in a triangle and H be a connected triangle-free graph. Show that any retract
of G2H is a box.

6.11. Show that every graph G with a prime number of connected components is prime
if and only if the connected components of G have no common nontrivial factor.

6.12. Show that the prime factorization of every graph with a prime number of connected
components is unique with respect to the Cartesian product.

6.13. Show that the prime factorization of every graph G with at most five connected
components is unique with respect to the Cartesian product.

6.14. Show that K1, K1 +K1, and K2 are the only �-S-prime graphs the only ◦-S-prime
graphs.

6.15. Show that a graph is S-composite if and only if it is a nontrivial subgraph of the
Cartesian product of two complete graphs.
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This chapter treats prime factorizations and automorphisms of the strong product of graphs.
As in the Cartesian case, prime factorization is unique for connected graphs, but not neces-
sarily for disconnected ones. Again, there is a strong connection between the automorphism
group of a graph and the automorphism groups of its prime factors. For so-called S-thin
graphs, the relationship is the same as in the case of the Cartesian product.

The main theorems in this chapter are special cases of results about the direct product
that will be proved in Chapter 8. Nonetheless, we prove them directly here. The proofs are
shorter and provide a different perspective.

7.1 Basic Properties and S-Thin Graphs

We defined the strong product in Section 4.1 and studied its distance and connectedness
properties in Section 5.2. We begin this section with remarks about the existence and non-
uniqueness of prime factorizations. Then we motivate the introduction of S-thin graphs and
derive several of their basic properties.

Recall that every nontrivial graph has a prime factorization with respect to any of the
standard products, because a graph on n vertices cannot have more than log2 n nontrivial
factors, and so any factorization into a product of nontrivial graphs with a maximal number
of factors is a prime factorization; the proof is the same as that of Proposition 6.1.

Prime factorization need not be unique for disconnected graphs. To see this, consider

(K1 +K2 +K�,2
2 ) � (K1 +K�,3

2 ) = (K1 +K�,2
2 +K�,4

2 ) � (K1 +K2) .

By arguments similar to those for the Cartesian product (as in the proof of Theorem 6.2),
we see that the factors on the left- and right-hand sides are prime.

Despite the many similarities between the Cartesian and the strong product there are
several important differences. The fact that the diameter of a strong product is the maximum
of the diameters of the factors and not the sum of the diameters, as in the case of the
Cartesian product, is the first remarkable difference. As we saw in Exercise 4.6, closed
neighborhoods in strong products are boxes, that is,

NG�H [(g, h)] = NG[g] ×NH [h] , (7.1)

unlike the case of the Cartesian product. We will see that this implies that coordinatization

79
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in strong products may not be unique, and this will motivate the introduction of S-thin
graphs.

For another difference between the strong product and the Cartesian product, we note
that layers in a strong product need not be convex. (See Figure 7.1.) Because the convexity
of layers was essential in our approach to the unique prime factorization of connected graphs
over the Cartesian product, we must follow a different approach here. Nonetheless, layers
in strong products are isomorphic to the factors. By the Distance Formula (Corollary 5.5),
they are also isometric.

FIGURE 7.1 P4 � P5.

As an example for nonunique coordinatization consider K4 = K2�K2. Figure 7.2 shows
the three different ways of representing K4 as a nontrivial product. They correspond to the
three ways of choosing a pair of independent edges in K4.

FIGURE 7.2 Squares in K4 = K2 �K2.

For a more general example, consider Kmn = Km � Kn. Here any two partitions
U1, U2, . . . , Un and V1, V2, . . . , Vm of V (Kmn) that satisfy |Ui ∩ Vj | = 1 for 1 ≤ i ≤ n
and 1 ≤ j ≤ m can be considered as the vertex sets of the Km- and Kn-layers of Km �Kn.

Let us call the edges of G = G1 � G2 � · · · � Gk that differ in exactly one coordinate
Cartesian, and the others non-Cartesian. In other words, the Cartesian edges correspond

to the edges of �
k
i=1Gi ⊆ G1 �G2� · · ·�Gk. By the above examples, the set of Cartesian

edges depends on the factorization.
But under certain conditions, the set of Cartesian edges of a product is intrinsic, that

is, preserved under automorphisms of the graph. This is the case for P4 � P5 in Figure 7.1.
We will treat this in more detail in Section 7.2. There the set of Cartesian edges plays an
important role in decomposition algorithms of graphs with respect to the strong product.

The above examples illustrate the general fact that if two vertices of a graph have the
same closed neighborhood, then their transposition is an automorphism. Such an automor-
phism need not respect the layers, and that is why layers cannot be uniquely coordinatized.
This motivates a definition. We say vertices x, y of a graph G are in the relation S, written
xSy, provided that N [x] = N [y]. (We write SG if there is a chance of ambiguity.) The next
result (whose proof is Exercise 7.1) summarizes some essential features of this relation.
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Proposition 7.1 If G ∈ Γ, then S is an equivalence relation on V (G). The equivalence
classes induce complete subgraphs of G. Given classes U and V , either all vertices of U are
adjacent to all vertices of V , or all vertices of U are nonadjacent to all vertices of V .

Given a vertex x of G, we denote the S-equivalence class containing x as

[x] = {x′ ∈ V (G) |NG[x′] = NG[x]}.

We define the quotient G/S in the usual way. Specifically,

V (G/S) = {[x] | x ∈ V (G)} ,

and distinct classes [x] and [y] are adjacent if x′y′ ∈ E(G) for some x′ ∈ [x] and y′ ∈ [y].
Observe that Proposition 7.1 implies [x][y] ∈ E(G/S) if and only if xy ∈ E(G) and [x] 6= [y].

We say G is S-thin if G/S = G, that is, if its S-equivalence classes are single vertices.
Note that G/S is S-thin for any graph G. The next lemma shows that the S-classes of a
product G�H are precisely the sets U ×V , where U is an S-class of G and V is an S-class
of H . One significant consequence of the lemma is that a graph is S-thin if and only if all
of its factors with respect to the strong product are S-thin.

Lemma 7.2 If G and H are graphs, then V ((G�H)/S) = {[x]×[y] | x ∈ V (G), y ∈ V (H)}.
Moreover, the map [(x, y)] 7→ ([x], [y]) is an isomorphism (G�H)/S → G/S �H/S.

Proof To see that V ((G�H)/S) = {[x] × [y] | x ∈ V (G), y ∈ V (H)}, just observe

(x′, y′) ∈ [(x, y)] ⇐⇒ NG�H [(x′, y′)] = NG�H [(x, y)]

⇐⇒ NG[x′] ×NH [y′] = NG[x] ×NH [y]

⇐⇒ NG[x′] = NG[x] and NH [y′] = NH [y]

⇐⇒ x′ ∈ [x] and y′ ∈ [y]

⇐⇒ (x′, y′) ∈ [x] × [y].

Therefore, [(x, y)] = [x] × [y], and the assertion follows.
By Proposition 7.1 and the remarks that follow, we have [(x, y)][(x′, y′)] ∈ E((G�H)/S),

if and only if (x, y)(x′, y′) ∈ E(G�H) and [(x, y)] 6= [(x′, y′)], if and only if (x, y)(x′, y′) ∈
E(G�H) and [x] 6= [x′] or [y] 6= [y′], if and only if ([x], [y])([x′], [y′]) ∈ E(G/S �H/S). 2

7.2 Cliques and the Extraction of Complete Factors

The principal idea followed in this chapter for the investigation the factorizations of graphs
over the strong product is a careful examination of the mapping of cliques by isomorphisms
between two composite graphs. We begin with the following observation.

Lemma 7.3 Let G and H be graphs and Q a clique of G�H. Then Q = pG(Q) � pH(Q),
where pG(Q) and pH(Q) are cliques of G and H, respectively.

Proof Clearly, pG(Q) and pH(Q) are complete subgraphs of G and H , respectively. (See
Figure 7.3.) Thus there is a clique QG of G with pG(Q) ⊆ QG and a clique QH of H with
pH(Q) ⊆ QH . Because Q ⊆ QG � QH and since Q is a maximal complete subgraph, we
infer that Q = QG �QH . Moreover, QG = pG(Q) and QH = pH(Q). 2
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G

H

pH(Q)

pG(Q)

Q

G � H

FIGURE 7.3 Clique of a strong product.

Lemma 7.4 Let G be a graph, Q a clique of G and v ∈ V (G). Furthermore, let Qv denote
V (Q) if v ∈ V (Q) and V (G) \ V (Q) otherwise. Then the S-equivalence class [v] is

[v] =
⋂

Q∈Q

Qv ,

where Q denotes the set of all cliques of G.

In other words, the S-equivalence class of a vertex v is the intersection of all cliques that
contain v with the complements of all cliques that do not contain v.

Proof If u is a vertex with v S u, then u and v are clearly contained in the same cliques.
So Qv = Qu for all cliques Q, and [v] ⊆ ⋂Q∈Q Qv.

On the other hand, let u ∈ ⋂Q∈Q Qv. If u is different from v, it must be adjacent to v;

otherwise, there is a clique containing v but not u and u 6∈ ⋂Q∈Q Qv. This is also the case
if there exists a vertex w that is adjacent to only one vertex of the pair u, v. Thus, v S u
and

⋂
Q∈Q Qv ⊆ [v]. 2

For an S-thin graph G, Lemma 7.4 implies that
⋂

Q∈Q Qv is the one-element set {v}.

Lemma 7.5 If G ∼= Kk � H, then k divides |U | for any U ∈ V (G/S). Conversely, if k
divides |U | for all U ∈ V (G/S), then there is a graph H for which G ∼= Kk �H.

Proof If G ∼= Kk �H , then Lemma 7.2 implies that V (G/S) = {V (Kk)×U |U ∈ V (H)}.
Conversely, suppose G is such that k divides |U | for all U ∈ V (G/S). Fix a labeling of

the vertices of each U by ordered pairs (i, Uj), so that

U =

{
(i, Uj) | 1 ≤ i ≤ k, 1 ≤ j ≤ |U |

k

}
.

Then G = Kk �H , where V (Kk) = {1, 2, . . . , k} and H is the graph with vertices V (H) =
{Uj | U ∈ V (G/S), 1 ≤ j ≤ |U |/k}, and E(H) = {UjV` | U = V or UV ∈ E(G/S)}. 2

Before continuing, we note the following simple but useful proposition on isomorphisms.
The proof makes repeated use of the definitions and Proposition 7.2.

Proposition 7.6 Two graphs G and H are isomorphic if and only if
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(i) There is an isomorphism π : G/S → H/S, and
(ii) |U | = |π(U)|, for all U ∈ V (G/S).

Proof Suppose ϕ : G → H is an isomorphism. Then ϕ([x]) = [ϕ(x)], so |[x]| = |[ϕ(x)]|.
Define π : G/S → H/S by π([x]) = [ϕ(x)]. One checks easily that π satisfies (i) and (ii).

Conversely, suppose (i) and (ii) hold. For [x] ∈ V (G/S), let ϕ[x] : [x] → π([x]) be a
bijection. Then ϕ : V (G) → V (H), defined by ϕ|[x] = ϕ[x], is an isomorphism. 2

Lemma 7.7 For any integer k ≥ 1, if Kk �G ∼= Kk �H, then G ∼= H.

Proof Suppose there is an isomorphism ϕ : Kk �G → Kk �H . We just need to produce
an isomorphism π : G/S → H/S satisfying condition (ii) of Proposition 7.6. Recall that the
S-classes of Kk �G have form V (Kk) × U , for U ∈ V (G/S), and the S-classes of Kk �H
have form V (Kk)×V , for V ∈ V (H/S). Thus ϕ sends any S-class V (Kk)×U to an S-class
V (Kk)×π(U). Clearly, π : G/S → H/S is a bijection and |U | = |π(U)|, as both cardinalities
equal |V (Kk) × U |/k. It is straightforward to check that π is an isomorphism. 2

In Section 10.2 we will see that Lemma 7.7 is a special case of a cancellation theorem
for the lexicographic product, that is, of Theorem 10.8.

It will be convenient to say a graph G divides a graph H with respect to a given graph
product if G is a factor of H with respect to this product. If not explicitly stated, it should
be clear from the context which product is meant.

Lemma 7.8 If Km �G ∼= Kn �H and neither G nor H is divisible by Kk for any k > 1,
then m = n and G ∼= H.

Proof As G is not divisible by any Kk for k > 1, Lemma 7.5 implies that the numbers
in the set {|U | | U ∈ G/S} are relatively prime. By the same reasoning, the numbers in
{|V | | V ∈ H/S} are relatively prime. But because Km �G ∼= Kn �H and the S-classes of
Km �G have form V (Km) × U for U ∈ G/S (and similarly for Km �H), we get

{m|U | | U ∈ G/S} = {n|V | | U ∈ H/S}.

It follows that m = n. An application of Lemma 7.7 completes the proof. 2

Before proving unique prime factorization for connected graphs, we note that the fun-
damental theorem of arithmetic combined with the equation Km �Kn = Kmn implies that
complete graphs have unique prime factorizations. Indeed, if an integer p has prime factor-
ization p = p1p2 · · · pk, then Kp factors uniquely into primes as Kp = Kp1

�Kp2
� · · ·�Kpk

.

7.3 Unique Prime Factorization for Connected Graphs

In the case of Cartesian products, we have seen that automorphisms preserve layers with
respect to prime factors of a connected graph. The situation for the strong product is
different. It will be convenient to make the layers thicker and to define so-called towers.

Let G be a graph and H ′ a subgraph of H . The G-tower over H ′ is the subproduct
G �H ′ of G �H . More generally, if G = G1 �G2 � · · · �Gn, we define the Gk-tower in
G as the product of Gk by a subgraph of G1 �G2 � · · ·�Gk−1 �Gk+1 � · · ·�Gn.

Lemma 7.9 Let ϕ : G�H → G′�H ′ be an isomorphism and T be a G-tower over a clique
Q of H. If G and H are connected, then ϕ(T ) is a box of G′ �H ′.
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Proof The Distance Formula (Corollary 5.5) implies that T is an isometric subgraph of
G �H , so ϕ(T ) is an isometric subgraph of G′ �H ′. This means that ϕ(T ) is an induced
subgraph.

It is straightforward to check that ϕ(T ) is a subgraph of pG′(ϕ(T )) � pH′(ϕ(T )). We
need to show ϕ(T ) = pG′(ϕ(T ))�pH′(ϕ(T )). As ϕ(T ) is induced, we just need to show that
each vertex of B = pG′(ϕ(T )) � pH′(ϕ(T )) belongs to ϕ(T ).

Thus let (g, h) be a vertex of B. Then ϕ(T ) must have vertices of form (g, h′) and (g′, h).
We will use induction on the distance from (g, h′) to (g′, h) to show that (g, h) ∈ ϕ(T ).

First suppose the distance is 1. Then the edge ϕ−1(g, h′)ϕ−1(g′, h) of T lies in some
clique Q′′ � Q in T , where Q′′ is a clique in G. Thus ϕ(Q′′ � Q) ⊆ ϕ(T ) is a clique in
G′ �H ′. By Lemma 7.3, ϕ(Q′′ �Q) is a box in G′ �H ′, and because this box contains the
edge (g, h′)(g′, h), it also contains (g, h). Thus (g, h) ∈ ϕ(T ).

Now suppose d((g, h′), (g′, h)) > 1. Because ϕ(T ) is connected and isometric, it has a
shortest path (g, h′)(x, y) . . . (g′, h). The induction hypothesis applied to paths (g, h′)(x, y)
and (x, y) . . . (g′, h) yields (g, y), (x, h) ∈ ϕ(T ). Corollary 5.5 gives d((g, y), (x, h)) <
d((g, h′), (g′, h)), and the induction hypothesis once more gives (g, h) ∈ ϕ(T ). 2

Lemma 7.10 Let G � H be connected and ϕ : G � H → G′ � H ′ an isomorphism. If
G is prime and not complete, then either all images of G-towers over cliques of H lie in
G′-towers over cliques of H ′ or all lie in H ′-towers over cliques of G′.

Proof Let T be a G-tower over a clique Kk of H . We first show that ϕ(T ) is contained in
a G′-tower over a clique of H ′ or in an H ′-tower over a clique of G′.

By Lemma 7.9, we have ϕ(T ) = A � B, where A ⊆ G′ and B ⊆ H ′. Moreover, by
Lemma 7.8, we can uniquely represent A and B in the form

A ∼= Kn �A′ and B ∼= Km �B′,

where A′ and B′ are not divisible by a Kp for any p > 1. Hence

A�B ∼= Kk �G ∼= (Kn �Km) � (A′ �B′).

By Lemma 7.5, the greatest common divisor of the cardinalities of the vertices of A′/S
and of the cardinalities of the vertices of B′/S is 1. By Lemma 7.2, the same holds for the
cardinalities of the vertices of (A′ �B′)/S. Invoking Lemma 7.5 again, we see that A′ �B′

is not divisible by a Kp for any p > 1. But then Lemma 7.8 implies that G ∼= A′ � B′.
Because G is prime, A′ or B′ must be the one vertex graph, and hence A or B complete.

It remains to show that G-towers are either all mapped into G′-towers or all mapped into
H ′-towers. Assume that this is not the case. Then, because G �H is connected, there are
G-towers T1 over Q1 and T2 over Q2 such that ϕ(T1) lies in an H ′-tower over Q′

1, ϕ(T2) in a
G′-tower over Q′

2, and ϕ(T1) ∩ ϕ(T2) 6= ∅. Note that ϕ(T1) ∩ ϕ(T2) is contained in Q′
1�Q

′
2

and thus complete. However, the preimage of ϕ(T1) ∩ ϕ(T2) is T1∩T2 = G� (Q1∩Q2). But
G is not complete by assumption, so T1 ∩ T2 cannot be complete either, a contradiction. 2

Lemma 7.11 Under the assumptions of Lemma 7.10, suppose that the images of G-towers
over cliques of H lie in G′-towers over cliques of H ′. Then G divides G′.

Proof Let T be a G′-tower over a clique Q of H ′. Then the preimages of the cliques of T
lie in G-towers T1, T2, . . . , Ts over cliques Q1, Q2, . . . , Qs of H . By Lemma 7.10,

T = ϕ(T1) ∪ ϕ(T2) ∪ · · · ∪ ϕ(Ts).

Let R = Q1 ∪Q2 ∪ · · · ∪Qs. Then

G′ �Q = T ∼= G�R.
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As G is prime, Lemma 7.5 implies that R ∼= Q�G′′ for some G′′, so G′�Q ∼= G�(Q�G′′) ∼=
(G�G′′) �Q. By Lemma 7.7, we can cancel Q, which completes the proof. 2

Lemma 7.12 Suppose ϕ is an isomorphism from the connected graph G � H to G′ =
G1 �G2 � · · ·�Gk. Suppose also that G1, G2, . . . , Gk are prime and that G is prime but
not complete. Then for some Gi, the images of G-towers over cliques of H are Gi-towers
over cliques of the product G1 � · · ·�Gi−1 �Gi+1 � · · ·�Gk.

Proof Let T be a G-tower over a clique Q of H , and suppose that Q1 and Q2 are cliques
of T with nonempty intersection. Then ϕ(Q1) and ϕ(Q2) are cliques of G′. By Lemma 7.3,
their projections to the factors Gi are cliques. Clearly, as Q1 6= Q2, there exists an index
i with pGi(ϕ(Q1)) 6= pGi(ϕ(Q2)). Set H ′ = G1 � · · · � Gi−1 � Gi+1 � · · · � Gk. Then
G′ = Gi �H ′.

We claim that pGj(ϕ(Q1)) = pGj (ϕ(Q2)) for any j 6= i. Suppose that this is not the case.
Then pH′(ϕ(Q1)) 6= pH′(ϕ(Q2)), and because G′ = H ′ �Gi, the cliques ϕ(Q1) and ϕ(Q2)
belong to different Gi-towers and different H ′-towers, in contradiction to Lemma 7.10. This
proves the claim and that ϕ(T ) lies in a Gi-tower. Moreover, because Gi is prime, ϕ(T ) is a
Gi-tower over a clique of H ′ by Lemma 7.11. An application of Lemma 7.10 completes the
proof. 2

Lemma 7.13 Under the assumptions of Lemma 7.12, there is an i such that G ∼= Gi and
H ∼= G1� · · ·�Gi−1�Gi+1 � · · ·�Gk. In other words, if G�H ∼= G�H ′, and G is prime
but not complete, then H ∼= H ′.

Proof By Lemma 7.12, there exists a Gi such that the images of G-towers over cliques of
H are Gi-towers over cliques of

H ′ = G1 � · · ·�Gi−1 �Gi+1 � · · ·�Gk.

By Lemma 7.11, the graph G divides Gi and as G is prime, G ∼= Gi.
LetBj be a vertex ofH/S. Let QH denote the set of cliques in H . ThenBj =

⋂
Q∈QH

Qv

for any v ∈ Bj , and it is not difficult to see that the vertices of H ′/S are

B′
j = pH′


 ⋂

Q∈QH

ϕ
(
Qv × V (G)

)

 .

Moreover, the assignment Bj 7→ B′
j satisfies conditions (i) and (ii) of Proposition 7.6, so

H ∼= H ′. 2

Theorem 7.14 Every connected graph has unique prime factor decomposition over the
strong product.

Proof Suppose a graph G has prime factor decompositions G1� · · ·�Gk and G′
1� · · ·�G′

`.
We may assume that Gr+1, . . . , Gk and G′

s+1, . . . , G
′
` are complete, and the other factors

are not complete. Hence G1 � · · ·�Gr and G′
1 � · · ·�G′

s are not divisible be a nontrivial
complete graph, and thus, by Lemma 7.8,

G1 � · · ·�Gr
∼= G′

1 � · · ·�G′
s

and
Gr+1 � · · ·�Gk

∼= G′
s+1 � · · ·�G′

`.
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As prime factorization is unique for complete graphs, the graphs Gr+1, . . . , Gk coincide
with the graphs G′

s+1, . . . , G
′
`. Finally, Lemma 7.13 implies that the G1, . . . , Gr coincide

with the graphs G′
1, . . . , G

′
s. 2

This proof of the unique prime factor decomposition of connected graphs with respect
to the strong product is modeled after the proof presented by Dörfler and Imrich (1970).
At about the same time, McKenzie (1971) published refinement theorems for product rep-
resentations of infinite relational structures.1 McKenzie’s theorems imply the results of this
chapter, as well as many other results.

7.4 Automorphisms

Every automorphism of a graph G induces an automorphism of G/S. These automorphisms
form a subgroup, say Aut(G)/S, of Aut(G/S). Clearly, we have

|B| = |ϕ(B)|

for every ϕ ∈ Aut(G)/S and every B ∈ G/S.
Conversely, every automorphism ϕ ∈ Aut(G/S) with this property is in Aut(G)/S.

Evidently the elements of Aut(G)/S are exactly those automorphisms of G/S that preserve
the cardinalities of the equivalence classes of S in G.

Because of this close relationship between Aut(G) and Aut(G/S), we will mainly be
concerned with the description of Aut(G/S) in the sequel; that is to say, we will mainly be
concerned with groups of S-thin structures.

By Corollary 7.2, a graph is S-thin if and only if all its factors are S-thin. We show
that the relationship between the automorphism group of a connected S-thin graph and the
groups of its prime factors with respect to the strong product is the same as that in the
case of the Cartesian product.

To see this, it clearly suffices to show that automorphisms of strong products of S-thin
prime graphs preserve layers.

Theorem 7.15 Let G = G1 � G2 � · · · � Gk be the product of connected, S-thin prime
graphs and ϕ an automorphism of G. Then there exists a Gi to every Gj, 1 ≤ i, j ≤ k, such
that ϕ maps every Gj-layer into a Gi-layer.

Proof By Lemma 7.12, there exists a Gi such that ϕ maps every Gj-tower over cliques of
H = G1 � · · ·Gj−1 �Gj+1 � · · ·�Gk into Gi-towers over cliques of H ′ = G1 � · · ·Gi−1 �

Gi+1 � · · ·�Gk.
By Lemma 7.4, every vertex v ∈ V (H) is the unique element of the intersection⋂

Q∈Q Qv. Let Ga
j be the Gj-layer with pH(a) = v. Then Ga

j is the Gj -tower over v

and can be represented in the form
⋂

Q∈Q Qv�Gj . Its image under ϕ is the intersection of

Gi-towers over cliques or complements of cliques in H ′; that is, it is a Gi-tower over a subset
of H ′. This subset must be a one-element set because Gi is prime; it must be a Gi-layer. 2

We are now in a position to prove the analogue to Theorem 6.10.

Theorem 7.16 Suppose ϕ is an automorphism of a connected S-thin graph G with prime

1See Section 31.6.
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factor decomposition G = G1 � G2 � · · · � Gk. Then there exists a permutation π of
{1, 2, . . . , k} and isomorphisms ϕi : Gπ(i) → Gi for which

ϕ(x1, x2, . . . , xk) =
(
ϕ1(xπ(1)), ϕ2(xπ(2)), . . . , ϕk(xπ(k))

)
.

Proof By Theorem 7.15, there is a Gi to every Gj , 1 ≤ i, j ≤ k, such that ϕ maps
every Gj-layer into a Gi-layer. Set j = π(i). Clearly, π is a permutation of the index set
{1, 2, . . . , k}.

Because every Cartesian edge is in some Gi-layer, the automorphism ϕ maps the set of
Cartesian edges of G onto itself. In other words, ϕ maps

k

�
i=1

Gi ⊆
k

�
i=1

Gi

into itself. Because it preserves adjacency and because every Gi-layer is induced, ϕ induces

an automorphism of �
k
i=1Gi that preserves the layer structure. Hence, we can complete

the proof with the same arguments that were used in the proof of Theorem 6.10. 2

As in the case of the Cartesian product, this immediately implies that all automorphisms
of a strong product of connected, S-thin prime graphs are generated by automorphisms and
transpositions of the prime factors. Clearly, this is not the case for a nontrivial strong
product of graphs if at least one factor is not S-thin.

Corollary 7.17 The automorphism group Aut(G) of a connected graph G with nontriv-
ial prime factor decomposition G1 � G2 � · · · � Gk is generated by automorphisms and
transpositions of the prime factors if and only if G is S-thin.

As in the Cartesian case, the automorphism group of a strong product of connected,
S-thin prime graphs is the automorphism group of the disjoint union of its prime factors.
The proof is identical to the proof of Theorem 6.13.

Theorem 7.18 The automorphism group of the strong product of connected, S-thin prime
graphs is isomorphic to the automorphism group of the disjoint union of the factors.

We continue with several other results about the automorphism groups of strong prod-
ucts that are similar to the ones in the Cartesian case. First, consider Theorem 6.17, which
states that a Cartesian product has transitive group if and only if every factor has transi-
tive group. It immediately carries over to S-thin strong products. Because a graph G has
transitive group if and only if all equivalence classes of SG have the same cardinality and if
G/S has transitive group, we even have the following result:

Theorem 7.19 A strong product has transitive automorphism group if and only if every
factor has transitive automorphism group.

Similar to the case of the Cartesian product, we also infer the following corollary:

Corollary 7.20 The automorphism group of a connected graph G with prime factor de-
composition G1 � G2 � · · · � Gk is regular if and only if the prime factors are pairwise
nonisomorphic and have regular automorphism groups.

Again one can show that this corollary remains true if the term “regular” is replaced by
“fixed point-free.”

For graphs with Abelian group, we have the following analogue to Corollary 6.20:
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Corollary 7.21 The automorphism group of a connected graph G with prime factor decom-
position G1 �G2 � · · ·�Gk is Abelian if and only if the following conditions are satisfied:

(i) Every prime factor has Abelian automorphism group.
(ii) If G is S-thin, then the prime factors with nontrivial groups are pairwise noniso-

morphic, and there are no three pairwise isomorphic factors with trivial group.
(iii) If G is not S-thin, then G has exactly one prime factor that is not S-thin. All the

other factors are pairwise nonisomorphic and have trivial groups.

The proofs are straightforward and left to the reader.

Exercises

7.1. Prove Proposition 7.1.

7.2. Show that Pk is S-thin for k 6= 2.

7.3. Give an example of a graph G for which Aut(G/S) is different from (Aut(G))/S.

7.4. Determine the number of automorphisms of Pn�Pm, and compare it to the number
of automorphisms of Pn 2Pm.

7.5. Show that every graph with transitive group has unique prime factor decomposition
with respect to the strong product.

7.6. Show that every connected graph G that is decomposable with respect to the strong
product is prime with respect to the Cartesian one (and vice versa).

7.7. Show that G can be prime with respect to the strong product even if G/S is com-
posite.

7.8. Prove Corollary 7.21.
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We defined the direct product of graphs in Chapter 4 and deduced some of its elementary
properties in Section 5.3. Now we explore the problem of prime factorization over this
product. The chapter culminates with a proof that connected nonbipartite graphs in Γ0

factor uniquely into primes in Γ0. However, it is necessary to develop some preliminary
ideas. We first define a relation R that is analogous to the relation S from Chapter 7. We
then define a so-called Cartesian skeleton operation S : Γ0 → Γ that satisfies S(G ×H) =
S(G)2S(H) for R-thin graphs. This allows us to exploit unique factorization over 2 to
prove unique factorization of connected nonbipartite thin graphs over ×. Subsequently we
extend this result to graphs that are not R-thin. Prime factorization leads naturally to a
classification of the automorphisms of direct products.

We close the chapter by showing how these results yield alternative proofs of prime
factorization over the strong product.

8.1 Nonuniqueness of Prime Factorization

Recall that the loop Ks
1 is a unit for the direct product in the sense that Ks

1 ×G ∼= G for
every graph G ∈ Γ0. A graph G is prime with respect to the direct product if it has more
than one vertex and G ∼= G1 ×G2 implies that either G1 or G2 equals Ks

1 .

An expression G ∼= G1×G2×· · ·×Gk, with each Gi prime, is called a prime factorization
of G. By the same argument used for the Cartesian product, we see that every nontrivial
graph has a prime factorization over the direct product. We will prove that this factorization
is unique for connected nonbipartite graphs. But to set the stage—and also to convey the
complexity of the issue—we first examine how uniqueness may fail.

Theorem 8.1 Prime factorization with respect to the direct product is not unique in

(i) The class of graphs with loops at each vertex;
(ii) The class of connected graphs in Γ;

(iii) The class of connected graphs in Γ0.

Proof For the first assertion, let Ks
p denote the graph obtained from Kp by adding a loop at

89
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each vertex. Recall that G×,n denotes the nth direct power of G, and consider the equation

(
Ks

1 +Ks
2 + (Ks

2)×,2
)
×
(
Ks

1 + (Ks
2)×,3

)
=
(
Ks

1 + (Ks
2)×,2 + (Ks

2)×,4
)
× (Ks

1 +Ks
2) .

Equality holds because both sides equal Ks
1 +Ks

2 + (Ks
2)×,2 + (Ks

2)×,3 + (Ks
2)×,4 + (Ks

2)×,5.
The factors involved are prime, by Exercise 8.3.

For (ii), the following equation shows that connected graphs may have nonunique fac-
torizations in Γ:

× = ( × )× = × ( × ) = ×

Here the graph N × ∆ on the left further factors into three terms in Γ0. Applying the
associative property and re-multiplying produces the graph K2×A on the right. Now, N is
prime in Γ, as it could only factor nontrivially as a product of two graphs on two vertices,
yet N 6= K2 ×K2. Turning to the other factors, ∆ and K2 are clearly prime. The graph A
on the right is prime in Γ because it has six vertices, so it could only factor as A = K2 ×G
for some graph G with three vertices. But then A would be bipartite, a contradiction. Thus
N × ∆ and K2 ×A are two different prime factorizations (in Γ) of the same graph.

FIGURE 8.1 Two prime factorizations of C6 in Γ0.

For (iii), Figure 8.1 shows two different prime factorizations of C6 in Γ0. Further, Fig-
ure 8.2 shows a graph with two prime factorizations with different numbers of factors. 2

=

= × ×

×

1 1 1

0 0 0

1

0

01

2
3

000

111

011

100110

101

010

001

00

12

02

1011

13

03

01

FIGURE 8.2 Two prime factorizations with a different number of prime factors.
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8.2 R-Thin Graphs

Having noted the failure of prime factorization over the direct product, we now prepare for
the proof that connected nonbipartite graphs in Γ0 decompose uniquely into prime factors
in Γ0. One issue that arises here and elsewhere is the notion of so-called R-thinness.

To motivate this topic, recall that the layers of the prime factorization of a connected
graph over the Cartesian product are uniquely determined. This is not so with the direct
product, as is illustrated in Figure 8.3. The figure shows a graph G that has different
coordinatizations with respect to a prime factorization. In one case, the sets {1, a, 2} and
{3, b, 4} are layers, and in the other case, sets {1, b, 2} and {3, a, 4} are layers.

1 2 3 4

a b 1 a 2

3 b 4

1 b 2

3 a 4

G

FIGURE 8.3 Layers of a prime factorization of a graph G are not unique.

A closer look at the figure reveals the source of the problem. Vertices a and b have the
same neighborhood {1, 2, 3, 4}, so their positions in the factorization can be interchanged.

Evidently, then, the existence of vertices with identical neighborhoods complicates the
discussion of prime factorizations over the direct product. To overcome this difficulty, we
introduce a relation R on the vertices of a graph. Two vertices x and x′ of a graph G are
in relation R, written xRx′, precisely if NG(x) = NG(x′). (For clarity, we may occasionally
write RG for R.) It is a simple matter (Exercise 8.4) to show that R is an equivalence
relation on V (G). (For example, the equivalence classes for G in Figure 8.3 are {a, b} and
{1, 2, 3, 4}.) We easily see that the subgraph induced on an R-equivalence class is either
totally disconnected or is a complete graph with loops at each vertex.

We denote the quotient (in Γ0) of G by its R-equivalence classes as G/R. For example,
G/R = K2 for the graph G in Figure 8.3. Also, if G is a complete graph with loops at each
vertex, then G/R = Ks

1 , while Kn/R = Kn and Dn/R = K1.

A graph is called R-thin if all of its R-equivalence classes contain just one vertex. In this
case, G/R ∼= G. The reader should check that G/R is R-thin for any G ∈ Γ0 (Exercise 8.5).

Given x ∈ V (G), let [x] = {x′ ∈ V (G) |NG(x′) = NG(x)} denote the R-equivalence
class containing x. Because the relation R is defined entirely in terms of adjacencies, it is
clear that given an isomorphism ϕ : G → H , we have xRGy if and only if ϕ(x)RHϕ(y).
Thus ϕ maps equivalence classes of RG to equivalence classes of RH , and, in particular,
ϕ([x]) = [ϕ(x)].

We now collect a number of relevant results concerning quotients G/R.

Lemma 8.2 Suppose G ∈ Γ0. Then xy ∈ E(G) if and only if [x][y] ∈ E(G/R).

Proof If xy ∈ E(G), then [x][y] ∈ E(G/R) by the definition of G/R. Conversely, let [x][y] ∈
E(G/R), so there is an edge x′y′ ∈ E(G) with x′ ∈ [x] and y′ ∈ [y]. Thus N(x′) = N(x) and
N(y′) = N(y). Because x′y′ ∈ E(G), we have x′ ∈ N(y′) = N(y), hence y ∈ N(x′) = N(x),
so xy ∈ E(G). 2
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Proposition 8.3 For any isomorphism ϕ : G→ H, there is a corresponding isomorphism

ϕ̃ : G/R → H/R, defined as ϕ̃([x]) = [ϕ(x)]. Moreover, ϕ̃−1 = ϕ̃−1.

Proof As the isomorphism ϕ : G → H maps R-classes onto R-classes, the map ϕ̃ is well-
defined and bijective. Using Lemma 8.2, we have [x][y] ∈ E(G/R) if and only if xy ∈ E(G),
if and only if ϕ(x)ϕ(y) ∈ E(H), if and only if [ϕ(x)][ϕ(y)] ∈ E(H/R), if and only if
ϕ̃([x])ϕ̃([y]) ∈ E(H/R).

To see that ϕ̃−1 = ϕ̃−1, observe ϕ̃−1ϕ̃([x]) = ϕ̃−1([ϕ(x)]) = [ϕ−1ϕ(x)] = [x], and likewise

ϕ̃ϕ̃−1([x]) = [x]. 2

In general, the converse of Proposition 8.3 is false: if G/R ∼= H/R, then it is not neces-
sarily the case that G ∼= H . (For example, P2/R ∼= P3/R.) However, by adding an additional
constraint, we do get the following characterization.

Proposition 8.4 Suppose G,H ∈ Γ0. Then G ∼= H if and only if G/R ∼= H/R and there is
an isomorphism ϕ̃ : G/R → H/R with |X | = |ϕ̃(X)| for each X ∈ V (G/R). In fact, given
an isomorphism ϕ̃ : G/R → H/R, any map ϕ : V (G) → V (H) that restricts to a bijection
ϕ : X → ϕ̃(X) for every X ∈ G/R is an isomorphism from G to H.

Proof Given an isomorphism ϕ : G → H , let ϕ̃ : G/R → H/R be the isomorphism from
Proposition 8.3. Then for each [x] ∈ V (G/R), we have |[x]| = |[ϕ(x)]| = |ϕ̃([x])|.

Conversely, suppose there is an isomorphism ϕ̃ : G/R → H/R with |X | = |ϕ̃(X)| for
each X ∈ V (G/R). Let ϕ : G→ H be any map that carries each X bijectively onto ϕ̃(X),
so ϕ([x]) = ϕ̃([x]). Then ϕ is bijective, and it is an isomorphism: xy ∈ E(G) if and only if
[x][y] ∈ E(G/R), if and only if ϕ̃([x])ϕ̃([y]) ∈ E(H/R), if and only if ϕ([x])ϕ([y]) ∈ E(H/R),
if and only if ϕ(x)ϕ(y) ∈ E(H). (Lemma 8.2 was used in the first and last equivalence.) 2

The next proof (and many that follow) uses the fact NG×H((x, y)) = NG(x) × NH(y),
which was proved in Exercise 4.5.

Proposition 8.5 If graphs G and H in Γ0 have no isolated vertices, then V
(
(G×H)/R

)
=

{X × Y | X ∈ V (G/R), Y ∈ V (H/R)}. In particular, [(x, y)] = [x] × [y]. Furthermore,
(G×H)/R ∼= G/R×H/R, and [(x, y)] 7→ ([x], [y]) is an isomorphism.

Proof Consider an arbitrary vertex [(x, y)] of (G×H)/R, and note the following:

(x′, y′) ∈ [(x, y)] ⇐⇒ NG×H((x′, y′)) = NG×H((x, y))

⇐⇒ NG(x′) ×NH(y′) = NG(x) ×NH(y)

⇐⇒ NG(x′) = NG(x) and NH(y′) = NH(y)

⇐⇒ x′ ∈ [x] and y′ ∈ [y]

⇐⇒ (x′, y′) ∈ [x] × [y] .

(The third equivalence uses the fact that there are no isolated vertices.) Thus [(x, y)] =
[x] × [y]. To finish the proof, we show that[(x, y)] 7→ ([x], [y]) is an isomorphism. Using
Lemma 8.2,

[(x, y)][(x′, y′)] ∈ E
(
(G×H)/R

)
⇐⇒ (x, y)(x′, y′) ∈ E(G ×H)

⇐⇒ xx′ ∈ E(G) and yy′ ∈ E(H)

⇐⇒ [x][x′] ∈ E(G/R) and [y][y′] ∈ E(H/R)

⇐⇒ ([x], [y])([x′], [y′]) ∈ E(G/R×H/R).

The proof is now complete. 2
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We make two important remarks. First, the equation (G ×H)/R ∼= G/R ×H/R from
Proposition 8.5 implies that a direct product is R-thin if and only if each factor is R-thin.

Second, the three above propositions, taken together, imply that any isomorphism ϕ :
G1 × · · · ×Gk → H1 × · · · ×H` of form

ϕ(x1, . . . , xk) =
(
ϕ1(x1, . . . , xk), . . . , ϕ`(x1, . . . , xk)

)

induces an isomorphism ϕ̃ : G1/R× · · · ×Gk/R −→ H1/R× · · · ×H`/R of form

ϕ̃
(
[x1], . . . , [xk]

)
=

(
ϕ̃1([x1], . . . , [xk])], . . . , ϕ̃`([x1], . . . [xk])

)

=
(

[ϕ1(x1, . . . , xk)] , . . . , [ϕ`(x1, . . . xk)]
)
,

having the property that ϕ maps the R-class [x1] × · · · × [xk] of G1 × · · · × Gk bijectively
to the R-class ϕ̃1([x1], . . . , [xk])] × · · · × ϕ̃`([x1], . . . , [xk]) of H1 × · · · ×H`.

Proposition 8.5 shows that if G factors as G = A × B, then G/R factors as G/R =
A/R×B/R. But conversely, a factorization G/R = A×B does not necessarily correspond
to a factorization of G. However, the following result describes conditions under which
G/R = A×B yields a factorization G = A′ ×B′ with A ∼= A′/R and B ∼= B′/R.

Proposition 8.6 Suppose G ∈ Γ0 has no isolated vertices, and G/R ∼= A× B. Then each
vertex (x, y) ∈ V (A × B) labels a unique R-class of G, and we denote its cardinality as
|(x, y)|. If there are functions α : V (A) → N and β : V (B) → N with |(x, y)| = α(x) · β(y),
then there are graphs A′ and B′ for which G ∼= A′ × B′. Further, there are isomorphisms
α̂ : A→ A′/R and β̂ : B → B′/R with |α̂(x)| = α(x) and |β̂(y)| = β(y).

Proof Suppose G/R ∼= A × B, and let α and β be as stated. Notice that A and B are
R-thin, by Proposition 8.5.

Define A′ as follows. Take a family {Ux | x ∈ V (A)} of disjoint sets such that |Ux| = α(x)
for each x ∈ V (A). Put V (A′) =

⋃
x∈V (A) Ux, and say that a vertex in Ux is adjacent to a

vertex in Uy if and only if xy ∈ E(A). (Thus Ux induces a Ks
α(x) in A′ if xx is a loop in A;

otherwise Ux induces a Dα(x).) As A is R-thin, it is easy to verify that the R-classes of A′

are precisely the sets Ux, and α̂ : x 7→ Ux is an isomorphism A→ A′/R with |α̂(x)| = α(x).

ConstructB′ and β̂ similarly, that is, V (B′) =
⋃

y∈V (B) Vy and β̂ : y 7→ Vy is an isomorphism

B → B′/R.
Consider the following composition of isomorphisms, the second given by Proposition 8.5:

G/R = A×B −→ A′/R×B′/R −→ (A′ ×B′)/R ,
(x, y) 7−→ (Ux, Vy) 7−→ Ux × Vy .

This is an isomorphism G/R→ (A′ ×B′)/R, where each (x, y) ∈ G/R maps to the R-class
Ux × Uy, and |(x, y)| = α(x) · β(y) = |Ux × Vy|. Then G ∼= A′ ×B′, by Proposition 8.4. 2

For the next result, recall that Ks
p denotes the graph Kp with loops added to each vertex.

Corollary 8.7 A graph G ∈ Γ0 factors as G = A ×Ks
p if and only if p divides the order

of each R-class of G.

Proof If G = A×Ks
p, then every R-class of G has form X×V (Ks

p), where X is an R-class
of A, by Proposition 8.5. Therefore p divides the order of each R-class of G.

Suppose p divides the order of eachR-class of G. Put V (Ks
1) = {1}. Observe that G/R =

G/R × Ks
1 , where X ∈ G/R is identified with the pair (X, 1). Define α : V (G/R) → N

as α(X) = |X |/p, and β : V (Ks
1) → N as β(1) = p. Then |(X, 1)| = α(X) · β(1), so

Proposition 8.6 yields G = A′ ×B′. The isomorphism β̂ : Ks
1 → B′/R with |β̂(1)| = p gives

B′ = Ks
p. 2
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8.3 The Cartesian Skeleton

This section defines the Cartesian skeleton S(G) of an arbitrary graph G in Γ0 as a certain
graph having the same vertex set as G. Following the reasoning of Hammack and Imrich
(2009), we prove that S(G) is connected providedG is connected and nonbipartite, and show
that S(G×H) = S(G)2S(H) for R-thin graphs. Ultimately this will allow us to transfer
the unique prime factorization of connected graphs in (Γ, 2 ) to connected nonbipartite
graphs in (Γ0,×). Our point of departure is the Boolean square.

The Boolean square of a graph G is the graph Gs with V (Gs) = V (G) and E(Gs) =
{xy | NG(x) ∩ NG(y) 6= ∅}. Thus, xy is an edge of Gs if and only if G has an x, y-walk
of length two. For example, if G = Kp, then Gs = Ks

p is Kp with a loop added to each
vertex. We note in passing that the adjacency matrix of Gs is the Boolean second power of
the adjacency matrix of G; that is, if G has adjacency matrix A, then the matrix of Gs is
obtained from A2 by replacing each nonzero entry by 1.

Observe that if G has an x, y-walk W of even length, then Gs has an x, y-walk of length
|W |/2 on alternate vertices of W . It follows that Gs is connected if G is connected and
has an odd cycle. (The presence of an odd cycle guarantees an even walk between any two
vertices of G.) On the other hand, if G is connected and bipartite, then Gs has exactly two
components and their respective vertex sets are the two partite sets of G.

K

H

G = H × K

x′ x

z′ z y′ y

FIGURE 8.4 Graphs H , K, and G = H ×K (solid) and their Boolean squares (dashed).

Figure 8.4 shows three graphs H,K, and G = H×K together with their Boolean squares
Hs, Ks, and (H×K)s. Notice that (H×K)s = Hs×Ks. This is in fact a general principle.

Lemma 8.8 If G1, G2, . . .Gk are graphs, then (G1×G2×· · ·×Gk)s = Gs
1×Gs

2×· · ·×Gs
k.

Proof Observe (x1, . . . , xk)(y1, . . . , yk) ∈ E ((G1 × · · · ×Gk)s) if and only if there is a walk
of length 2 joining (x1, . . . , xk) and (y1, . . . , yk), if and only if each Gi has a xi, yi-walk of
length 2, if and only if xiyi ∈ E(Gs

i ) for each 1 ≤ i ≤ k, if and only if (x1, . . . , xk)(y1, . . . , yk)
is an edge of Gs

1 × · · · ×Gs
k. 2

We now explain how to construct the Cartesian skeleton S(G) of a graph G by removing
strategic edges from Gs.
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Given a factorization G = H × K, we say that an edge (h, k)(h′, k′) of the Boolean
square Gs is Cartesian relative to the factorization if either h = h′ and k 6= k′, or h 6= h′

and k = k′. For example, in Figure 8.4, edges xz and zy of Gs are Cartesian, but edges xy
and yy of Gs are not. We now identify two intrinsic criteria for non-loop edges of Gs that
tell us if they may fail to be Cartesian relative to some factoring of G.

(i) In Figure 8.4 the edge xy of Gs is not Cartesian. For this edge, there is a z ∈ V (G)
with NG(x) ∩NG(y) ⊂ NG(x) ∩NG(z) and NG(x) ∩NG(y) ⊂ NG(y) ∩NG(z).

(ii) In Figure 8.4 the edge x′y′ ofGs is not Cartesian. For this edge, there is a z′ ∈ V (G)
with NG(x′) ⊂ NG(z′) ⊂ NG(y′).

Our aim is to remove from Gs all edges that meet one of these criteria. Now, these criteria
are somewhat dependent on one another. For instance, NG(x) ⊂ NG(z) ⊂ NG(y) implies
NG(y)∩NG(x) ⊂ NG(y)∩NG(z). Also, NG(y) ⊂ NG(z) ⊂ NG(x) implies NG(x)∩NG(y) ⊂
NG(x) ∩NG(z). This allows us to pack the above criteria into the following definition.

Definition 8.1 An edge xy of the Boolean square Gs is dispensable if it is a loop, or if
there exists some z ∈ V (G) for which both of the following statements hold:

(1) NG(x) ∩NG(y) ⊂ NG(x) ∩NG(z) or NG(x) ⊂ NG(z)⊂ NG(y),
(2) NG(y) ∩NG(x) ⊂ NG(y) ∩NG(z) or NG(y) ⊂ NG(z)⊂ NG(x).

Note that the above statements (1) and (2) are symmetric in x and y. Also note the next
remark, which follows from the paragraph preceding the definition. It will be used often.

Remark 8.1 An edge xy is dispensable if and only if there is a z with N(x) ⊂ N(z)⊂ N(y),
or N(y) ⊂ N(z)⊂ N(x), or N(x)∩N(y) ⊂ N(x)∩N(z) and N(y)∩N(x) ⊂ N(y)∩N(z).

Now we come to the main definition of this section.

Definition 8.2 The Cartesian skeleton S(G) of a graph G is the spanning subgraph of the
Boolean square Gs obtained by removing all dispensable edges from Gs.

K

H

G = H × K

FIGURE 8.5 Graphs H , K, and H ×K (solid) and their Cartesian skeletons (dashed).

Figure 8.5 is the same as Figure 8.4, except all dispensable edges of Hs, Ks, and (H×K)s

are deleted. Thus the remaining dashed edges are S(H), S(K), and S(H ×K). Note that
although S(G) was defined without regard to the factorization G = H ×K, we nonetheless
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have S(H × K) = S(H)2S(K). The following lemma and proposition show this always
holds for R-thin graphs. The proofs make frequent use of the fact that for G = H ×K,

NG((h, k)) ∩NG((h′, k′)) =
(
NH(h) ∩NH(h′)

)
×
(
NK(k) ∩NK(k′)

)
,

which follows from NG((h, k)) = NH(h) ×NK(k) and simple set theory.

Lemma 8.9 If G is an R-thin graph with an arbitrary factorization G = H×K, then every
edge of S(G) is Cartesian with respect to this factorization.

Proof Suppose, for the sake of contradiction, that an edge (h, k)(h′, k′) ∈ S(G) is not
Cartesian. Because S(G) has no loops, we have h 6= h′ and k 6= k′. Observe:

NG((h, k)) ∩NG((h′, k′)) =
(
NH(h) ∩NH(h′)

)
×
(
NK(k) ∩NK(k′)

)

⊆ NH(h) ×
(
NH(k) ∩NH(k′)

)

= NG((h, k)) ∩NG((h, k′)) ,

NG((h′, k′)) ∩NG((h, k)) =
(
NH(h′) ∩NH(h)

)
×
(
NK(k′) ∩NK(k)

)

⊆
(
NH(h′) ∩NH(h)

)
×NK(k′)

= NG((h′, k′)) ∩NG((h, k′)) .

Now, because (h, h′)(k, k′) is not dispensable, at least one of the above inclusions is equality
and we get NH(h)∩NH(h′) = NH(h) in the first case or NK(k) ∩NK(k′) = NK(k′) in the
second. From this, NH(h) ⊆ NH(h′) or NK(k′) ⊆ NK(k), and by R-thinness,

NH(h) ⊂ NH(h′) or NK(k′) ⊂ NK(k). (8.1)

Repeating the above argument but interchanging h with h′, and k with k′, we get

NH(h′) ⊂ NH(h) or NK(k) ⊂ NK(k′). (8.2)

From inclusions (8.1) and (8.2), we see that NH(h) ⊂ NH(h′) and NK(k) ⊂ NK(k′), or
NK(k′) ⊂ NK(k) and NH(h′) ⊂ NH(h). The first case gives

NH(h) ×NK(k) ⊂ NH(h) ×NK(k′) ⊂ NH(h′) ×NK(k′),

that is, NG((h, k)) ⊂ NG((h, k′)) ⊂ NG((h′, k′)), so (h, k)(h′, k′) is dispensable, a contra-
diction. Similarly, the second case yields NG((h′, k′)) ⊂ NG((h, k′)) ⊂ NG((h, k)). 2

Proposition 8.10 If H,K are R-thin graphs without isolated vertices, then S(H ×K) =
S(H)2S(K).

Proof First we show S(H × K) ⊆ S(H)2S(K). By Lemma 8.9, all edges of S(H × K)
are Cartesian, so we just need to show that (h, k)(h′, k) ∈ S(H ×K) implies hh′ ∈ S(H).
(The same argument will work for edges of form (h, k)(h, k′).) Suppose for the sake of
contradiction that (h, k)(h′, k) ∈ S(H × K), but hh′ /∈ S(H). Thus hh′ is dispensable in
Hs, so there is a z′ in V (H) for which both of the following conditions hold:

NH(h) ∩NH(h′) ⊂ NH(h) ∩NH(z′) or NH(h) ⊂ NH(z′)⊂ NH(h′)
NH(h′) ∩NH(h) ⊂ NH(h′) ∩NH(z′) or NH(h′) ⊂ NH(z′)⊂ NH(h).

(8.3)

Because NK(k) 6= ∅ (there are no isolated vertices), we can multiply each neighborhood
NH(u) in (8.3) by NK(k) on the right and still preserve the proper inclusions. Then the
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fact NH(u)×NK(k) = NH×K((u, k)) yields the dispensability conditions (1) and (2), where
x = (h, k) and y = (h′, k) and z = (z′, k). Thus (h, k)(h′, k) /∈ S(H ×K), a contradiction.

Now we show S(H)2S(K) ⊆ S(H×K). Take an edge in S(H)2S(K), say (h, k)(h′, k)
with hh′ ∈ S(H). We must show that (h, k)(h′, k) is not dispensable in (H ×K)s. Suppose
it was. Then there would be a vertex z = (z′, z′′) in H × K such that the dispensability
conditions (1) and (2) hold for x = (h, k), y = (h′, k), and z = (z′, z′′). The various cases
are considered below. Each leads to a contradiction.

Suppose NG(x) ⊂ NG(z) ⊂ NG(y). This means

NH(h) ×NK(k) ⊂ NH(z′) ×NK(z′′) ⊂ NH(h′) ×NK(k),

so NK(z′′) = NK(k). Then the fact that NK(k) 6= ∅ permits cancellation of the common
factor NK(k), so NH(h) ⊂ NH(z′) ⊂ NH(h′), and hh′ is dispensable. We reach the same
contradiction if NG(y) ⊂ NG(z)⊂ NG(x).

Finally, suppose there is a z = (z′, z′′) for which both NG(x)∩NG(y) ⊂ NG(x)∩NG(z)
and NG(y) ∩NG(x) ⊂ NG(y) ∩NG(z). Rewrite this as

NG((h, k)) ∩NG((h′, k)) ⊂ NG((h, k)) ∩NG((z′, z′′))
NG((h′, k)) ∩NG((h, k)) ⊂ NG((h′, k)) ∩NG((z′, z′′)),

which is the same as
(
NH(h) ∩NH(h′)

)
×NK(k) ⊂

(
NH(h) ∩NH(z′)

)
×
(
NK(k) ∩NK(z′′)

)
(
NH(h′) ∩NH(h)

)
×NK(k) ⊂

(
NH(h′) ∩NH(z′)

)
×
(
NK(k) ∩NK(z′′)

)
.

Thus NK(k) ⊆ NK(k) ∩NK(z′′), so NK(k) = NK(k) ∩NK(z′′), whence

NH(h) ∩NH(h′) ⊂ NH(h) ∩NH(z′)
NH(h′) ∩NH(h) ⊂ NH(h′) ∩NH(z′) .

Thus hh′ is dispensable, a contradiction. 2

Because S(G) is defined entirely in terms of the adjacency structure of G, we have the
following immediate consequence of Definition 8.2.

Proposition 8.11 Any isomorphism ϕ : G → H, as a map V (G) → V (H), is also an
isomorphism ϕ : S(G) → S(H).

We next consider connectivity of S(G). The following lemma is needed.

Lemma 8.12 Suppose G has no isolated vertices. If x, y ∈ V (G) and N(x) ⊂ N(y), then
Gs has an x, y-path consisting of nondispensable edges.

Proof Consider the following maximal chain of neighborhoods between N(x) and N(y),
ordered by proper inclusion. (It is possible that y1 = y.)

N(x) ⊂ N(y1) ⊂ N(y2) ⊂ N(y3) ⊂ · · · ⊂ N(yk) ⊂ N(y). (8.4)

We claim that xy1 is a nondispensable edge of Gs. Certainly N(x) ⊂ N(y1) implies
xy1 ∈ E(Gs), as N(x) 6= ∅. Also, there is no z with N(x) ∩ N(y1) ⊂ N(x) ∩ N(z), for
if there were, the condition N(x) ⊂ N(y1) would yield N(x) ⊂ N(x) ∩ N(z), which is
impossible. As the chain is maximal, there is no z for which N(x) ⊂ N(z) ⊂ N(y1). Clearly,
N(y1) ⊂ N(z) ⊂ N(x) is impossible too. Thus xy1 is a nondispensable edge of Gs.

The exact same argument shows that each yiyi+1 is a nondispensable edge of Gs, as is
yky. Thus we have the required path xy1y2 . . . yky. 2
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Proposition 8.13 Suppose a graph G is connected.

(i) If G has an odd cycle, then S(G) is connected.
(ii) If G is bipartite, then S(G) has two components whose respective vertex sets are

the two partite sets of G.

Proof Observe that the statement is true if S(G) is replaced by Gs. As S(G) is just Gs

with the dispensable edges removed, we need only prove that for any edge xy ∈ E(Gs),
there is an x, y-path in Gs consisting of nondispensable edges.

For each edge xy ∈ E(Gs), define the integer

kxy = max{ |N(u) ∩N(v)| − |N(x) ∩N(y)| | u, v ∈ V (G), u 6= v}.

Notice kxy ≥ 0. (Put u = x and v = y.) If kxy = 0, then the definition of kxy implies
that there is no z for which N(x) ∩N(y) ⊂ N(x) ∩N(z) or N(y) ∩N(x) ⊂ N(y) ∩N(z).
Then N(x) ⊂ N(z) ⊂ N(y) is also impossible, as it implies N(y) ∩ N(x) ⊂ N(y) ∩ N(z).
Therefore xy is not dispensable if kxy = 0.

Take N > 0, and assume that whenever Gs has an edge xy with kxy < N , there is
a x, y-path in Gs composed of nondispensable edges. Now suppose xy is dispensable and
kxy = N . If N(x) ⊂ N(y) or N(y) ⊂ N(x), then we are done, by Lemma 8.12, so assume
N(x) 6⊂ N(y) and N(y) 6⊂ N(x). As xy is dispensable, there is a vertex z with

N(x) ∩N(y) ⊂ N(x) ∩N(z) and N(y) ∩N(x) ⊂ N(y) ∩N(z).

This implies N(x) ∩N(z) 6= ∅ 6= N(y) ∩N(z), so xz, yz ∈ E(Gs). But it also means

|N(u) ∩N(v)| − |N(x) ∩N(z)| < |N(u) ∩N(v)| − |N(x) ∩N(y)|

for all u, v, so kxz < kxy. Similarly, kzy < kxy. The induction hypothesis gurantees there
are x, z- and z, y-paths of nondispensable edges in Gs. 2

8.4 Factoring Connected, Nonbipartite, R-Thin Graphs

In this section we prove that every connected, nonbipartite, R-thin graph has a unique prime
factorization over the direct product. The result hinges on the following lemma, the proof
of which uses the Cartesian skeleton to transfer questions of direct-product factorization to
Cartesian-product factorization. Nonbipartiteness becomes a crucial property here, as it is
necessary for connectedness of the skeleton.

Lemma 8.14 Consider any isomorphism ϕ : G1 × · · · × Gk → H1 × · · · × H`, where
ϕ(x1, . . . , xk) =

(
ϕ1(x1, . . . , xk), ϕ2(x1, . . . , xk), . . . , ϕ`(x1, . . . , xk)

)
, and all the factors are

connected, non-bipartite, and R-thin. If a factor Gi is prime, then exactly one of the func-
tions ϕ1, ϕ2, . . . , ϕ` depends on xi.

Proof By commutativity and associativity, it suffices to prove the lemma for the case
k = ` = 2, and with G1 prime. Thus take an isomorphism ϕ : G1 ×G2 → H1 ×H2, where
ϕ(x1, x2) =

(
ϕ1(x1, x2), ϕ2(x1, x2)

)
.

We will prove the lemma by showing that if it is not the case that exactly one of ϕ1 and
ϕ2 depends on x1, then G1 is not prime.

Certainly if neither ϕ1 nor ϕ2 depends on x1, then the fact that ϕ is bijective means
that |V (G1)| = 1, so G1 is not prime. Thus assume that both ϕ1 and ϕ2 depend on x1. This
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means each of G1, H1, and H2 has more than one vertex. If G2 had only one vertex, then
G1

∼= H1 ×H2, and G1 would not be prime. Thus each factor G1, G2, H1, and H2 has more
than one vertex. Taking skeletons, and applying Proposition 8.11, we see that ϕ is also an
isomorphism ϕ : S(G1×G1) → S(H1×H2). Because all factors are R-thin, Proposition 8.10
applies, and we have an isomorphism

ϕ : S(G1)2S(G2) → S(H1)2S(H2). (8.5)

Keep in mind that ϕ is simultaneously an isomorphism ϕ : G1 ×G2 → H1 ×H2 and an
isomorphism ϕ : S(G1)2S(G2) → S(H1)2S(H2). Because each of G1, G2, H1, and H2 is
connected and nonbipartite, each factor S(G1), S(G2), S(H1), and S(H2) is connected, by
Proposition 8.13. Consider prime factorizations

S(G1) = A1 2A2 2 · · · 2Ak, S(H1) = C1 2C2 2 · · · 2C`,

S(G2) = B1 2B2 2 · · · 2Bm, S(H2) = D1 2D2 2 · · · 2Dn.

Our isomorphism (8.5) becomes

ϕ : (A1 2 · · · 2Ak)2 (B1 2 · · · 2Bm) → (C1 2 · · · 2C`)2 (D1 2 · · · 2Dn). (8.6)

Corollary 6.9 applies here. In fact, in using it, we may order the factors Ai and Bi and
relabel the vertices of the Ci and Di so that the isomorphism (8.6) has form

ϕ : (A1 2 · · · 2Ak)2 (B1 2 · · · 2Bm) →(
A1 2 · · · 2As 2B1 2 · · · 2Bt

)
2

(
As+1 2 · · · 2Ak 2Bt+1 2 · · · 2Bm

)
,

(8.7)

for some 0 < s < k and 0 ≤ t ≤ m, and where

ϕ((a1, . . . , ak), (b1, . . . , bm)) = ((a1, . . . , as, b1, . . . , bt), (as+1, . . . , ak, bt+1, . . . , bm)).

If t = 0, we have ϕ((a1, . . . , ak), (b1, . . . , bm)) = ((a1, . . . , as), (as+1, . . . , ak, b1, . . . , bm)); and
if t = m, then ϕ((a1, . . . , ak), (b1, . . . , bm)) = ((a1, . . . , as, b1, . . . , bm), (as+1, . . . , ak)). But
our assumption that both ϕ1 and ϕ2 depend on x1 ∈ V (G1) forces 0 < s < k.

We have now labeled the vertices of G1 with V (A1 2 · · · 2Ak), and those of G2 with
V (B1 2 · · · 2Bm). We have labeled vertices of H1 with V (A1 2 · · · 2As 2B1 2 · · · 2Bt),
and those of H2 with V (As+1 2 · · · 2Ak 2Bt+1 2 · · · 2Bm). To tame the notation, we
denote a vertex (a1, . . . , as, as+1, . . . , ak) ∈ V (G1) as (x, y), where x = (a1, . . . , as) and
y = (as+1, . . . , ak). Similarly, any (b1, . . . , bt, bt+1, . . . , bm) ∈ V (G2) is denoted (u, v), where
u = (b1, . . . , bt) and v = (bt+1, . . . , bm). With this convention we regard vertices of H1 and
H2 as (x, u) and (y, v), respectively, and we have

ϕ((x, y), (u, v)) = ((x, u), (y, v)).

Remember that this is the same isomorphism ϕ : G1 × G2 → H1 ×H2 that we began the
proof with; all we have done is relabeled the vertices of the factors to put ϕ into a more
convenient form.

Now we display a nontrivial factorization G1 = S × S′. Define S and S′ as follows:

V (S) = {x |
(
(x, y), (u, v)

)
∈ V (G1 ×G2)} ,

E(S) = {xx′ |
(
(x, y), (u, v)

)(
(x′, y′), (u′, v′)

)
∈ E(G1 ×G2)} ,

V (S′) = {y :
(
(x, y), (u, v)

)
∈ V (G1 ×G2)} ,

E(S′) = {yy′ |
(
(x, y), (u, v)

)(
(x′, y′), (u′, v′)

)
∈ E(G1 ×G2)} .
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We claim G1 = S × S′, that is (x, y)(x′, y′) ∈ E(G1) if and only if (x, y)(x′, y′) ∈
E(S × S′). Certainly if (x, y)(x′, y′) ∈ E(G1), then there is an edge

(
(x, y), (u, v)

)(
(x′, y′), (u′, v′)

)
∈ E(G1 ×G2).

The definitions of S and S′ then imply (x, y)(x′, y′) ∈ E(S × S′).
Conversely, suppose (x, y)(x′, y′) ∈ E(S × S′). Then xx′ ∈ E(S) and yy′ ∈ E(S′). By

definition of S and S′, this means G1 ×G2 has edges
(
(x, y′′), (u, v)

)(
(x′, y′′′), (u′, v′)

)
and

(
(x′′, y), (u′′, v′′)

)(
(x′′′, y′), (u′′′, v′′′)

)
.

Applying isomorphism ϕ, we see that H1 ×H2 has edges
(
(x, u), (y′′, v)

)(
(x′, u′), (y′′′, v′)

)
and

(
(x′′, u′′), (y, v′′)

)(
(x′′′, u′′′), (y′, v′′′)

)
.

Consequently, (x, u)(x′, u′) ∈ E(H1) and (y, v′′)(y′, v′′′) ∈ E(H2). Thus H1 × H2 has an
edge

(
(x, u), (y, v′′)

)(
(x′, u′), (y′, v′′′)

)
. Applying ϕ−1 to this, we get

(
(x, y), (u, v′′)

)(
(x′, y′), (u, v′′′)

)
∈ E(G1 ×G2),

hence (x, y)(x′, y′) ∈ E(G1). Thus G1 = S × S′, and the lemma is proved. 2

We now easily obtain a result that implies unique prime factorization for connected,
nonbipartite, R-thin graphs.

Theorem 8.15 Consider any isomorphism ϕ : G1 ×G2 × · · · ×Gk → H1 ×H2 × · · · ×H`,
where all the factors Gi and Hi are connected, nonbipartite, R-thin, and prime. Then k = `,
and there is a permutation π of {1, 2, · · · , k} and isomorphisms ϕi : Gπ(i) → Hi for which

ϕ(x1, x2, . . . , xk) =
(
ϕ1(xπ(1)), ϕ2(xπ(2)), . . . , ϕk(xπ(k))

)
.

Proof Assume the hypothesis. Note that Lemma 8.14 implies that for each i = 1, 2, . . . , k,
exactly one ϕj depends on xi. But no ϕj is constant, because ϕ is surjective and each Hi

has more than one vertex (it is prime). It follows that k ≥ `. The same argument applied
to ϕ−1 gives ` ≥ k, therefore k = `.

In summary, each ϕj depends on exactly one xi, call it xπ(j). The result follows. 2

8.5 Factoring Connected, Nonbipartite Graphs

We are now ready to prove that connected nonbipartite graphs in Γ0 have unique prime
factorizations, a result due to McKenzie (1971). The complete graphs Ks

p play a role here,
and it is helpful to keep in mind that Ks

p/R = Ks
1 . Also note that Ks

p ×Ks
q
∼= Ks

pq, so that
if p has prime factorization p = p1p2 . . . pk, then we have a unique prime factorization

Ks
p = Ks

p1
×Ks

p2
× · · · ×Ks

pk
.

The next lemma is analogous to Lemma 8.14, and is the key ingredient of our main
theorem. Before stating it, we recall (see the remarks following Proposition 8.5) that any
isomorphism ϕ : G1 × · · · × Gk → H1 × · · · × H` induces a corresponding isomorphism
ϕ̃ : G1/R× · · · ×Gk/R→ H1/R× · · · ×H`/R, where

ϕ̃([x1], . . . , [xk]) =
(
ϕ̃1([x1], . . . , [xk]), . . . , ϕ̃`([x1], . . . , [xk])

)

=
(
[ϕ1(x1, . . . , xk)], . . . , [ϕ`(x1, . . . , xk)]

)
,

and ϕ maps the R-class [x1] × · · · × [xk] of G1 × · · · × Gk bijectively to the R-class
ϕ̃1([x1], . . . , [xk]) × · · · × ϕ̃`([x1], . . . , [xk]) of H1 × · · · ×H`.
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Lemma 8.16 Suppose there is an isomorphism ϕ : G1 × · · · ×Gk → H1 × · · · ×H`, where
ϕ(x1, x2, . . . , xk) =

(
ϕ1(x1, . . . , xk), . . . , ϕ`(x1, . . . , xk)

)
, and all factors are connected and

have odd cycles. Let ϕ̃ : G1/R×· · ·×Gk/R→ H1/R×. . .×H`/R be the induced isomorphism

ϕ̃([x1], . . . , [xk]) =
(
ϕ̃1([x1], . . . , [xk]), . . . , ϕ̃`([x1], . . . , [xk])

)
.

If some Gi is prime, then at most one of the functions ϕ̃j depends on [xi].

Proof By commutativity and associativity, we need only prove this for the case where G1

is prime and k = ` = 2. Let’s write ϕ : G1×G2 → H1×H2, as ϕ(x, y) =
(
ϕ1(x, y), ϕ2(x, y)

)
,

so ϕ̃ : G1/R×G2/R→ H1/R×H2/R becomes ϕ̃([x], [y]) =
(
ϕ̃1([x], [y]), ϕ̃2([x], [y])

)
.

If G1 = Ks
p, then |V (G1/R)| = 1, so neither ϕ̃1 nor ϕ̃2 depends on [x], and we are done.

Likewise, if either H1 or H2 is a Ks
p, then one of ϕ̃1 or ϕ̃2 is necessarily constant, and we

are done. Thus, for the rest of the proof we assume that none of G1, H1, H2 is isomorphic to
a Ks

p, so each quotient G1/R, H1/R, and H2/R has more than one vertex. Certainly each
is R-thin. Moreover, each is connected and nonbipartite because G1, H1, and H2 are.

Assume that both ϕ̃1 and ϕ̃2 depend on [x]. In what follows, we show that G1 is not
prime, a contradiction that proves the lemma.

Certainly if both ϕ̃1 and ϕ̃2 depend on [x], then Lemma 8.14 implies that G1/R is
not prime. Take a prime factorization G1/R = A1 × · · · × An. This gives a labeling [x] =
(a1, . . . , an) of R-classes of G1 with vertices of A1 × · · · ×An. Now ϕ̃ is an isomorphism

ϕ̃ : A1 × · · · ×An ×G2/R→ H1/R×H2/R.

Lemma 8.14 implies that, for each i = 1, 2, . . . , n, exactly one of ϕ̃1 and ϕ̃2 depends on ai.
Order the factors of G1/R = A1 × · · ·×An so that ϕ̃1 depends on a1, a2, . . . , as, but not on
as+1, . . . , an; and ϕ̃2 depends on as+1, . . . , an, but not on a1, . . . , as. Then we have

ϕ̃(a1, . . . , as, as+1, . . . , an, [y]) =
(
ϕ̃1(a1, . . . , as, [y]), ϕ̃2(as+1, . . . , an, [y])

)
.

Now, (a1, . . . , an) = [x] ∈ V (G1/R) is an R-class of G1, so it is meaningful to speak of its
cardinality |(a1, . . . , an)|. At this point we have G1/R = (A1×· · ·×As)× (As+1×· · ·×An).
According to Proposition 8.6, graph G1 will have a nontrivial factoring (i.e., be nonprime)
provided we can produce functions α : V (A1×· · ·×As) → N and β : V (As+1×· · ·×An) → N
for which |(a1, . . . , as, as+1, . . . , an)| = α(a1, . . . , as) · β(as+1, . . . , an). The remainder of the
proof is a construction of such functions.

Fix an R-class [y0] ∈ V (G2/R). Observe that the isomorphism ϕ : G1 × G2 →
H1 × H2 carries any R-class (a1, . . . , an) × [y0] of G1 × G2 bijectively to the R-class
ϕ̃1(a1, . . . , as, [y0]) × ϕ̃2(as+1, . . . , an, [y0]) of H1 ×H2. Therefore

|(a1, . . . , as, as+1, . . . , an)| = |ϕ̃1(a1, . . . , as, [y0])| · |ϕ̃2(as+1, . . . , an, [y0])|
|[y0]|

= |ϕ̃1(a1, . . . , as, [y0])| · N(as+1, . . . , an)

D(as+1, . . . , an)
,

where N(as+1, . . . , an) and D(as+1, . . . , an) are the numerator and denominator of the fully

reduced fraction |ϕ̃2(as+1,...,an,[y0])|
|[y0]|

. The above equation shows that for every (a1, . . . , an),

the integer D(as+1, . . . , an) divides |ϕ̃1(a1, . . . , as, [y0])|. Let d be the least common multiple
of the D(as+1, . . . , an), taken over all (a1, . . . , an). Then d divides |ϕ̃1(a1, . . . , as, [y0])|, so

|(a1, . . . , as, as+1, . . . , an)| =
|ϕ̃1(a1, . . . , as, [y0])|

d
· dN(as+1, . . . , an)

D(as+1, . . . , an)

= α(a1, . . . , as, ) · β(as+1, . . . , an)

is a product of integer functions. Thus G1 has a nontrivial factoring and is not prime. 2

© 2011 by Taylor & Francis Group, LLC



102 Direct Product

Theorem 8.17 Any connected nonbipartite graph in Γ0 with more than one vertex has a
unique factorization into primes in Γ0.

Proof Suppose G ∈ Γ0 is a connected nonbipartite graph with more than one vertex, and
let G ∼= G1 ×G2 × · · · ×Gk and G ∼= H1 ×H2 × · · · ×H` be two prime factorizations. We
will show that k = ` and the indices can be ordered so that Gi

∼= Hi.
By Weichsel’s theorem 5.9, each factor Gi and Hj is connected and has an odd cycle.

Take an isomorphism ϕ : G1 ×G2 × · · · ×Gk → H1 ×H2 × · · · ×H`, where ϕ(x1, . . . , xk) =(
ϕ1(x1, . . . , xk), . . . , ϕ`(x1, . . . , xk)

)
. Consider the induced isomorphism

ϕ̃ : G1/R× · · · ×Gk/R→ H1/R× · · · ×H`/R,

where ϕ̃([x1], . . . , [xk]) =
(
ϕ̃1([x1], . . . , [xk]), . . . , ϕ̃`([x1], . . . , [xk])

)
. By Lemma 8.16, for

each i = 1, 2, . . . , k, at most one ϕ̃j depends on [xi]. Using the fact that ϕ̃−1 = ϕ̃−1,
and applying Lemma 8.16 to ϕ−1, we see that any ϕ̃j depends on at most one [xi]. We may
thus assume that the factors Gi and Hi have been ordered so that

ϕ̃([x1], . . . , [xm], [xm+1], . . . , [xk]) =
(
ϕ̃1([x1]), . . . , ϕ̃m([xm]), [ym+1], [ym+2], . . . , [y`]

)
.

Here the index m has the property that 1 ≤ i ≤ m if and only if exactly one ϕ̃j depends
on [xi]. Also m < i ≤ k if and only if no ϕ̃j depends on [xi]. We allow the possibility that
m = 0, and in this case no ϕ̃j depends on any [xi], so ϕ̃ is constant. At the other extreme,
if m = k, then for each [xi] there is exactly one ϕ̃j (namely ϕ̃i) that depends on [xi].

Consider the indices i with m < i ≤ k, for which no ϕ̃j depends on [xi]. As ϕ̃ is
bijective, it must be that Gi/R has just one vertex [xi]. Thus Gi = Ks

pi
for some prime

number pi whenever m < i ≤ k. Similarly, for each j with m < j ≤ `, the coordinates [yj ]
do not depend on any [xi]. Again, as ϕ̃ is bijective, Hj/R has just one vertex [yj]. Thus for
m < j ≤ `, we have Hj = Ks

qj for some prime qj .
But if 1 ≤ i ≤ m, then [xi] and ϕ̃([xi]) may vary, so Gi/R and Hi/R have more than

one vertex, so neither Gi nor Hi is a Ks
p. Note further that because ϕ̃ is an isomorphism,

each map ϕ̃i : Gi/R → Hi/R is an isomorphism, for 1 ≤ i ≤ m.
Now ϕ carries the R-class [x1]× [x2]×· · ·× [xk] of G1×· · ·×Gk bijectively to the R-class

ϕ̃1([x1]) × · · · × ϕ̃m([xm]) × [ym+1] × · · · × [y`] of H1 × · · · ×H`. Therefore

k∏

i=1

|[xi]| =

(
m∏

i=1

|ϕ̃i([xi])|
)

·
(
∏̀

i=m+1

|[yi]|
)
. (8.8)

For any 1 ≤ r ≤ m, this yields

|[xr]|
|ϕ̃r([xr ])| =

r−1∏

i=1

|ϕ̃i([xi])|
|[xi]|

·
m∏

i=r+1

|ϕ̃i([xi])|
|[xi]|

·
∏̀

i=m+1

|[yi]|.

This expression is constant, because the only variable that appears on the left is [xr], while
[xr] does not appear on the right. Hence

|[xr ]|
|ϕ̃r([xr])| =

a

b
, so |[xr]| = a

|ϕ̃r([xr ])|
b

for some reduced fraction a/b. This means a divides |[xr]| and b divides |ϕ̃r([xr])| for any
[xr] ∈ V (Gr/R). Because Gr is prime and not a Ks

p, it must be that a = 1. (See Corollary
8.7.) As ϕ̃r : Gr/R → Hr/R is surjective, the same logic applied to Hr gives b = 1. Thus
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|[xr]| = |ϕ̃r([xr])| for each [xr] ∈ Gr/R, so there is an isomorphism ϕr : Gr → Hr by
Proposition 8.4.

Applying |[xr ]| = |ϕ̃r([xr])| for 1 ≤ r ≤ m to Equation (8.8) yields

k∏

i=m+1

|[xi]| =
∏̀

i=m+1

|[yi]|.

Recall that |[xi]| = pi and |[yi]| = qi are constant prime numbers, so the fundamental theo-
rem of arithmetic gives k = `, and the pi are the same as the qi, up to order. Consequently
for m < i ≤ k, the factors Gi = Ks

pi
are the same as Hi = Ks

qi , up to order. As the previous
paragraph has Gi

∼= Hi for 1 ≤ i ≤ m, the proof is complete. 2

8.6 Automorphisms

We now use prime factorization to describe the automorphism groups of direct products.
Proposition 8.15 gives a perfect companion to Theorems 6.10 and 7.16.

Theorem 8.18 Suppose ϕ is an automorphism of a connected nonbipartite R-thin graph
G that has a prime factorization G = G1 ×G2 × · · · ×Gk. Then there exists a permutation
π of {1, 2, . . . , k}, together with isomorphisms ϕi : Gπ(i) → Gi, such that

ϕ(x1, x2, . . . , xk) = (ϕ1(xπ(1)), ϕ2(xπ(2)), . . . , ϕk(xπ(k))).

Thus Aut(G) is generated by the automorphisms of the prime factors and transpositions of
isomorphic factors. Consequently, Aut(G) is isomorphic to the automorphism group of the
disjoint union of the prime factors of G.

Suppose a connected nonbipartite graph G has prime factorization G = G1 × · · · ×Gk.
By the results of Section 8.2, any ϕ ∈ Aut(G) induces an automorphism ϕ̃ ∈ Aut(G/R).
Conversely, any ϕ̃ ∈ Aut(G/R) can be so induced by an automorphism ϕ of G if and only
if |X | = |ϕ̃(X)| for every X ∈ G/R, and in this case ϕ can be any map carrying each X
bijectively to ϕ̃(X). Because a graph has transitive group if and only if all its R-classes
have the same cardinality and G/R has transitive group, we get the following result, which
is entirely parallel to Theorem 7.19.

Theorem 8.19 A direct product has transitive automorphism group if and only if each
factor has a transitive automorphism group.

Likewise Corollaries 7.20 and 7.21 (which are stated for the strong product) hold for
the direct product as well. One has only to replace the phrases “connected graph G” and
“S-thin” with “connected nonbipartite graph G in Γ0” and “R-thin.”

The results on the automorphism group of the direct product are from Dörfler (1974)
and generalize the ones of Imrich (1969a) for the Cartesian product.

Dörfler (1974) characterized graphs with primitive automorphism group, namely graphs
with transitive groups that leave only trivial partitions of the vertex set invariant. A graph
G has primitive automorphism group if G is either a Ks

k or the direct power of a prime
graph on at least three vertices with primitive group. This generalizes the corresponding
result of Imrich (1969a) for the Cartesian product.
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A graph G that has an irredundant1 isomorphic embedding into a direct product (of
graphs in Γ) is called a subdirect product by Sabidussi (1975). A graph G is then called
subdirectly irreducible if any representation of G as a subdirect product contains at least
one factor that is isomorphic to G. Sabidussi shows, among other results, that complete
graphs and complete graphs with one edge missing are the only subdirectly irreducible
graphs (recall that we already mentioned this result on p. 74, where subdirectly irreducible
graphs were referred to as ×-S-prime graphs). Sabidussi also showed that R-thin graphs
have subdirect product representations in which all factors are complete.

8.7 Applications to the Strong Product

There is a close relationship between the strong product of graphs in Γ and the direct
product of graphs with loops at each vertex. We now examine that relationship and explore
its potential for deducing properties of the strong product.

Given a graph G in Γ, let L(G) ∈ Γ0 be the graph obtained by adding a loop to each
vertex of G. Clearly, for all G,H ∈ Γ, we have G ∼= H if and only if L(G) ∼= L(H). Moreover,
we have the following easy consequence of the definition.

Lemma 8.20 If G1, . . . , Gk ∈ Γ, then L(G1 � · · ·�Gk) = L(G1) × · · · × L(Gk).

Proof This follows from the following chain of equivalences:

(x1, . . . , xk)(y1, . . . , yk) ∈ E(L(G1 � · · ·�Gk) )
⇐⇒ (x1, . . . , xk) = (y1, . . . , yk) or (x1, . . . , xk)(y1, . . . yk) ∈ E(G1 � · · ·�Gk)
⇐⇒ xi = yi or xiyi ∈ E(Gi) for each 1 ≤ i ≤ k
⇐⇒ xiyi ∈ E(L(Gi)) for each 1 ≤ i ≤ k
⇐⇒ (x1, . . . , xk)(y1, . . . , yk) ∈ L(G1) × · · · × L(Gk) .

The proof is now complete. 2

Using unique factorization of connected nonbipartite graphs over the direct product, we
now have an easy alternate proof of Theorem 7.14.

Theorem 7.14 Every connected graph in Γ has a unique prime factor decomposition with
respect to the strong product.

Proof Let G be a connected graph in Γ. Then L(G) is connected and nonbipartite, so it
has a unique prime factorization over the direct product. Observe that because L(G) has a
loop at each vertex, each of its prime factors must also have loops at all of their vertices.
Thus each prime factor has form L(Ai) for some Ai ∈ Γ, so the prime factorization can be
written as

L(G) = L(A1) × L(A2) × · · · × L(An) , (8.9)

where the factors L(Ai) (and hence also each Ai) are uniquely determined by G.
Now consider any prime factorization

G = G1 �G2 � · · ·�Gk (8.10)

1An irredundant embedding has no unused factors or vertices. Compare the definition of ireducible
isometric embeddings on p. 162.
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over the strong product. From this, Lemma 8.20 yields

L(G) = L(G1) × L(G2) × · · · × L(Gk). (8.11)

Observe that each L(Gi) is prime over ×. Indeed, any factoring of it must have form
L(Gi) = L(C) × L(C′) for graphs C,C′ ∈ Γ, and the lemma gives L(Gi) = L(C � C′).
Hence Gi

∼= C �C′ and primeness of Gi implies one of C or C′ is K1, and therefore one of
the factors L(C) or L(C′) is L(K1). Thus L(Gi) is prime.

Comparing prime factorizations (8.9) and (8.11), and applying Theorem 8.17, we get
n = k, and we may assume the ordering is such that L(Gi) ∼= L(Ai) for each 1 ≤ i ≤ n.
Consequently, Gi

∼= Ai for each 1 ≤ i ≤ n. But, as was noted above, the Ai are uniquely
determined by G, so the factorization (8.10) is unique. 2

Suppose x and y are vertices of a graph G ∈ Γ. Observe that xSy in G if and only if xRy
in L(G). Therefore a graph G ∈ Γ is S-thin if and only if L(G) is R-thin. Combining this
with Lemma 8.20, we see that any statement about the strong product of S-thin graphs in
Γ can be translated to a corresponding statement about the direct product of R-thin graphs
(with loops at each of their vertices) in Γ0. As an example of this strategy, Lemma 8.20 and
Theorem 8.15 yield the following companion to Theorem 8.15.

Theorem 8.21 Consider any isomorphism ϕ : G1 � · · ·�Gk → H1 � · · ·�Hk, where all
the factors Gi and Hi are connected, nonbipartite, S-thin, and prime. Then there is a per-
mutation π of {1, 2, . . . , k} and isomorphisms ϕi : Gπ(i) → Hi for which ϕ(x1, x2, . . . , xk) =(
ϕ1(xπ(1)), ϕ2(xπ(2)), . . . , ϕk(xπ(k))

)
.

Exercises

8.1. Let G = G1 × G2 × · · · × Gk be the direct product of graphs in Γ0. Show that G
has no loops if and only if at least one of the Gi, 1 ≤ i ≤ k, has no loops.

8.2. Recall that Ks
p denotes the complete graph Kp with loops added to each vertex.

Show that Ks
p ×Ks

q
∼= Ks

pq.

8.3. Show that the factors of the equation
(
Ks

1 +Ks
2 + (Ks

2)×,2
)
×
(
Ks

1 + (Ks
2)×,3

)
=(

Ks
1 + (Ks

2)×,2 + (Ks
2)×,4

)
× (Ks

1 +Ks
2) from Theorem 8.1 are indeed prime with

respect to the direct product.

8.4. Given a graph G, prove that the relation R is an equivalence relation on V (G).

8.5. Given a graph G, prove that the quotient G/R is R-thin.

8.6. Prove that a simple graph G is connected and nonbipartite if and only if the Boolean
square Gs is connected and nonbipartite.

8.7. Given a graph G, let N (G) denote the graph obtained from G by removing all
its loops. Find an example of a connected, nonbipartite, R-thin graph G for which
N (Gs) is not S-thin.

8.8. Show that the cocktail-party graph K3×2 (that is, the graph obtained from K6 by
removing a perfect matching) is the unique 4-regular graph on six vertices.
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8.9. Demonstrate that K2 ×K3×2 and K3 × C4 are isomorphic.

8.10. Prove that the graph H in Figure 8.6 has a direct product factorization in the class
of simple graphs Γ.

FIGURE 8.6 Graph H .

8.11. Prove that if one of G or H is bipartite, then G×H is bipartite.

8.12. Let G be a connected bipartite graph, so G × G is bipartite and has exactly two
components. Show that at least one component of G×G admits an involution (i.e.,
an automorphism of order 2) that interchanges its partite sets.

8.13. Prove that if both G and H are nonbipartite, then G×H is nonbipartite.

8.14. Show that if G is bipartite, then G×K2 is isomorphic to the disjoint union G+G.

8.15. For any n ≥ 1, describe the connected components of the direct product

K2 ×K2 × · · · ×K2︸ ︷︷ ︸
n times

×K4 .

8.16. Show that a simple connected graph G of odd order and with ∆(G) ≤ 3 is prime
with respect to the direct product (in Γ as well as in Γ0).

8.17. Show that C2n+1, n ≥ 1, is prime with respect to the direct product.

8.18. This problem concerns graphs H (possibly with loops) satisfying K2 × H ∼= C2p,
where p ≥ 2. Show that if p is even, then there is exactly one such graph H . Show
that if p is odd, there are exactly two such graphs H .

8.19. Which paths are prime/composite with respect to the direct product? (That is, de-
termine and verify a statement for paths Pn, as it is given for cycles in Exercises 8.17
and 8.18.)

8.20. This problem concerns graphs H (possibly with loops) satisfying K2 × H ∼= Q3.
Find three such graphs H .

8.21. Let K be the connected graph on two vertices each with a loop. Verify that C4 =
K2 × K and K3×2 = K3 × K, where K3×2 is the cocktail-party graph. Based on
these facts, give another solution of Exercise 8.9.

8.22. (Miller, 1968) Let G and H be nontrivial, connected graphs. Show that G × H ∼=
G2H if and only if G ∼= H ∼= C2k+1.
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Given a graph product ∗, it is natural to seek the conditions under which A ∗ C ∼= B ∗ C
implies A ∼= B. We call this the cancellation problem for the product. For the Cartesian
product, the solution is straightforward. Theorem 6.21 says A2C ∼= B2C implies A ∼= B,
provided that C is not the empty graph. Because of this, we say that cancellation holds for
the Cartesian product.

We now consider this problem for the strong and direct products. As we will see, can-
cellation holds for the strong product but can fail for the direct. In fact, the situation for
the direct product is remarkably rich, and much of this chapter is devoted to determining
the exact conditions under which cancellation holds or fails. More generally, given graphs
A and C, we enumerate and compute all graphs B for which A× C ∼= B × C.

9.1 Cancellation for the Strong Product

We begin with a highly productive approach instigated by Lovász (1971). It was originally
used to establish cancellation properties for the direct product, but we adapt it here for the
strong product, leaving the direct product for the subsequent section.

Given graphs X and A, let hom(X,A) denote the number of homomorphisms from
X to A. Similarly, homw(X,A) is the number of weak homomorphisms from X to A. The
next proposition follows from the fact (Exercise 9.2) that the projection operations are
homomorphisms for the direct product and weak homomorphisms for the strong product.

Proposition 9.1 Suppose X ∈ Γ0.

(i) If A,C ∈ Γ0, then hom(X,A× C) = hom(X,A) · hom(X,C).
(ii) If A,C ∈ Γ, then homw(X,A� C) = homw(X,A) · homw(X,C).

In essence, we will use these equations to reduce questions about cancellation of graphs
to cancellation in the ring Z. The central ingredient is the fact—first proved by Lovász
(1971)—that A ∼= B if hom(X,A) = hom(X,B) for all X . Before presenting the proof,
some preliminary remarks are in order. The development that follows is based on that of
Hell and Nešetřil (2004). (The only substantial difference is that we work with graphs,
rather than digraphs.)

Given a partition Ω of the vertices of a graph X ∈ Γ0, recall that the quotient X/Ω has
vertex set Ω, and U, V ∈ Ω are adjacent provided that X has an edge uv with u ∈ U and
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108 Cancellation

v ∈ V . Notice that the map X → X/Ω sending u to the element U ∈ Ω that contains u is
a homomorphism.

Now let inj(X,A) be the number of injective homomorphisms X → A.

Lemma 9.2 Suppose X,A ∈ Γ0, and let P be the set of all partitions of V (X). Then

hom(X,A) =
∑

Ω∈P

inj(X/Ω, A).

Proof Let Hom(X,A) be the set of all homomorphisms from X to A, and put

Υ = {(Ω, f) | Ω ∈ P , f ∈ inj(X/Ω, A)} ,
so |Υ| =

∑
Ω∈P inj(X/Ω, A). It suffices to produce a bijection Hom(X,A) → Υ. Now, for

f ∈ Hom(X,A), let f 7→ (Ω, f∗), where Ω = {f−1(a) | a ∈ V (A)} ∈ P , and f∗ : X/Ω → A
is defined as f∗(U) = f(u), for u ∈ U . It is easy to check that this is an injective map to Υ.

For surjectivity, if (Ω, f∗) ∈ Υ, then the composition X → X/Ω
f∗

→ A maps to (Ω, f∗). 2

Theorem 9.3 If A,B ∈ Γ0 and hom(X,A) = hom(X,B) for every X ∈ Γ0, then A ∼= B.

Proof Suppose hom(X,A) = hom(X,B) for every graph X . Our strategy is to show
that this implies inj(X,A) = inj(X,B) for every X . Then the theorem will follow because
we get inj(B,A) = inj(B,B) > 0 and inj(A,B) = inj(A,A) > 0, so there are injective
homomorphisms A→ B and B → A, whence A ∼= B.

We use induction on |X | to show inj(X,A) = inj(X,B) for all X . If |X | = 1, then

inj(X,A) = hom(X,A) = hom(X,B) = inj(X,B).

If X > 1, then Lemma 9.2 applied to the equation hom(X,A) = hom(X,B) produces
∑

Ω∈P

inj(X/Ω, A) =
∑

Ω∈P

inj(X/Ω, B).

Let T be the trivial partition of V (X) consisting of |X | singleton sets. Then X/T = X and
the above equation becomes

inj(X,A) +
∑

Ω∈P−T

inj(X/Ω, A) = inj(X,B) +
∑

Ω∈P−T

inj(X/Ω, B).

The sums are equal by the inductive hypothesis, hence inj(X,A) = inj(X,B). 2

Theorem 9.3 has an easy analogue for weak homomorphisms.

Theorem 9.4 If A,B ∈ Γ and homw(X,A) = homw(X,B) for every X ∈ Γ0, then A ∼= B.

Proof For G ∈ Γ, let L(G) be G with loops added to each vertex. Observe that
homw(X,G) = hom(X,L(G)). Now, if homw(X,A) = homw(X,B) for every graph X ∈ Γ0,
then also hom(X,L(A)) = hom(X,L(B)). By Theorem 9.3 we get L(A) ∼= L(B), whence
A ∼= B. 2

Now we can prove cancellation for the strong product.

Theorem 9.5 If A,B,C ∈ Γ and C is nonempty, then A� C ∼= B � C implies A ∼= B.

Proof Suppose A � C ∼= B � C. Then for any X ∈ Γ0, we have homw(X,A � C) =
homw(X,B � C), and Proposition 9.1 yields

homw(X,A) · homw(X,C) = homw(X,B) · homw(X,C).

But homw(X,C) 6= 0 because any constant map X → C is a weak homomorphism. There-
fore homw(X,A) = homw(X,B), and Theorem 9.4 produces A ∼= B. 2
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9.2 Cancellation for the Direct Product

In general, cancellation for the direct product fails dramatically. If C is any bipartite graph,
then there are always non-isomorphic graphs A and B for which A × C ∼= B × C. Indeed,
just take A = K2 and B = 2Ks

1 (two loops). Then A× C ∼= 2C ∼= B × C.

C C

A B

FIGURE 9.1 Failure of cancellation: A× C ∼= B × C but A 6∼= B.

Figure 9.1 shows another example. Here A × C ∼= 2C6
∼= B × C, but A 6∼= B. Despite

such failures, the machinery built in the previous section yields several easy cancellation
results. In what follows, all graphs are in Γ0; all proofs are due to Lovász (1971).

Proposition 9.6 If A× C ∼= B × C, and C has a loop, then A ∼= B.

Proof Suppose A× C ∼= B × C. Let X be any graph. Applying Proposition 9.1, we get

hom(X,A) · hom(X,C) = hom(X,B) · hom(X,C).

But hom(X,C) 6= 0, as the constant map sending X to a vertex with a loop is a homomor-
phism. Thus hom(X,A) = hom(X,B), and Theorem 9.3 gives A ∼= B. 2

Proposition 9.7 If A × C ∼= B × C, and there are homomorphisms A → C and B → C,
then A ∼= B.

Proof As before, A×C ∼= B×C implies hom(X,A) ·hom(X,C) = hom(X,B) ·hom(X,C).
If hom(X,C) 6= 0, then hom(X,A) = hom(X,B). On the other hand, if hom(X,C) = 0,
then it must be that hom(X,A) = 0, for otherwise there is a homomorphism X → A→ C.
Similarly we argue hom(X,B) = 0. In any case hom(X,A) = hom(X,B), so A ∼= B. 2

Corollary 9.8 If A× C ∼= B × C, and A,B and C are bipartite, then A ∼= B.

Proposition 9.9 If A×C ∼= B ×C, and there is a homomorphism D → C then A×D ∼=
B ×D.

The proof of Proposition 9.9 is similar to that of Proposition 9.7 and is left as an exercise.
One significant consequence of it is that if A × C ∼= B × C and C has at least one edge,
then A×K2

∼= B ×K2. This is useful, as it can reduce questions about cancellation to the
simpler case involving a common factor of K2.

In addition to the above results, Lovász (1971) also proved the following generalization
of Proposition 9.6. Combined with the remarks at the beginning of this section, it tells us
that in general A× C ∼= B × C implies A ∼= B if and only if C is not bipartite.

Theorem 9.10 If A× C ∼= B × C, and C has an odd cycle, then A ∼= B.

Lovász obtains this as a consequence of the following theorem. Its proof involves a theory
of so-called k-partite structures. To date no simple graph-theoretic proof is known.

Theorem 9.11 If A,B,C ∈ Γ0 and A×C ∼= B×C, then there is an isomorphism A×C →
B × C with (a, c) 7→ (ϕ(a, c), c).
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9.3 Anti-Automorphisms and Factorials

Theorem 9.10 does not completely resolve the question of when C can be cancelled from
A×C ∼= B×C. Although it does imply that cancellation can fail if and only if C is bipartite,
it does not address what properties of A (or B) might guarantee that cancellation holds.
For example, if A = Ks

1 , then surely A × C ∼= B × C implies A ∼= B, whether or not C is
bipartite. We might reasonably ask what other graphs A have this property.

This section answers that question. Given a graph A and a bipartite graph C, we classify
those graphs B for which A×C ∼= B×C. This leads to exact conditions on A that guarantee
that A × C ∼= B × C implies A ∼= B. Our methods involve two new ideas: the notion of
an anti-automorphism of a graph and a factorial operation on graphs. The development is
based on Hammack (2009), but we here use a slightly improved definition of a factorial.

An anti-automorphism of a graph A is a bijection α : V (A) → V (A) with the property
that xy ∈ E(A) if and only if α(x)α−1(y) ∈ E(A) for all pairs x, y ∈ V (A). The set of all
anti-automorphisms of A is denoted Ant(A).

In general Ant(A) is not a group, though it contains the identity and is closed with re-
spect to taking inverses. Notice that any automorphism of order 2 is an anti-automorphism.
Figure 9.2 (left) shows an anti-automorphism of order 4.

A

α

Aα

FIGURE 9.2 Left: a graph A and an α ∈ Ant(A). Right: the graph Aα.

The following construction is of key importance. Given an anti-automorphism α of a
graph A, we define a graph Aα as V (Aα) = V (A) and E(Aα) = {xα(y) | xy ∈ E(A)}.
Figure 9.2 shows an example of graphs A and Aα.

We take care to point out that the statement xy ∈ E(A) ⇔ xα(y) ∈ E(Aα) is true,
and it follows not just from the definition of Aα, but also from the fact that α is an anti-
automorphism. This is summarized in the following result, which will be used frequently
and without further comment.

Proposition 9.12 If α ∈ Ant(A), then xy ∈ E(A) if and only if xα(y) ∈ E(Aα).

Proof Certainly if xy ∈ E(A), then xα(y) ∈ E(Aα) by the definition of Aα. Conversely,
suppose xα(y) ∈ E(Aα). By the definition of Aα, this means that either xy ∈ E(A) or
α−1(x)α(y) ∈ E(A). In the second case, the fact that α is an anti-automorphism ensures
that xy ∈ E(A). 2

Comparing Figures 9.1 and 9.2, we see that the graph A is the six-cycle in both figures,
and B = Aα and A× C ∼= Aα × C. This illustrates a general principle.

Proposition 9.13 Let A and B be graphs. If C is a bipartite graph that has at least one
edge, then A× C ∼= B × C if and only if B ∼= Aα for some α ∈ Ant(A).
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Proof Suppose A×C ∼= B×C. We will construct an anti-automorphism α of A for which
Aα ∼= B. As C has an edge, there is a homomorphism K2 → C, and therefore Theorem 9.7
implies A×K2

∼= B×K2. By Theorem 9.11, there is an isomorphism A×K2 → B×K2 of
form (x, c) 7→ (ϕ(x, c), c). (Actually, this can easily be shown directly for the present simple
situation of C = K2.) Put V (K2) = {0, 1} and define maps λ, µ : V (A) → V (B) as follows:

λ(x) = ϕ(x, 0) ,

µ(x) = ϕ(x, 1) .

Because (x, c) 7→ (ϕ(x, c), c) is an isomorphism, it follows readily that λ and µ are bijective.
We now show that the composition λ−1µ is an anti-automorphism. Observe that

xy ∈ E(A) ⇐⇒ (x, 0)(y, 1) ∈ E(A×K2)

⇐⇒ (ϕ(x, 0), 0)(ϕ(y, 1), 1) ∈ E(B ×K2)

⇐⇒ (λ(x), 0)(µ(y), 1) ∈ E(B ×K2)

⇐⇒ λ(x)µ(y) ∈ E(B).

Thus we have
xy ∈ E(A) ⇐⇒ λ(x)µ(y) ∈ E(B), (9.1)

and applying this again gives

xy ∈ E(A) ⇐⇒ λ(x)µ(y) ∈ E(B)

⇐⇒ µ−1λ(x)λ−1µ(y) ∈ E(A)

⇐⇒ (λ−1µ)−1(x)λ−1µ(y) ∈ E(A).

This means λ−1µ ∈ Ant(A). Set α = λ−1µ. Notice that λ : Aα → B is an isomorphism, as
follows. By definition, any edge of Aα, has form xα(y) = xλ−1µ(y) for some xy ∈ V (A).
Taking λ of both endpoints produces λ(x)µ(y), which by (9.1) is an edge of B. On the other
hand, if uv ∈ E(B), then λ−1(u)µ−1(v) ∈ E(A), so λ−1(u)αµ−1(v) ∈ E(Aα), which reduces
to λ−1(u)λ−1(v) ∈ E(Aα). Therefore B ∼= Aα.

Conversely, it suffices to prove that A × C ∼= Aα × C for any bipartite graph C and
α ∈ Ant(A). Let C0 and C1 be a bipartition of C, and define a map Θ : A×C → Aα×C as

Θ(a, c) =

{
(a, c) if c ∈ C0 ,
(α(a), c) if c ∈ C1 .

This is clearly bijective. Suppose (x, c)(y, c′) ∈ E(A × C). We may assume c ∈ C0 and
c′ ∈ C1. Then Θ(x, c)Θ(y, c′) = (x, c)(α(y), c′) ∈ E(Aα × C). In the other direction, any
edge of Aα ×C must be either of form (x, c)(α(y), c′) or (α(x), c)(y, c′), where in each case
c ∈ C0, c′ ∈ C1 and xy ∈ E(A). In the first case, (x, c)(α(y), c′) is the image under Θ of
the edge (x, c)(y, c′) of A × C. In the second case, (α(x), c)(y, c′) is the image under Θ of
(α(x), c)(α−1(y), c′), which is an edge of A× C because α is an anti-automorphism. 2

Proposition 9.13 implies that the set Ant(A) in some sense parameterizes the graphs
B for which A × C ∼= B × C. For any α ∈ Ant(A), the graph B = Aα satisfies A × C ∼=
B × C. Conversely for any B with A × C ∼= B × C, there is some α ∈ Ant(A) for which
B ∼= Aα. However, this correspondence need not be injective. There can exist distinct anti-
automorphisms α and β for which Aα ∼= Aβ . For example, if A = K3, there are three distinct
transpositions α1, α2, and α3 that interchange two vertices and fix the third. Each is an
anti-automorphism, and Aα1 ∼= Aα2 ∼= Aα3 is the path of length 2 with loops at each end.
As a tool for sorting out which anti-automorphism yield isomorphic graphs, we introduce
the notion of a graph factorial.
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The factorial of a graph A is the graph A! whose vertices are the permutations of V (A).
Permutations λ and µ are adjacent in A! exactly when xy ∈ E(A) ⇐⇒ λ(x)µ(y) ∈ E(A)
for all pairs x, y ∈ V (A). We denote an edge joining the vertices λ and µ as (λ)(µ) in order
to avoid confusion with composition.

Replacing xy in this definition with λ−1(x)µ−1(y), we see that (λ)(µ) ∈ E(A!) if and
only if (λ−1)(µ−1) ∈ E(A!), so µ → µ−1 is an involution of A!. Note that α is an anti-
automorphism of A if and only if (α)(α−1) ∈ E(A!), so Ant(A) consists of the permutations
of V (A) that are joined to their inverses by an edge of A!. We remark also that there is a
loop at a vertex µ of A! if and only if µ is an automorphism of A.

As an example of a graph factorial, consider the complete graph Ks
p with loops at

each vertex. Any pair of permutations of V (Ks
p) must be adjacent in Ks

p!, so Ks
p! ∼= Ks

p!.
Consequently,

Ks
p! ∼= Ks

p ×Ks
p−1 ×Ks

p−2 × · · · ×Ks
3 ×Ks

2 ,

which explains our choice of the word “factorial” for this construction.
For another example, consider Kp!. Because every permutation of V (Kp) is an auto-

morphism of Kp, it follows that Kp! has a loop at each of its p! vertices. Moreover, given
an edge (λ)(µ) ∈ E(Kp!) we must have λ = µ, for otherwise there is an x ∈ V (Kp) with
λ(x)µ(x) ∈ E(Kp), forcing a loop at x. Therefore every edge of the factorial is a loop, so

Kp! = p!K1. (9.2)

Given a graph A, we define a relation ' on Ant(A) by declaring α ' β if α = λβµ−1

for some (λ)(µ) ∈ E(A!). It is not hard to verify that this is an equivalence relation (Exer-
cise 9.5).

Proposition 9.14 If α, β ∈ Ant(A), then α ' β if and only if Aα ∼= Aβ.

Proof Suppose α ' β, so α = λβµ−1 for some (λ)(µ) ∈ E(A!). Then αµ = λβ and

xy ∈ E(A) ⇐⇒ λ(x)µ(y) ∈ E(A)

⇐⇒ λ(x)αµ(y) ∈ E(Aα)

⇐⇒ λ(x)λβ(y) ∈ E(Aα).

Now, the edges ofAβ are precisely the pairs xβ(y) for xy ∈ E(A), and the above equivalences
show that λ(x)λβ(y) ∈ E(Aα). Thus λ is a homomorphism from Aβ to Aα. Further, observe
that any edge xα(y) of Aα is the image under λ of some edge of Aβ : Since xα(y) ∈ E(Aα),
we have xy ∈ E(A), so λ−1(x)µ−1(y) ∈ E(A), and hence λ−1(x)βµ−1(y) ∈ E(Aβ). Then λ
sends this edge to xλβµ−1(y) = xα(y). Therefore λ : Aβ → Aα is an isomorphism.

Conversely, let there be an isomorphism λ : Aβ → Aα. Note α = (λ)β(α−1λβ)−1. We
just need to show that (λ)(α−1λβ) ∈ E(A!), and this involves showing that xy ∈ E(A) if
and only if λ(x)α−1λβ(y) ∈ E(A). Now,

xy ∈ E(A) ⇐⇒ xβ(y) ∈ E(Aβ)

⇐⇒ λ(y)λβ(y) ∈ E(Aα)

⇐⇒ λ(y)α−1λβ(y) ∈ E(A) or α−1λ(x)λβ(y) ∈ E(A).

If α−1λ(x)λβ(y) ∈ E(A), the anti-automorphism property of α gives λ(a)α−1λβ(y) ∈ E(A).
2

For each α ∈ Ant(A), let [α] denote the '-equivalence class containing α. Propositions
9.13 and 9.14 imply the following:
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Theorem 9.15 Let A be a graph and C be a bipartite graph with at least one edge. If the
'-equivalence classes of Ant(A) are {[α1], [α2], . . . , [αk]}, then the isomorphism classes of
the graphs B for which A× C ∼= B × C are precisely those in {Aα1 , Aα2 , . . . , Aαk}.

We illustrate this theorem with an example. Let A = K4, with vertex set {0, 1, 2, 3}. We
now compute all of the graphs B for which A×C ∼= B×C, for an arbitrary bipartite graph
C. According to Theorem 9.15, we must first compute Ant(A).

For this, notice that any permutation of {0, 1, 2, 3} satisfying α2 = id is either the
identity or an automorphism of A or order 2, and therefore belongs to Ant(A). Conversely,
consider any α ∈ Ant(A). Given any x ∈ V (A) = V (K4), because xx /∈ E(K4), we must
have α(x)α−1(x) /∈ E(K4). Hence α(x) = α−1(x), so α2 = id. Thus

Ant(A) = {α ∈ Aut(K4) | α2 = id},

that is, Ant(A) consists of all the involutions of A = K4.
Next we must compute the '-equivalence classes of Ant(A). By Equation (9.2), the edges

of A! are just the loops (λ)(λ), where λ is a permutation of V (A). Thus α ' β provided
that α = λβλ−1, that is, if α and β are conjugate by a permutation of V (A). There are
only three conjugacy classes of involutions of {0, 1, 2, 3}, namely [id], [(02)], and [(02)(13)].

Thus Theorem 9.15 asserts that there are exactly three graphs B with A×C ∼= B ×C,
namely B = Aid, B = A(02) and B = A(02)(13). These are illustrated in Figure 9.3. (As a
quick check, the reader may verify that Aid ×K2

∼= A(02) ×K2
∼= A(02)(13) ×K2

∼= Q3.)

01

2 3

01

2 3

01

2 3

Aid A(02) A(02)(13)

FIGURE 9.3 The three graphs B for which A× C ∼= B × C.

We close with a summary of the consequences of Theorems 9.10 and 9.15. The simulta-
neous conditions A× C ∼= B × C and A 6∼= B are possible if and only if C is bipartite and
A (hence also B) has more than one '-equivalence class. Therefore we have the following:

Theorem 9.16 Cancellation of A×C ∼= B ×C is guaranteed to hold if and only if C has
an odd cycle or A (hence also B) has exactly one '-equivalence class.

For other approaches to cancellation, see Abay-Asmerom, Hammack, Larson, and Tay-
lor (2010); Hammack (2008), Fernández, Leighton, and López-Presa (2007); and Imrich,
Klavžar, and Rall (2007).

9.4 Graph Exponentiation

Graph exponentiation is such a natural concept that we feel obliged to state at least the
definitions.
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For graphs G and H , the exponential or direct power GH is a graph whose vertices are
the functions V (H) → V (G). Two functions f and g are adjacent provided that f(u)g(v) ∈
E(G) whenever uv ∈ E(H). (Observe that the factorial A! is a subgraph of AA.)

We see immediately that GKs
1 ∼= G. Verifying the following identities is not much harder:

A(B+C) = AB ×AC , (9.3)

(A×B)C = AC ×BC , (9.4)

AB×C = (AB)C . (9.5)

Much more difficult is the question under which conditions the usual cancellation laws
for bases and exponents hold:

AG ∼= AH implies G ∼= H,

AG ∼= BG implies A ∼= B,

or conditions that ensure that two direct powers

AG ∼= BH

have common refinements

A ∼= CX , B ∼= CY , G ∼= Y × Z,H ∼= X × Z.

For partially ordered sets, the definition of graph exponentiation dates back to Birkhoff;
see, for example, Birkhoff (1940). There exists a sizable literature devoted to the solution
of the above problems. For a survey, see Jónsson (1982). In general, however, graph expo-
nentiation for simple graphs seems to be little explored.

Exercises

9.1. Find four different graphs B for which C10 × C8
∼= B × C8.

9.2. Prove Proposition 9.1.

9.3. Prove Proposition 9.9.

9.4. Prove that for any graph A, each nontrivial component of A! either is Ks
p for some

p or is a complete bipartite graph.

9.5. Given a graph A, we define a relation ' on Ant(A) by declaring α ' β if α = λβµ−1

for some edge (possibly a loop) (λ)(µ) ∈ E(A!). Prove that this is an equivalence
relation.

9.6. (Hammack, 2008) Suppose A and C are bipartite. Show that A × C ∼= B × C
implies A ∼= B if and only if no component of A has an automorphism that reverses
its partite sets.

9.7. Prove the validity of the laws (9.3) through (9.5) for exponents.
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We introduced the lexicographic product in Section 4.4 and examined its metric properties in
Section 5.4. We now address deeper questions such as prime factorization and cancellation.
We prove that all prime factorizations of a given graph G have the same number of factors
and that there exists a canonical way of transforming any prime factorization into any
other one. We also show the existence of a large class of graphs with unique prime factor
decomposition with respect to the lexicographic product.

As in the case of the other products, a nontrivial lexicographic product has transitive
automorphism group if and only if all factors have transitive groups. However, the auto-
morphism group of a nontrivial lexicographic product cannot be regular. This motivates the
study of lexicographic products that admit a regular subgroup of the automorphism group.
In this vein we show that every graph with transitive automorphism group is a homomorphic
image of a nontrivial lexicographic product that admits a regular group of automorphisms.

As shown by Sabidussi (1958), graphs that admit a regular group of automorphisms
are Cayley graphs. Vertex transitive graphs can then be characterized as retracts of Cayley
graphs.

10.1 Basic Properties

This section is concerned with distributive properties of the lexicographic product with
respect to the disjoint union, the join of graphs, and basic cancellation laws. These results,
together with properties of so-called externally related sets, provide the background for the
investigation of the structure of prime factor decompositions of graphs with respect to the
lexicographic product in Section 10.4.

Recall that the lexicographic product G ◦ H of two graphs G and H is defined on
V (G ◦ H) = V (G) × V (H), two vertices (u, x), (v, y) of G ◦ H being adjacent whenever
uv ∈ E(G), or u = v and xy ∈ E(H). See Figures 4.10 and 5.5.

By Corollary 5.14, the product G ◦ H of nontrivial graphs is connected if and only if
G is. Thus G ◦H 6∼= H ◦ G whenever one of the factors is disconnected and the other one
connected and nontrivial, as in Figure 4.10. Figure 5.5 shows that commutativity can fail
even when both factors are connected.

The lexicographic product is associative (Proposition 5.11) and has K1 as a unit. With
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116 Lexicographic Product

respect to the disjoint union, we have the distributive law

(A+B) ◦ C = A ◦ C +B ◦ C.
With respect to taking complements, we note that

G ◦H = G ◦H .

Because G = G, this implies that

G ◦H = G ◦H .

Because of this, we say the lexicographic product is self-complementary. (That is—in the
parlance of Section 4.4—it is its own complementary product.)

The join G⊕H of G and H is defined by

G⊕H = G+H .

From the right-distributive law

(A+B) ◦ C = A ◦ C +B ◦ C
for the disjoint union, we obtain

(A⊕B) ◦ C = A ◦ C ⊕B ◦ C
for the join by self-complementarity. We also have the left-distributive law

Kn ◦ (A⊕B) = Kn ◦A⊕Kn ◦B.
Taking complements, we deduce a second left-distributive law

Dn ◦ (A+B) = Dn ◦A+Dn ◦B.
Although the lexicographic product is not commutative in general, G ◦ H ∼= H ◦ G if

both G and H are complete or if both are totally disconnected. There are no other graphs
that commute with complete or totally disconnected graphs.

Proposition 10.1 Let n ≥ 2 and G be a graph. Then

(i) G ◦Kn
∼= Kn ◦G if and only if G is complete, and

(ii) G ◦Dn
∼= Dn ◦G if and only if G is totally disconnected.

Proof We first prove (ii). We have already seen that G ◦Dn
∼= Dn ◦G if G has no edges.

Assume now that G ◦Dn
∼= Dn ◦G. Evidently,

|E(G)| · n2 = |E(G ◦Dn)| = |E(Dn ◦G)| = n · |E(G)|.
Hence |E(G)|(n2 − n) = 0. For n ≥ 2, this is only possible if |E(G)| = 0.

To prove (i), we recall that G ◦H = G ◦H . Hence G and Kn commute if and only if
G and Dn = Kn commute. For n ≥ 2 this is the case if and only if G has no edges, or
equivalently if and only if G is complete. 2

By associativity, two graphs commute if they are both (lexicographic) powers of one and
the same graph. Thus two graphs G and H commute in each of the following trivial cases,
where, just as for the other products, we will write G◦,k to denote the kth power of G with
respect to the lexicographic product:

1. G and H are both complete.
2. G and H are both totally disconnected.
3. There exists a graph K and integers n ≥ 1, m ≥ 1 such that G = K◦,n and

H = K◦,m.

These three cases are the only ones, but some argument is required to prove it; see Theorem
10.9.
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10.2 Self-Complementarity and Cancellation Properties

Every graph has a prime factor decomposition with respect to the lexicographic product. In
Section 10.4 we show that it need not be unique, not even for connected graphs. However,
we will also prove that there is a canonical way of obtaining all prime factor decompositions
from a given one and that the number of prime factors is preserved. The proof makes
repeated use of self-complementarity and of distributive properties.

Here we investigate these properties and prove a cancellation law that is of interest in
its own right.

Recall that the connected components of a graph are the largest indecomposable induced
subgraphs of a graph with respect to the disjoint union. One could say that they are prime
with respect to the disjoint union and that the representation of a graph as a disjoint union
of indecomposable graphs is unique.

By complementarity, an analogous statement holds for the join. Here the indecomposable
elements of a graph G are precisely the complements of the components of G. We call them
the join-components of G.

Clearly, a graph G is indecomposable with respect to the disjoint union and the join if
and only if both G and its complement G are connected.

Components and join-components are special cases of so-called externally related sub-
graphs of a graph. Let G be a graph. We call a subset A of V (G) and the subgraph 〈A〉 of
G externally related1 if every vertex x ∈ V (G) \A that is adjacent to at least one vertex in
A is adjacent to all vertices of A. Components and join-components are externally related.

Lemma 10.2 Let 〈A〉 and 〈B〉 be externally related subgraphs of a graph G with nonempty
intersection. Then 〈A∪B〉 is also externally related. If 〈A〉 and 〈B〉 are either both complete
or both totally disconnected, then 〈A ∪B〉 is also either complete or totally disconnected.

Proof Clear. 2

Special cases of externally related subgraphs of a lexicographic product G ◦H are the
H-layers. If 〈A〉 is an externally related subgraph of G, then 〈A〉 ◦H is externally related
in G ◦H .

Lemma 10.3 The projections pG(X) and pH(X) of an externally related subgraph X of
G ◦H onto the factors G and H are externally related in G and H, respectively.

Proof The first assertion is obvious. For the second it is useful to recall that contrary to the
fact that the projection pG of X into G is a weak homomorphism, pH is in general neither
a homomorphism nor a weak homomorphism. Let XH = pH(X) and a2 ∈ V (H) \ XH be
adjacent to b2 ∈ XH . Let b be a vertex of X with pH(b) = b2, namely b = (b1, b2). The vertex
a = (b1, a2) cannot be in X , and so ab ∈ E(G ◦ H) by the definition of the lexicographic
product. If c2 is any other vertex of XH , let c = (c1, c2) ∈ V (X). Clearly, ac ∈ E(G ◦H).
Thus, if c1 = b1, we have a2c2 ∈ E(H). If not, b1c1 ∈ E(G), and therefore b = (b1, b2)
is adjacent to d = (c1, a2) 6∈ V (X). But then c ∈ V (X) is also adjacent to d, and hence
c2a2 ∈ E(H). 2

1Externally related sets have been introduced for various reasons by many authors, and the terminology
is far from uniform. They are also known as autonomous sets, closed sets, stable sets, intervals, and partitive

sets, to name just a few. Nowadays they are frequently called modules; see the book of Brandstädt, Le, and
Spinrad (1999).
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Lemma 10.4 Let X be an externally related subgraph of G ◦H, where |V (X)| ≤ |V (H)|.
Then XG = pG(X) is either complete or totally disconnected. Furthermore, if |XG| > 1,
then every join-component of X is a join-component of an H-layer of G ◦ H, or every
component of X is a component of an H-layer of G ◦H.

Proof The first assertion trivially holds if |XG| = 1.
Thus let |XG| > 1. Suppose that X is connected. We wish to show that any two vertices

a, b ∈ V (XG) are adjacent. Let x ∈ V (X) be a vertex with pG(x) = a. Because X is
connected, there must be a neighbor y of x in X − Hx. This vertex is adjacent to every
vertex in Hx and, in particular, to every vertex in Hx −X . Because |V (X)| ≤ |V (H)|, the
graph Hx − X is nonempty. Let u be a vertex in Hx − X . As X is externally related, u
is adjacent to every vertex in X , including the vertex z ∈ V (X) with pG(z) = b. But then
ab ∈ E(XG).

If X is not connected, then X is connected and externally related in G ◦H = G ◦H by
the above argument, and XG is complete. Thus XG is totally disconnected.

The argument also shows that every join-component of X must be completely contained
in an H-layer. Suppose that C is such a join-component and that C ⊆ X ∩ Hx. We can
then use the above notation and complete the proof with the observation that y is adjacent
to every element w in Hx \X , which implies that w must be adjacent to every element of
Hx \X ⊇ C. 2

Corollary 10.5 Let X be an externally related subgraph of G◦H, where |V (X)| ≤ |V (H)|.
If both X and X are connected, then X is contained in an H-layer of G ◦H.

Proof If X and X are connected, then X is indecomposable with respect to disjoint union
and join. 2

Proposition 10.6 Let X ◦ Y ∼= A ◦B and |V (Y )| ≤ |V (B)|; then A has a right divisor R
of cardinality lcm(|V (Y )|, |V (B)|)/|V (B)|. R is complete if Y is connected; otherwise, R is
totally disconnected.

Proof By complementarity, it suffices to prove the proposition for connected Y .
Let ϕ be an isomorphism from X ◦ Y onto A ◦B. Then the images ϕY x of the Y -layers

Y x of X ◦ Y are externally related subgraphs of A ◦ B satisfying the conditions of Lemma
10.4.

Let two vertices a, b of A be in relation ρ if there exists a ϕY x such that a, b ∈
pG(ϕY x). Furthermore, let A1, A2, . . . , Ak be the subgraphs of A induced by the equiv-
alence classes with respect to ρ∗. By Lemma 10.4 and repeated applications of Lemmas
10.3 and 10.2, one sees that the Ai are complete and externally related. Thus between
any two different Ai-s, there are either all edges or none. Hence the complete graph on
gcd(|V (A1)|, |V (A2)|, . . . , |V (Ak)|) vertices is a right divisor of A, and the observation that
lcm(|V (Y )|, |V (B)|)/|V (B)| divides every |V (Ai)| completes the proof. 2

Proposition 10.7 Let X ◦Y ∼= A◦B and |V (Y )| be a divisor of |V (B)|. Then Y is a right
divisor of B.

Proof Let ϕ be an isomorphism from X ◦ Y onto A ◦ B. If Y and Y are both connected,
then every B-layer of A ◦ B is a union of images of Y -layers of X ◦ Y because of Lemma
10.4 and Corollary 10.5. But then the assertion of the proposition clearly holds.

Thus either Y or Y is disconnected. It suffices to consider the case in which Y is dis-
connected. We can also assume that ϕ does not map every Y -layer of X ◦ Y into a B-layer
of A ◦B; otherwise, there is nothing to show. But then, by Lemma 10.4, every component
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of ϕ(Y ) is in a B-layer and thus isomorphic to a component of B. Furthermore, because
ϕ is onto, every B-layer Bc of A ◦ B is the union of images of Y -layers of X ◦ Y that are
completely contained in Bc and of components of images of Y -layers, that is, of images of
components of Y -layers of X ◦ Y . We can thus represent Y in the form

Y =
∑

1≤i≤k

aiYi ,

where the Yi are the nonisomorphic components of Y and the ai are their multiplicities in
Y . Let bi be the multiplicity of Yi in B. Observe that B = H +

∑
1≤i≤k biYi, where H is

induced on the union of the images of Y -layers contained in Bc. Then, because each Y -layer
is externally related, it follows that H = G ◦ Y for the graph G for which V (G) is the set
of images of Y -layers contained in Bc and two vertices in G are adjacent if and only if the
two Y layers are adjacent. Therefore,

B = G ◦ Y +
∑

1≤i≤k

biYi .

Then |V (X)|·ai = |V (A)|·(|V (G)|·ai+bi) for every i, 1 ≤ i ≤ k. Because |V (Y )| is a divisor of
|V (B)|, we conclude that |V (A)| divides |V (X)|. For h = (|V (X)|−|V (A)| · |V (G)|)/|V (A)|,
we thus have h · ai = bi. It follows that

B ∼= G ◦ Y +Dh ◦ Y = (G+Dh) ◦ Y ,

so Y is indeed a right divisor of B. 2

Theorem 10.8 Let X ◦ Y ∼= A ◦B and |V (Y )| = |V (B)|. Then Y ∼= B and X ∼= A.

Proof By Proposition 10.7, one only has to show that X ∼= A. We leave the details to the
reader. 2

Note that this cancellation property implies that G ∼= H if G◦,k ∼= H◦,k for some integer
k > 1.

10.3 Commutativity

Recall that there are three trivial cases in which two graphs A and B commute with respect
to the lexicographic product: A and B are complete, A and B are totally disconnected,
or A and B are powers of one and the same graph. Moreover, we have shown that if A
is complete (or totally disconnected) and if A and B commute, then B must be complete
(or totally disconnected). As the following theorem shows, the proof of which follows the
presentation of Imrich (1969c), there are no other cases.

Theorem 10.9 Let A and B be two nontrivial graphs that commute with respect to the
lexicographic product. Then they are either both complete, both totally disconnected, or both
powers of one and the same graph C.

Proof By the self-complementarity of the lexicographic product, we can assume that A◦B
and B ◦A are both connected and, hence, also A and B. We can choose the notation such
that |V (A)| ≤ |V (B)|.
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Let ϕ be an isomorphism of B ◦A onto A ◦B.
Case 1. If the image ϕAx of every A-layer Ax in B ◦A is completely contained in a B-layer
of A ◦ B, then A is a right divisor of B. In this case there exists a graph C such that
B ∼= C ◦A.
Case 2. Otherwise, there is a vertex y such that ϕAy meets at least two B-layers of A ◦B.
Because Ay is externally related in B ◦A, its image under ϕ must be externally related in
A ◦B. Now an application of Lemma 10.4 to X = ϕAy shows that every join-component of
A is isomorphic to one of B.

In Case 1, A◦ (C ◦A) ∼= (C ◦A)◦A and thus (A◦C)◦A ∼= (C ◦A)◦A. By Theorem 10.8,
A ◦C ∼= C ◦A. If C = K1, the assertion of the theorem is true; and if C 6= K1, the theorem
holds for A and B if it holds for A and C. This is because if A and C are complete, then
B must be complete; and if A and C are powers of a graph G, then also B is such. We can
repeat this process until either K1 comes up as a factor or until Case 2 occurs.

We are thus left with the case where A ◦B ∼= B ◦A, |V (A)| ≤ |V (B)|, and where every
join-component of A is isomorphic to a join-component of B. We consider three subcases:

Subcase 2.1 Every join-component of A is isomorphic to K1. In this case, A is complete.
By Proposition 10.1 (i), B must also be complete.

Subcase 2.2 No join-component of A is isomorphic to K1. Let us denote the join-
components ofA byA1, A2, . . . , Ar and the join-components ofB by B1, B2, . . . , Bs. Because
A contains no join-component isomorphic to K1, the join-components of A ◦ B are Ai ◦ B
for i = 1, . . . , r.

Furthermore, the join-components of B ◦A are Bj ◦A for the Bj with |V (Bj)| 6= 1, and
Bj ◦Ai, i = 1, . . . , r, for the Bj with |V (Bj)| = 1.

Let A1 be a join-component with minimum cardinality in A, and B1 a join-component
of minimum cardinality in B.

If |V (B1)| = 1, we have |V (A1)| · |V (B)| = |V (A1)|. This is only possible for |V (B)| = 1,
but then A and B commute.

Otherwise, |V (A1)| · |V (B)| = |V (B1)| · |V (A)|. Because every join-component of A is
isomorphic to one of B, we have |V (A1)| ≥ |V (B1)|. Because we also assume |V (B)| ≥
|V (A)|, equality must hold in all cases. But then |V (A)| = |V (B)| and A ∼= B by Theorem
10.8.

Subcase 2.3 A contains join-components that are isomorphic to K1 and join-components
that are not. We show that A is a divisor of B, that is, we reduce this case to Case 1.
Slightly changing the notation, we now denote the nonisomorphic join-components of A by

A0, A1, A2, . . . , Ar

and the nonisomorphic join-components of B by

B0, B1, B2, . . . , Bs.

For the multiplicities we introduce the notation a0, a1, . . . , ar for the join-components of A
and b0, b1, . . . , bs for the join-components of B. Furthermore we let A0

∼= B0
∼= K1 and set

a = a0, b = b0. We also recall that every join-component of A is isomorphic to one of B.
Then A ◦B has the (pairwise nonisomorphic) join-components

K1, B1, B2, . . . , Bs, A1 ◦B, . . . , Ar ◦B,

and B ◦A has the (pairwise nonisomorphic) join-components

K1, A1, A2, . . . , Ar, B1 ◦A, . . . , Bs ◦A.
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We show first that every join-component Bi is of the form Aj ◦ A◦,p. As usual, we adopt
the convention A◦,0 ∼= K1. Let Bi be any join-component of B. It is a join-component of
A◦B and therefore isomorphic to a join-component of B ◦A. Thus Bi

∼= Aj or Bi
∼= Bi1 ◦A

with |V (Bi)| > |V (Bi1 )|. For Bi1 , we analogously have Bi1
∼= Aj1 or Bi1

∼= Bi2 ◦ A. As
long as Bik is not isomorphic to Ajk , we can continue this process. However, because of
|V (Bi)| > |V (Bi1)| > |V (Bi2)| > · · · , this process cannot continue indefinitely, which yields
the desired result.

Therefore the join-components of B are K1 with multiplicity b and products of the form
Ai ◦ A◦,j , j = 0, . . . , ki for i = 1, . . . , r. Let bi,j be their multiplicities. We thus obtain the
following table for the multiplicities of the join-components of A ◦B and B ◦A:

Join-Component Multiplicity

A ◦B K1 a · b
Ai ◦A◦,j 0 ≤ j ≤ ki, 1 ≤ i ≤ r a · bi,j
Ai ◦B 1 ≤ i ≤ r ai

B ◦A K1 b · a
Ai 1 ≤ i ≤ r b · ai
Ai ◦A◦,j 1 ≤ j ≤ ki + 1, 1 ≤ i ≤ r bi,j−1

It is not hard to see that the join-components of A ◦ B, respectively of B ◦A, as listed
above, are pairwise nonisomorphic. From A ◦ B ∼= B ◦ A we infer that b · ai = a · bi,0 and
bi,j−1 = a · bi,j for 1 ≤ j ≤ ki. Thus

b · ai = aki+1 · bi,ki for 1 ≤ i ≤ r. (10.1)

Moreover, the join-components Ai ◦A◦,ki+1 of B ◦A can only be isomorphic to the Aj ◦B
of A ◦ B. From this we conclude that there must be a permutation π of the first r natural
numbers with Ai ◦A◦,ki+1 ∼= Aπi ◦B. Therefore bi,ki = aπi, which implies that

b · ai = aπi · aki+1 (10.2)

by (10.1). Hence
b2 · ai = b · aπi · aki+1 = aπ2i · ap,

where p = (kπi+1) + (ki + 1). Now it is easy to see that there is an integer q to every integer
d > 0 with

bd · ai = aπdi · aq.
If d is the order of π, we have πdi = i and bd = aq. Thus a is a divisor of b, or vice versa. If
b|a, we infer from (10.2) that

ai = aπi · aki · a
b
.

This, in turn, implies that ai ≥ aπi, and hence

aπi ≥ aπ2i ≥ · · · ≥ aπd−1i ≥ aπdi = ai,

namely, ai = aπi. With (10.2) we thus have a|b. From this and b · ai = a · bi,0, we finally
obtain

ai ·
b

a
= bi,0.

Because the join-components K1 and Ai of B have multiplicities b and bi,0 and because the
others are of the form Ai ◦A◦,j , where j ≥ 1, this implies that A is a right divisor of B. 2
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10.4 Factorizations and Nonuniqueness

In this section we show that all prime factorizations of a graph with respect to the lex-
icographic product have the same number of factors and that they can be transformed
into each other by sequences of so-called transpositions of complete or totally disconnected
factors. This also yields a large class of graphs with unique prime factorizations (Theorem
10.11 and Corollary 10.12).

We begin with the observation that prime factorizations of connected graphs with respect
to the lexicographic product need not be unique. To see this, consider

(K2 ◦D2 ⊕K3) ◦K2
∼= K2 ◦ (D2 ◦K2 ⊕K3).

That both sides are equal can be seen from the distributive laws for the lexicographic
product with respect to the join of graphs. That all factors are prime is clear, because they
have either seven or two vertices. Finally, the observation that the first factor on the left
side has nineteen edges and the second one on the right only seventeen shows that they
cannot be isomorphic.

The key to our investigations is the following lemma.

Lemma 10.10 Let G be a graph without isolated vertices and m,n natural numbers. Then
Dn ◦G+Dm is prime with respect to the lexicographic product if and only if G ◦Dn +Dm

is prime.
If G has no trivial join-components, then Kn ◦ G ⊕ Km is prime with respect to the

lexicographic product if and only if G ◦Kn ⊕Km is prime.

Proof It suffices to prove the first assertion. Because both Dn◦G+Dm and G◦Dn+Dm are
decomposable if gcd(m,n) > 1 (Exercise 10.1), we can assume that m and n are relatively
prime. Moreover, the assertion is trivially true when G is totally disconnected. Suppose that
Dn ◦G+Dm is not prime. Let

Dn ◦G+Dm =

( a∑

i=0

aiAi

)
◦
( b∑

j=0

bjBj

)

be a decomposition, where Ai and Bj denote connected graphs and aiAi the disjoint union
of ai copies of Ai. Furthermore let A0

∼= B0
∼= K1. Then

Dn ◦G+Dm = a0b0(A0 ◦B0) + a0
∑

j>0

bjBj +
∑

i>0

(
aiAi ◦

∑

j

bjBj

)
.

We note that the Bj and the Ai ◦
∑
bjBj are pairwise nonisomorphic and that n divides

the multiplicity of every nontrivial component of Dn ◦ G + Dm. Therefore n also divides
a0bj and ai for i, j > 0.

Because m = a0b0 and gcd(m,n) = 1, we conclude that gcd(n, a0) = 1. Because n
divides a0bj , it must also divide bj. Therefore we can represent Dn ◦ G + Dm in the form
(Dn ◦A+ a0K1) ◦ (Dn ◦B + b0K1). For Dn ◦G, this implies that

Dn ◦G = a0Dn ◦B +Dn ◦A ◦ (Dn ◦B + b0K1)

and
G = a0B +A ◦ (Dn ◦B + b0K1).
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Because of the distributive laws for the lexicographic product, substitution of this expression
for G in G ◦Dn +Dm yields

G ◦Dn +Dm = (A ◦Dn + a0K1) ◦ (B ◦Dn + b0K1).

Hence G ◦Dn +Dm is not prime.
Let us assume now that G ◦ Dn + Dm is not prime. Analogous to the above, we can

represent G ◦Dn +Dm in the form

a0b0(A0 ◦B0) + a0
∑

j>0

bjBj +
∑

i>0

(
aiAi ◦

∑

j

bjBj

)
.

As before, a0b0 = m. Together with gcd(m,n) = 1, this implies that gcd(b0, n) = 1. Because
every Bj is isomorphic to a component of G ◦Dn, we also infer that Dn is a right divisor
of every Bj . Thus we can represent

∑
bjBj in the form B ◦Dn + b0K1, where B has only

nontrivial components.
Because every Ai ◦

∑
bjBj is isomorphic to a component of G ◦ Dn, there must be a

component W of G with

W ◦Dn
∼= Ai ◦ (B ◦Dn + b0K1).

By Proposition 10.6, the totally disconnected graph D with

|V (D)| =
lcm(|V (Dn)|, |V (B ◦Dn + b0K1)|)

|V (B ◦Dn + b0K1)| =
lcm(n, n|V (B)| + b0)

n|V (B)| + b0

is a right divisor of Ai. Because |V (D)| = n/gcd(n, n|V (B)| + b0) = n/gcd(n, b0) = n, we
can represent

∑
aiAi in the form A ◦Dn + a0K1, where A has only nontrivial components.

Now the proof can be completed like that of the first part. 2

If Q ◦ Dp is a prime factorization of a graph G and if Q can be represented in the
form Dp ◦ H + Dm, where H has only nontrivial components, then Dp ◦ R, where R =
H ◦Dp + Dm, is another prime factorization of G. We say these two representations arise
from each other by a transposition of Dp. If H is empty, then Dp and Dm are simply
interchanged. Analogously, we define a transposition of Kp.

Note that our example for the nonunique prime factor decomposition of graphs with
respect to the lexicographic product is a special case of the transposition of complete factors.
The proof of the following result is adapted from Imrich (1972a), respectively Dörfler and
Imrich (1972) for directed graphs. However, the results are already due to C. C. Chang
(1961), who investigated factorizations of finite relations.

Theorem 10.11 Any prime factor decomposition of a graph can be transformed into any
other one by transpositions of totally disconnected or complete factors.

Proof The proof is by induction with respect to the number n of vertices of G. For n = 2,
the assertion of the theorem is evidently true.

Let it be true for all graphs with less than n vertices and G be a graph on n ver-
tices. We consider two prime factor decompositions of G; denote the first factor in the first
decomposition by P and the first factor in the second one by Q. Then

P ◦R ∼= Q ◦ S ∼= G.

We can choose the notation such that |V (R)| ≤ |V (S)|. Note that R and S will not be
prime in general.
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If |V (R)| divides |V (S)|, we infer from Proposition 10.7 that R is a right divisor of S,
namely that there exists a graph T with S = T ◦R. But then an application of Theorem 10.8
shows that P ∼= Q ◦ T . Because P is prime, T must be trivial and P ∼= Q and R ∼= S. Now
the validity of the assertion of the theorem follows from the induction hypothesis because
|V (R)| < |V (G)|.

If |V (R)| is not a divisor of |V (S)|, then Proposition 10.6 implies that Q has a nontrivial
right divisor T that is complete or totally disconnected. Because Q is prime, it must be
equal to this divisor T . Without loss of generality, we can assume that Q is the totally
disconnected graph Dq, where q is prime.

Let P =
∑
piPi, where the Pi are the components of P and the pi their multiplicities.

We assume that P0
∼= K1 and admit that p0 = 0. Analogously, we represent R by

∑
rjRj

and S by
∑
skSk. By P ◦R ∼= Dq ◦ S, we have

∑

i>0

pi(Pi ◦R) + p0
∑

rjRj
∼= q

∑
skSk.

If p0 = 0, then every component of S has R as a right divisor, and therefore also S.
Then P ∼= Q, as above. Thus let p0 6= 0. We note that every pi, for i > 0, must be divisible
by q. But then P =

∑
piPi can be represented in the form Dq ◦X + p0K1, where X has no

nontrivial components. Because P is prime, we have gcd(q, p0) = 1. But q must also divide
all p0rj , and therefore all rj . Then Dq is a left divisor of R. Let R ∼= Dq ◦ U . From

(P ◦Dq) ◦ U ∼= Dq ◦ S

we now infer by Proposition 10.7 that U is a right divisor of S. This means that there is a
V with S ∼= V ◦ U . By Theorem 10.8, we thus have

P ◦Dq
∼= Dq ◦ V.

P has exactly p0 isolated vertices, thus also V , and we can represent V in the form Y +p0K1,
where Y has only nontrivial components. Then

(Dq ◦X + p0K1) ◦Dq
∼= Dq ◦ (Y + p0K1)

implies that Dq ◦X ◦Dq
∼= Dq ◦ Y , and hence X ◦Dq

∼= Y .
Now the observation that P ∼= Dq ◦ X + p0K1 and V ∼= Y + p0K1

∼= X ◦ Dq + p0K1

shows that P ◦Dq and Dq ◦ V arise from each other by transposition of Dq.
Moreover, let us recall that Q ∼= Dq, R ∼= Dq ◦ U and S ∼= V ◦ U , namely

G ∼= P ◦Dq ◦ U ∼= Dq ◦ V ◦ U.

By the induction hypothesis, every prime factor decomposition of R can be transformed into
Dq ◦U by transpositions of complete or totally disconnected factors. A transposition of Dq

transforms P ◦Dq ◦U into Dq ◦V ◦U . Again by the induction hypothesis, we can transform
every prime factor decomposition of S = V ◦ U into any other one by transpositions of
complete or totally disconnected factors. This proves the theorem. 2

Corollary 10.12 All prime factor decompositions of a graph G with respect to the lexico-
graphic product have the same number of factors.

If there is a prime factorization of G without complete or totally disconnected factors,
then G has unique prime factor decomposition.

If there is a prime factorization of G in which only complete factors have trivial join-
components and only totally disconnected factors have trivial components, then G has unique
prime factor decomposition.
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10.5 Automorphisms

We derive a simple condition under which the automorphism group of a lexicographic prod-
uct is the wreath product of the groups of the factors. Then we continue with lexicographic
products with transitive groups. In particular, we consider products that allow regular group
actions. This motivates the introduction of Cayley graphs and some of their properties, in
particular, with respect to the lexicographic product.

The wreath product

Let G ◦ H be a lexicographic product, β an automorphism of H , and (g, h) a vertex of
G ◦H . Then the permutation of V (G ◦H) that maps (g, h) into (g, βh) and is the identity
elsewhere clearly is in Aut(G ◦H). Also, if α ∈ Aut(G), then the mapping (g, h) 7→ (αg, h)
is an automorphism of G ◦H .

The group generated by such elements is known as the wreath product Aut(G)◦Aut(H).
Evidently all its elements can be written in the form

(g, h) 7→ (αg, βαgh),

where α is an automorphism of G and where the βαg are automorphisms of H .
As the example of K2◦K2 shows, Aut(G)◦Aut(H) can be a proper subgroup of Aut(G◦

H). The next theorem describes when it is equal to Aut(G ◦H).
For the statement of the theorem, we use the relations S and R that were defined in

Chapters 7 and 8. For the reader who skipped those chapters, it suffices to know that RG

is nontrivial if and only if there exists an externally related set {u, v} of two nonadjacent
vertices, whereas SG is nontrivial if and only if there exists an externally related set {u, v}
of two adjacent vertices.

Theorem 10.13 Let G ◦H be the lexicographic product of simple nontrivial graphs. Then
Aut(G ◦H) = Aut(G) ◦ Aut(H) if and only if H is connected in case RG is nontrivial and
H is connected in case SG is nontrivial.

Proof Note that the conditions of the theorem are not exclusive. Thus, it is possible that
both RG and SG are nontrivial, just as both H and H can be connected. Nevertheless, by
the self-complementarity of the lexicographic product, it suffices to prove the first assertion.

Let u, v be two vertices of G with uRGv and α be the automorphism of G that inter-
changes u and v. Suppose that U is a nontrivial component of H . Define ϕ : V (G ◦H) →
V (G ◦H) by

ϕ(g, h) =

{
(g, h) if h ∈ V (U) and
(αg, h) otherwise .

Then ϕ is an automorphism of G ◦H that is not in Aut(G) ◦ Aut(H).
On the other hand, let ψ be an automorphism of G ◦H that is not in Aut(G) ◦Aut(H).

Then there must be anH-layer, sayH(g,h), that is not mapped into anH-layer ofG◦H . Then
|pG(ψH(g,h))| ≥ 2. Because H(g,h) is externally related, we can invoke Lemma 10.4. Thus
pG(ψH(g,h)) is either complete or totally disconnected. BecauseH is connected, pG(ψH(g,h))
is complete; and by Lemma 10.3, it is also externally related. But then SG is nontrivial,
contrary to assumption. 2

The remainder of this section is concerned with graphs with transitive and regular
automorphism groups. To follow the proofs, it suffices to know the definitions, which we
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briefly recall: A graph G has transitive automorphism group if there exists an automorphism
ϕ to any pair u, v of vertices in G such that ϕu = v. If one requires that there exists only
one such automorphism to every pair of vertices, then G has regular automorphism group.

As in the case of the other products considered so far, a lexicographic product has
transitive automorphism group if and only if every factor has transitive group:

Theorem 10.14 A lexicographic product G ◦H has transitive automorphism group if and
only if G and H have transitive automorphism groups.

Proof Because Aut(G) ◦ Aut(H) is contained in Aut(G ◦ H), the product clearly has
transitive group if the factors do. If Aut(G) ◦ Aut(H) = Aut(G ◦ H), the converse also
holds.

Thus the case remains in which these groups are not equal. By Theorem 10.13, this is
only possible if either RG or SG is nontrivial. Because the lexicographic product is self-
complementarity and because SG is nontrivial exactly if RG is nontrivial, we can assume
that RG is nontrivial. In this case, H must be disconnected. We have to show that both G
and H have transitive group if G ◦H has.

We show first that Aut(G◦H) maps components of the H-layers of G◦H into components
of H-layers. To see this, let ϕ ∈ Aut(G ◦ H) and H(g,h) be arbitrarily chosen. Set X =
ϕH(g,h). If |pG(X)| = 1, then the assertion is true. Otherwise, we infer from Lemma 10.4
that every component of X is one of an appropriate H-layer of the product.

One calls these components blocks and says they form a system of imprimitivity with
respect to the automorphism group of G ◦H . Clearly, Aut(G ◦H) can only be transitive
if the blocks are pairwise isomorphic and have transitive groups. Thus, H has transitive
group.

We continue as in the proof of Proposition 10.6. We say two vertices a, b of G are
in relation ρ if there exists a ϕHx such that a, b ∈ pG(ϕHx), where ϕ ∈ Aut(G ◦ H)
and x ∈ V (G ◦H). Furthermore, let G1, G2, . . . , Gk be the subgraphs of G induced by the
equivalence classes with respect to ρ∗. By Lemma 10.4 and repeated applications of Lemmas
10.3 and 10.2, the Gi are totally disconnected and externally related. Thus, between any
two different Gi’s, there are either all edges or none. Because Aut(G ◦H) acts transitively
on the subproducts Gi ◦ H , it induces a transitive group acting on the Gi. Because these
are totally disconnected and externally related, Aut(G) is transitive. 2

Theorem 10.13 about automorphisms of lexicographic products is due to Sabidussi
(1959). The fundamental characterizations of graphs admitting regular or transitive au-
tomorphism groups as laid down in Theorems 10.15 and 10.16 are also due to Sabidussi
(1958, 1964).

Evidently the automorphism group of a nontrivial lexicographic product cannot be reg-
ular. This contrasts the situation for other products. However, lexicographic products may
admit regular subgroups of their automorphism groups. To prepare for the characterization
of this situation, we define Cayley graphs.

Cayley graphs

Given a group A and a subset S of A\{1}, where 1 denotes the unit element of A, we define
the Cayley graph Γ(A, S) on A by setting V (Γ(A, S)) = A and

E(Γ(A, S)) = {[a, as] | a ∈ A, s ∈ S}.

The element 1 is excluded from S to avoid loops. Moreover, because [a, as] = [as, (as)s−1],
the Cayley graphs Γ(A, S) and Γ(A, S ∪ S−1), where S−1 = {s−1 | s ∈ S}, are the same.
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Furthermore it is easy to see that Γ(A, S) is connected if and only if every element of A can
be written as a product of elements in S, namely if S generates A.

We show now that there exists a homomorphism λ : A→ Aut(Γ(A, S)) such that λ(A)
acts regularly on Γ(A, S). To see this, define λ : a 7→ λa by

λa(x) = ax for x ∈ V (Γ(A, S)).

Because λa[x, xs] = [ax, (ax)s], the mappings λa are indeed automorphisms of Γ(A, S).
Moreover, for a, b ∈ A,

λb(λa(x)) = λb(ax) = b(ax) = (ba)x = λba(x).

This means that λ is a homomorphism. We say A acts on Γ(A, S) by left multiplication.
Clearly, this action is transitive, because for any pair a, b ∈ A, we have λba−1a = b. The
action is also regular, as λxa = b and λya = b imply that xa = b = ya, from which we infer
that x = y and λx = λy.

Theorem 10.15 A graph G is isomorphic to a Cayley graph Γ(A, S) if and only if Aut(G)
contains a subgroup A0 that is regular as a permutation group on V (G). In this case, A = A0.

Proof By the above, it suffices to show that G ∼= Γ(A0, S) for some S ⊆ A0 if Aut(G)
contains a regular subgroup A0. Let v0 be a fixed vertex of G. By assumption, there is a
unique element av ∈ A0 to every v ∈ V (G) such that avv0 = v. For N(v0) = {v1, v2, . . . , vk},
set S = ∪k

i=1a
±1
vi . We wish to show that the mapping av 7→ v is an isomorphism from

Γ(A0, S) onto G.
Clearly, the mapping is a bijection. Consider an av and a pair {x, xa}, where x, a ∈ A0.

Then av({x, xa}) = av(ax−1{1, a}) is in E(G) if and only if a ∈ S, namely if and only if
{x, xa} is in E(Γ(A0, S)). 2

Note that this implies that the graphs with transitive Abelian group of Chapter 6 are
Cayley graphs.

Theorem 10.16 Let G be a graph with transitive automorphism group and n =
|Aut(G)| / |V (G)|. Then G ◦Dn admits a group of automorphisms A ⊆ Aut(G ◦ Dn) that
acts regularly on G ◦Dn and is isomorphic to Aut(G).

Proof Set A = Aut(G) and let v0 be an arbitrary but fixed vertex of G, where Av0

is the stabilizer of v0 in A. Note that all stabilizers are of the form ϕAv0ϕ
−1 because

ϕAv0ϕ
−1 = Aϕv0 for any ϕ ∈ A. Of course this implies that |A| = |Av0 | · |V (G)|, namely

n = |Av0 |.
Let Av0 be the vertex set of Dn. We wish to define a regular group action of A on G◦Dn.

To this end we choose an element av in A for every v ∈ V (G) − v0 such that av(v0) = v.
Let L denote the set of these elements. For the subset N of the elements av for which v is
a neighbor of v0, we consider the Cayley graph Γ(A,NAv0) and show that it is isomorphic
to G ◦Dn.

Let (v, a) ∈ V (G◦Dn) and define ψ : V (G◦Dn) → V (Γ(A,NAv0)) = A by ψ(v, a) = ava.
This mapping is onto, because every b ∈ A can be represented in the form ab(v0)((ab(v0))

−1b),
where (ab(v0))

−1b clearly is in Av0 . Moreover, if ava = awa
′ for a, a′ ∈ Av0 , then

v = av(v0) = av(av0) = ava(v0) = awa
′(v0) = aw(a′(v0)) = aw(v0) = w .

Then av = aw; and from ava = awa
′ and the cancellation property of group multiplication,

we get a = a′. So ψ is a bijection.
Because the number of edges in G ◦ Dn and Γ(A,NAv0) is the same, it suffices to
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show that ψ maps edges to edges to complete the proof. Let [(v, a), (w, b)] be an edge of
G ◦Dn. Because Dn has no edges, [v, w] ∈ E(G). Then a−1

v w is a neighbor of v0. Moreover,
a−1a−1

v awb(v0) is also a neighbor of v0, say u. Then au ∈ N and a−1
u a−1a−1

v awb stabilizes
v0. It is therefore equal to an element c ∈ Av0 . Thus awb = avaauc and ψ(v, a) = ava is
adjacent to ψ(w, b) = awb in Γ(A,NAv0). 2

Because the projection pG of G ◦ Dn onto G is a homomorphism, every graph with
transitive group is a homomorphic image of a Cayley graph. In fact, because G is isomorphic
to a G-layer of G ◦ Dn, every graph with transitive group is a retract of a Cayley graph.
We formulate this as a corollary:

Corollary 10.17 Every graph with transitive automorphism group is a retract of a Cayley
graph.

Naturally the question arises whether all graphs with transitive group are already Cayley
graphs themselves. As so often, the Petersen graph is a counterexample, and taking Carte-
sian products with Cayley graphs that are prime with respect to the Cartesian product,
one can obtain arbitrarily large counterexamples; see Sabidussi (1964).

We close the chapter on the lexicographic product with three remarks.

• The lexicographic product has numerous applications; some of them are mentioned in
Chapter 26. We also refer to Jónsson (1982) for a survey of the role of the lexicographic
product in the arithmetic of ordinal numbers and the study of total order.

• An important generalization of the lexicographic product is the X-join. It was intro-
duced by Sabidussi (1961) as the graph formed from a given graph G by replacing
every vertex v of G by a graph Hv and joining the vertices of Hv with those of Hu

whenever uv ∈ E(G). Note that the Hv need not be mutually isomorphic. We denote
it by G[Hv1 , ..., Hvn ]. For some of its properties and a generalization of Theorem 10.13,
see Hemminger (1968). For other results, see Habib and Maurer (1979) or Moehring
and Radermacher (1984) for applications.

• Another product that has similarities with the lexicographic product is the replace-
ment product. It was introduced for the construction of good expander graphs. We
give a short account of it in Section 33.4.

Exercises

10.1. Let m and n be integers with gcd(m,n) > 1. Show that both Dn ◦ G + Dm and
G ◦Dn +Dm are decomposable with respect to the lexicographic product.

10.2. (Knauer, 1987) Let G be a graph. Show that for any n, the lexicographic products
Kn ◦G and C2n+1 ◦G have no proper retracts if and only if G has no proper retract.

10.3. Recall that a graph G is a core if no proper subgraph of G is a retract of G. A
retract H of G is called a core of G if H is a core. Show that every graph G has a
core and that any two cores of G are isomorphic.
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10.4. By Exercise 10.3, we can speak about the core of a graph (as an abstract graph).
Suppose that G and H are graphs such that there exists a homomorphism G→ H
and a homomorphism H → G. Then show that G and H have the same core.

10.5. (Hahn and Tardif, 1997) Show that for connected graphs G and H , the core of G◦H
can be represented as the lexicographic product G′ ◦H ′, where G′ is a subgraph of
G and H ′ the core of H .

10.6. Show that cycles and complete graphs are Cayley graphs.

10.7. Let G = Γ(A, S) and G′ = Γ(A′, S′) be Cayley graphs. Show that G×G′ is isomor-
phic to Γ(A×A′, S × S′).

10.8. Show that hypercubes are Cayley graphs.

10.9. Let G = Γ(A, S) and G′ = Γ(A′, S′) be Cayley graphs. Show that G ◦G′ is isomor-
phic to Γ(A×A′, ({1} × S′) ∪ (S ×A′)).

10.10. Let G be a graph with transitive automorphism group and n the cardinality of a
vertex-stabilizer of G. Show that G ◦Kn is a Cayley graph.
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Introduction to Part III

M
ost graphs are prime. Consequently, the characteristic structure of graph products
makes them special, interesting, and rare. We can obtain a much wider class by

considering the graphs that can be isometrically (and nontrivially) embedded into graph
products. This is the theme of Part III.

The first three chapters investigate isometric subgraphs and retracts of hypercubes, and
show how graphs can be canonically embedded into Cartesian products. The fourth chapter
studies isometric subgraphs and weak retracts of Hamming graphs, and uses the results to
solve the so-called dynamic location problem.

The fifth chapter develops analogous ideas for the strong product. It shows that every
graph embeds isometrically into a strong product of paths, and we introduce the strong
dimension of a graph as the minimum number of factors required for such an embedding.

Along the way we derive numerous fixed-cube results. For example, we show that any
median graph contains a hypercube that is fixed by all automorphisms of the graph. Such re-
sults typically hold for graphs that are isometric subgraphs of hypercubes, Hamming graphs,
or strong product of paths. The last chapter generalizes these ideas to arbitrary Cartesian
products of graphs. The fixed-box theorems of Feder (1995), Tardif (1997), together with
Theorem 16.25 of Feder (2006) about fixed points of several nonexpansive mappings, are
the most general results of this type.

The Djoković-Winkler relation Θ is our primary tool. This relation on the edge set of
a graph is indispensable in the first three chapters of this part. It will also be used for an
independent proof of the unique prime factorization of connected graphs with respect to the
Cartesian product (Theorems 23.2 and 23.4) and will provide the basis for a straightforward
factorization algorithm for Cartesian products (Algorithm 23.1).

Other highlights of Part III include Mulder’s convex expansion theorem (Theorem 12.8),
Bandelt’s characterization of median graphs as retracts of hypercubes (Theorem 12.18), and
the canonical isometric embedding of graphs by Graham and Winkler (Theorem 13.2).

Part III assumes knowledge of Part I, but does not require any of the results in Part II.
Part III begins with Chapter 11 on partial cubes and the relation Θ. Chapter 12 (Median
Graphs) and Chapter 13 (Canonical Isometric Embedding) both build on Chapter 11, but
are independent of each other. Chapter 14 (Dynamic Location Problem) uses Chapters
11 through 13. Chapter 15 is entirely independent of the other chapters in Part III, but
Chapter 16 uses ideas from Chapters 11 through 15.
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The Relation Θ and Partial Cubes
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The relation Θ plays an important role in the structural characterization of isometric and
convex subgraphs of hypercubes. It is the basis of the so-called canonical isometric embed-
ding of graphs into Cartesian products and, together with the relation τ (defined later),
allows a characterization of prime factorizations of connected graphs with respect to the
Cartesian product. This characterization is valid in both the finite and the infinite case,
and leads to another proof of the unique prime factorization property.

These structural characterizations are the basis of numerous algorithms, among them
recognition algorithms for partial cubes, Cartesian products, and an algorithm for the com-
putation of the Wiener index for benzenoid graphs.

The first two sections of this chapter are concerned with the definition of Θ, its basic
properties, and applications to characterizations of convex subgraphs and of partial cubes.

The third section demonstrates the astonishing richness of partial cubes, even when
restricted to the cubic case. It also exhibits their close connection with geometric structures.
Finally we discuss graphs that are scale embeddable into hypercubes, a broad generalization
of partial cubes.

11.1 Definition and Basic Properties of Θ

The relation Θ was introduced by Djoković (1973), but the definition given here is due to
Winkler (1984). We refer to it as the Djoković-Winkler relation. In this section we derive
its basic properties and use it to characterize convex subgraphs of bipartite graphs.

Unlike the relations R and S, which are relations on vertices, Θ is a relation on edges.
Two edges e = ab and f = xy in a graph are in relation Θ, in symbols eΘf , if

d(a, x) + d(b, y) 6= d(a, y) + d(b, x) .

See Figure 11.1, where eΘf if the dashed and dotted distances have unequal sums.
We remark that if e and f are in different components, then they are not in relation Θ,

because d(a, x) + d(b, y) = d(a, y) + d(b, x) = ∞.
The relation Θ is reflexive and symmetric, but need not be transitive. We denote its

transitive closure, that is, the smallest transitive relation containing Θ, by Θ∗. If G = C2n

is a cycle of even length, then Θ consists of all pairs of antipodal edges. Hence, Θ∗ has n
equivalence classes and Θ = Θ∗ in this case. On the other hand, any edge of an odd cycle is
in relation Θ with its two antipodal edges. In this case, Θ∗ has only one equivalence class.

135
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b
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y

x

FIGURE 11.1 Definition of Θ.

Lemma 11.1 No two distinct edges on a shortest path in a graph are in relation Θ.

Proof Let e and f be two edges of a shortest path P in a graph. We can choose the notation
such that P = u0u1 . . . um and e = uiui+1, f = ujuj+1, where i < j. Then

d(ui, uj) + d(ui+1, uj+1) =
(
d(ui+1, uj) + 1

)
+
(
d(ui, uj+1) − 1

)

= d(ui+1, uj) + d(ui, uj+1),

which means that e is not in relation Θ with f . 2

For a tree on n vertices, we infer from Lemma 11.1 that Θ∗ has n−1 equivalence classes,
each consisting of a single edge. Lemma 11.1 also implies that two adjacent edges are in
relation Θ if and only if they lie in a common triangle. For bipartite graphs, this means
that incident edges cannot be in relation Θ.

Lemma 11.2 Suppose e = ab and f = xy are two edges of a bipartite graph, and eΘf .
Then the notation can be chosen such that

d(a, x) = d(b, y) = d(a, y) − 1 = d(b, x) − 1.

Proof Clearly, d(a, x) 6= d(a, y), for otherwise the bipartite graph would contain a closed
walk of odd length (containing a, x and y). As x and y are adjacent, their distances to other
vertices can differ by at most one. Choose the notation so that d(a, y) = d(a, x) + 1.

By the same argument, d(b, x) 6= d(b, y). If d(b, y) = d(b, x) + 1, then d(a, x) + d(b, y) =
d(a, y) + d(b, x), contrary to eΘf . Thus

d(b, y) = d(b, x) − 1

≤ d(b, a) + d(a, x) − 1

= d(a, x)

= d(a, y) − 1

≤ d(a, b) + d(b, y) − 1

= d(b, y).

Hence, equality holds everywhere. 2

For ordered pairs p = (a, b) and q = (x, y) of vertices of a graph, we set

µ(p, q) = d(a, y) − d(a, x) − d(b, y) + d(b, x).

Clearly, µ(p, q) changes its sign when the orientation of either p or q is reversed, but remains
unaltered when both orientations are changed. Thus, if we view edges e = ab and f = xy
as ordered pairs with arbitrary orientations, then eΘf if and only if µ(e, f) 6= 0.

Lemma 11.3 Suppose that a walk P connects the endpoints of an edge e but does not
contain it. Then P contains an edge f with eΘf . If it is the only edge of P with this
property, then it is not incident with e.
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Proof Let the path u0u1 . . . um connect the endpoints of e = u0um. Set ei = ui−1ui for
i = 1, 2, . . . , m. Considering e and ei as ordered pairs (u0, um) and (ui−1, ui), we set

s =
m∑

i=1

µ(e, ei).

By the definition of µ, we have s = d(um, u0) + d(u0, um) = 2. This means that at least one
of the summands µ(e, ei) is nonzero. But then eΘei. The observation that |µ(e, ei)| ≤ 1 for
edges incident with e completes the proof. 2

Suppose we are given a connected graph G with a spanning tree T . Then Lemma 11.3
implies that every edge of G is in relation Θ with some edge of T . Consequently, Θ∗ has at
most |V (G)| − 1 equivalence classes.

Lemma 11.4 Let F be the union of one or more equivalence classes of Θ∗ and P be a path
whose edges are in F . Then every edge of any shortest path connecting the endpoints of P
is also in F .

Proof Let Q be such a shortest path. We may, without loss of generality, assume that Q
has no other common vertex with P than the endpoints. No pair of edges of Q is in relation
Θ by Lemma 11.1, but every edge of Q must be in relation Θ with some edge of P by
Lemma 11.3. Thus, every edge of Q is also in F . 2

Recall (p. 67) that a subgraph is convex if it contains every shortest path joining any
two of its vertices. We can thus reformulate Lemma 11.4 as follows:

Lemma 11.5 Let F be the union of one or more equivalence classes of Θ∗ and H be the
subgraph of G spanned by the edges in F . Then every connected component of H is convex.

Figure 11.2 illustrates Lemma 11.5. It shows a graph G with five Θ∗-equivalence classes
E1, E2, E3, E4, E5. Part (a) shows the graph and a representative ei of every class Ei, (c)
shows the graph (V (G), E1), (d) shows the graph (V (G), E2), and (b) the spanning subgraph
of G with edge set E1 ∪ E2. In each case, all components are convex in G.

e1

e2

e3

e4e5

(a) (b)

(c) (d)

FIGURE 11.2 Graph G and components of (V (G), E1 ∪ E2).
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u

v

x

y

H

H ′

FIGURE 11.3 Convex and nonconvex subgraphs.

For bipartite graphs, we obtain a stronger result. First, we need a definition. If H is a
subgraph of G, then ∂H is the set of all edges xy of G with x ∈ V (H) and y /∈ V (H).

Lemma 11.6 (Convexity lemma) An induced connected subgraph H of a bipartite graph
G is convex if and only if no edge of ∂H is in relation Θ with any edge of H.

Proof Suppose that H is convex and there are edges ab ∈ E(H) and xy ∈ E(∂H) that
are in relation Θ. Say that x ∈ V (H) and y /∈ V (H). By Lemma 11.2 we can choose the
notation such that xy is on a shortest a, x-path, in contradiction to the convexity of H .

Conversely, suppose that H is an induced connected subgraph of G, and no edge of ∂H
is in relation Θ to an edge in H . Let a, b be two vertices of H , P a shortest a, b-path in G,
and Q an arbitrary a, b-path in H . If P is not in H , then |P | > 1 (because H is induced),
so P has an edge e in ∂H . By Lemma 11.1, the edge e is not in relation Θ with any other
edge of P . However, by Lemma 11.3, it must be in relation Θ to an edge in (P ∪Q)− e and
thus in relation Θ to an edge in Q ⊆ H , contrary to assumption. 2

Lemma 11.6 is from Imrich and Klavžar (1998). It is interesting in its own right and will
be used later as the basis of a simple algorithm for the recognition of median graphs.

To illustrate the lemma, consider the subgraphs H and H ′ in Figure 11.3. For any edge
e of ∂H and any edge f of H , we can easily find a shortest path containing e and f . By
Lemma 11.1, e and f are not in relation Θ; hence H is convex by the Convexity lemma. On
the other hand, the edge xy of ∂H ′ is not in relation Θ with the edge uv of H ′, whence H ′

is not convex.

11.2 Characterizations of Partial Cubes

In this section we give several characterizations of partial cubes. (Recall that a partial cube
is a graph that can be realized as an isometric subgraph of a hypercube.) We also show that
convexity of intervals of a given bipartite graph does not guarantee that it is a partial cube.

For an edge ab of a graph G, let Wab be the set of vertices of G that are closer to a than
to b. In symbols,

Wab = {w | w ∈ V (G), dG(w, a) < dG(w, b) }.
If G is bipartite, then the two sets Wab and Wba partition V (G).
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Proposition 11.7 Let e = ab be an edge of a connected bipartite graph G and

Fab = { f | f ∈ E(G), eΘf }.

Then G− Fab has exactly two connected components, namely 〈Wab〉 and 〈Wba〉. Moreover,
if w ∈ Wab, then every shortest a, w-path is completely contained in 〈Wab〉.

Proof By Lemma 11.3, the vertices a and b belong to different connected components of
G− Fab. We claim that G− Fab has exactly two connected components.

Let w be an arbitrary vertex of Wab, and P a shortest a, w-path in G. Because w ∈ Wab

and G is bipartite, we infer that ba∪P is a shortest b, w-path. Lemma 11.1 implies that no
edge of P is in relation Θ with ab. Thus, P belongs to G − Fab, so w is in the component
of G − Fab containing a. Because w was arbitrary, this component contains all vertices of
Wab. Analogously, all vertices of Wba belong to the component of G− Fab containing b.

Finally, we must show that these components are induced subgraphs. Suppose an edge
wx of G has both endpoints in Wab. By bipartiteness, this is the terminal edge of some
shortest path P originating at a. As in the previous paragraph, ba ∪ P is a shortest path;
hence, ab is not in relation Θ with wx, so wx is an edge of G − Fab. Thus, the component
with vertex set Wab is indeed 〈Wab〉. The reasoning is identical for the other component. 2

The following theorem puts forth two fundamental characterizations of partial cubes:

Theorem 11.8 For a connected graph G, the following statements are equivalent:

(i) G is a partial cube.
(ii) G is bipartite, and 〈Wab〉 and 〈Wba〉 are convex subgraphs of G for all ab ∈ E(G).

(iii) G is bipartite and Θ∗ = Θ.

Proof (i) ⇒ (ii). Let G be a partial cube and let α be an isometric embedding of G into
a hypercube. Thus, G is bipartite. Consider an edge ab of G and assume, without loss of
generality, that the first coordinate of α(a) is 0 and the first coordinate of α(b) is 1. Then,
for any vertex w of Wab, the first coordinate of α(w) must be 0. It follows that any shortest
path between two vertices of Wab lies completely in Wab. Hence, Wab induces a convex
subgraph of G. Clearly this is also true of Wba.

(ii) ⇒ (iii). Let uvΘ ab and abΘ xy. We have to show that uvΘ xy. By Lemma 11.7, we
may assume u, x ∈Wab and v, y ∈ Wba. Because G is bipartite, d(u, x) 6= d(u, y). As Wab is
convex and u, x ∈ Wab, we infer that d(u, x) = d(u, y) − 1. The same argument applied to
Wba yields d(v, y) = d(v, x) − 1. Thus, d(u, x) + d(v, y) 6= d(u, y) + d(v, x), so uvΘ xy.

(iii) ⇒ (i). Let G be bipartite and Θ∗ = Θ. Let e1 = x1y1, e2 = x2y2, . . ., ek = xkyk be
representatives of the equivalence classes of Θ∗. Define an embedding α : V (G) → V (Qk) =
{0, 1}k as follows: For v ∈ V (G) and i = 1, 2, . . . , k, let the ith coordinate of α(v) be 0 if
v ∈ Wxiyi and 1 if v ∈Wyixi . We claim that α is an isometric embedding.

Let uv ∈ E(G) and assume that uv belongs to the equivalence class of the edge ei. By
Proposition 11.7, α(u) and α(v) differ in the ith coordinate. Furthermore, if j 6= i, then
the pair uv, xjyj is not in relation Θ, and therefore u and v must be either both in Wxjyj

or both in Wyjxj by Proposition 11.7. Thus, α(u) and α(v) have the same jth coordinate.
Consequently, α maps edges to edges.

Furthermore, if P is a shortest u, v-path, then by Lemma 11.1, α(u) and α(v) differ in
just as many coordinates as P has edges, but this is the distance dG(u, v). 2

The characterization (ii) is due to Djoković (1973), and (iii) to Winkler (1984).
Several other characterizations of partial cubes are known. Roth and Winkler (1986)

characterized them as the bipartite graphs G whose distance matrix has exactly one positive
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eigenvalue. Chepoi (1988) proved (Exercise 11.7) that partial cubes are precisely the graphs
that can be obtained from K1 by a sequence of expansions; see also Chepoi (1994). The
following characterization, first explicitly stated in Imrich and Klavžar (1993), will be used
in the recognition algorithm for partial cubes—Algorithm 18.2.

Theorem 11.9 Let G be a connected bipartite graph and E1, E2, . . . , Ek the equivalence
classes of E(G) with respect to Θ∗. Then G is a partial cube if and only if every G−Ei has
exactly two connected components.

Proof Suppose that G is a partial cube. Then G is bipartite, Θ = Θ∗, and every G − Ei

has exactly two components by Proposition 11.7.
Conversely, suppose that G is a connected bipartite graph and that every G − Ei has

exactly two connected components. It suffices to show that Θ = Θ∗. Let Ei be arbitrarily
chosen and H1, H2 be the two components of G−Ei. Because H1 and H2 are both convex
by Lemma 11.5, we infer that every edge in Ei has one endpoint in H1, the other one in H2,
and that any two edges e, f ∈ Ei must be disjoint. Take arbitrary edges e = ab, f = xy in
Ei, where a, x ∈ V (H1) and b, y ∈ V (H2). Because G is bipartite, d(a, x) 6= d(a, y). Hence,
by the convexity of H1, d(a, y) = d(a, x) + 1. Similarly, d(b, x) = d(b, y) + 1. Therefore,

d(a, x) + d(b, y) 6= d(a, y) + d(b, x)

and eΘf . Thus, any two edges of the Θ∗ class Ei are in relation Θ. As Ei was arbitrarily
chosen, Θ = Θ∗ and G is a partial cube. 2

Chepoi and Tardif (1994, personal communication) asked whether partial cubes can also
be characterized as bipartite graphs with convex intervals. Considering subdivisions of wheel
graphs, Brešar and Klavžar (2002) showed that this is not the case. The smallest example
they constructed is shown in Figure 11.4. It is a subdivision of K4.

FIGURE 11.4 Bipartite graph with convex intervals that is not a partial cube.

On the positive side, Brešar and Klavžar (2002) proved that a bipartite graph with
convex intervals that is not a partial cube always contains a subdivision of K4.

11.3 Cubic Partial Cubes

We end the chapter with a brief look at (finite) cubic partial cubes. The only cubic median
graph is the 3-cube Q3 but the variety of cubic partial cubes that are not median graphs
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is astonishingly rich. Despite many efforts, the problem of their classification is still widely
open. In particular, only one nonplanar cubic partial cube is known; it is the generalized
Petersen graph P (10, 3), also known as the Desargues graph.

Another, albeit trivial, infinite family of partial cubes are even prisms, that is, Cartesian
products C2k 2K2 (cf. Exercise 11.9).

Eppstein (2006), who considered simplicial arrangements of lines in the real projective
plane (finite sets of lines such that each of the regions is a triangle), proved:

Theorem 11.10 To any simplicial line arrangement A in the projective plane, there exists
a cubic partial cube with twice as many vertices as the number of triangles in A.

Three infinite families of simplicial line arrangements are known; see Grünbaum (1972).
One of them leads to the even prisms, the other two yield two new infinite families of cubic
partial cubes. In addition, ninety-one examples of simplicial line arrangements that do not
belong to any of the infinite families are known, see Grünbaum (1972), each of them leading
to an additional example of a cubic partial cube.

Moreover, the same approach can be used on pseudoline arrangements. (A pseudoline
arrangement is a collection of curves in the plane that are topologically equivalent to lines,
where any two curves cross in a single point. Such an arrangement is simplicial provided
that each of its regions is bounded by sides belonging to three curves.) Again, a partial
cube can be associated to any pseudoline arrangement; and if the arrangement is simplicial,
then the corresponding partial cube is cubic. Grünbaum (1972) mentions that there are
seven infinite families of simplicial pseudoline arrangements, so there exist seven additional
infinite families of cubic partial cubes.

101111

010000

010111

101000

110101

001010

001111

110000

110111

001000

010101

101010

101110

010001

110100

001011

111111

000000

000011

111100

000111

111000

111110

000001

FIGURE 11.5 A cubic partial cube on twenty-four vertices, embedded in Q6. The Θ-class
of edges with endpoints differing in the fifth coordinate is shown dashed.

The partial cubes considered above are relatively large. In fact, with computer assistance,
Bonnington, Klavžar, and Lipovec (2003) showed that for up to thirty vertices, there are
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only three nontrivial cubic partial cubes, namely the Desargues graph, the graph on twenty-
four vertices from Figure 11.5, and one additional example on thirty vertices. The graph
on twenty-four vertices appears in many different contexts. (See, for instance, Gedeonova
(1990).) It is known as the permutahedron Π3; cf. Ziegler (1995).

Finally, tribes of cubic partial cubes were introduced by Klavžar and Shpectorov (2007)
as the smallest class of graphs that contains given cubic partial cubes as well as all of their
cubic expansions and cubic contractions. We do not go into details here and only present
three graphs from these investigation in Figure 11.6.

FIGURE 11.6 Three cubic partial cubes.

11.4 Scale Embeddings into Hypercubes

In this section we briefly describe two far-reaching generalizations of partial cubes: `1-
graphs and hypermetric graphs. From our point of view, their central property is that they
can be characterized as isometric subgraphs of Cartesian product graphs. For additional
information on their rich theory, see the book by Deza and Laurent (1997).

Recall that points of the metric space `1 are real sequences {an} with
∑∞

n=0 |an| < ∞,
and the distance between points a = {an} and b = {bn} is d1(a,b) =

∑∞
n=0 |an − bn|. A
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graph G is called an `1-graph if the metric space (V (G), dG) is isomorphic to a subspace of
`1, that is, if there exists a mapping f : V (G) → `1 with d1(f(u), f(v)) = dG(u, v) for all
u, v ∈ V (G).

The following notions are crucial for the characterization of `1-graphs. For a graph G, a
mapping β : V (G) → Qd is a scale λ-embedding (or an embedding with scale λ) if

dQn(β(u), β(v)) = λdG(u, v)

for all vertices u and v of G.
Assouad and Deza (1980) proved the following fundamental result about finite `1-graphs:

Theorem 11.11 A graph is an `1-graph if and only if it admits a scale λ-embedding in Qd

for some λ and d.

Clearly, partial cubes are precisely the `1-graphs embeddable with scale 1. The large
variety of `1-graphs that are not partial cubes includes complete graphs, the Petersen graph
and its complement, and the five regular polyhedra, just to mention a few. Further, the
Cartesian product of two `1-graphs is again `1.

To characterize `1-graphs as isometric subgraphs of Cartesian products, we need to
introduce two families of graphs. The cocktail-party graph Kn×2 is obtained from K2n by
deleting the edges of a perfect matching. The half-cube graph 1

2Qd consists of an (arbitrary)
partite set of Qd, where two vertices of 1

2Qd are adjacent if they are at distance 2 in Qd.
Shpectorov (1993) proved:

Theorem 11.12 A graph is an `1-graph if and only if it is an isometric subgraph of the
Cartesian product of complete graphs, half-cubes, and cocktail-party graphs.

Because Kn is a subgraph Kn×2, Theorem 11.12 can be formulated without a reference
to complete graphs. We nevertheless use the present formulation because it immediately
implies that partial Hamming graphs (which are introduced in Chapter 14) are a proper
subclass of `1-graphs.

Shpectorov (1993) also designed an O(mn) algorithm for recognizing `1-graphs, where
n and m are the number of vertices and edges of the graph considered.

Theorem 11.12 was discovered independently by Deza and Grishukhin (1993) in a more
general setting involving hypermetric graphs (for definition, see their paper or the book
Deza and Laurent (1997)). They proved that hypermetric graphs can be characterized as
isometric subgraphs of the Cartesian products of complete graphs, half-cubes, cocktail-party
graphs, and copies of the so-called Gosset graph G56.

To conclude the chapter, we add that Roth and Winkler (1986) proved that in the
bipartite case, the metric hierarchy collapses to partial cubes. More precisely, a bipartite
graph is a partial cube if and only if it is an `1-graph, if and only if it is a hypermetric
graph.

Exercises

11.1. Let G be a connected graph, and let e be an edge ofG such thatG−e is disconnected.
Show that if f and f ′ are edges from different connected components of G− e, then
f and f ′ are not in relation Θ.

11.2. Show that Lemma 11.6 is false if we remove the assumption that H is induced.
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11.3. Show that a connected graph G is a partial cube if and only if every block of G is
a partial cube.

11.4. Show that a connected, bipartite graph in which every edge is contained in at most
one cycle is a partial cube.

11.5. Let H be a partial cube and Fab a Θ-class of H . Let G be the graph obtained from
H by contraction of every edge in Fab to a single vertex and replacement of all
double edges that may arise by single ones. (One says that G is obtained from H
by contraction.) Show that G is a partial cube.

11.6. Let G be a graph and V1, V2 subsets of V (G) with the following properties: V1∩V2 6=
∅, V1∪V2 = V (G), 〈V1〉 and 〈V2〉 are isometric in G, and there are no edges between
V1 \ V2 and V2 \ V1. Then the expansion of G (with respect to V1 and V2) is the
graph H that is obtained from G by the following operations:

(i) Replacement of each vertex v ∈ V1 ∩ V2 by vertices v1 and v2 and the edge v1v2.

(ii) Insertion of edges from v1, resp. v2, to all neighbors of v in V1 \V2, resp. V2 \V1.

(iii) Replacement of every edge vu ∈ 〈V1 ∩ V2〉 by the edges v1u1 and v2u2.

Show that H is a partial cube.

11.7. (Chepoi, 1988) Show that a graph is a partial cube if and only if it can be obtained
from K1 by a sequence of expansions.

11.8. Verify that the graph of Figure 11.5 is a partial cube.

11.9. Show that if G and H are partial cubes, then G2H is a partial cube as well.

11.10. If G is a cubic partial cube, then either G = C2n 2K2 for some n ≥ 2 or G is prime
with respect to the Cartesian product.

11.11. Show that partial cubes have convex intervals.

11.12. (Eppstein, 2006; Ovchinnikov, 2008) Let A be a finite set of hyperplanes in Rd. Let
GA be the graph whose vertices are the regions of the arrangement. Two vertices
are adjacent if the corresponding regions meet along a (d − 1)-dimensional face of
the arrangement. Prove that GA is a partial cube.

11.13. Show that for any n ≥ 2, the graph obtained from Kn by subdividing each of its
edges exactly once is a partial cube.

11.14. (Wilkeit, 1990) Call a graph 5-gonal if

∑

i<j

d(xi, xj) +
∑

i<j

d(yi, yj) ≤
∑

i,j

d(xi, yj)

holds for any {x1, x2, y1, y2, y3} ⊆ V (G). Show that in a 5-gonal graph G, 〈Wuv〉 is
convex for any edge uv of G.

11.15. (Avis, 1981) Show that a bipartite graph is a partial cube if and only if it is 5-gonal.

11.16. Show that a graph G embeddable into Qd with scale 2 is an isometric subgraph of
the half-cube 1

2Qd.
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Median graphs were defined in Chapter 3 as graphs for which every triple of vertices has a
unique median. We deduced some of their basic properties, namely that they are bipartite,
and that trees, hypercubes, and Cartesian products of median graphs are median graphs.
We now aim for deeper insight into the structure of these graphs.

In this chapter we derive a fundamental characterization of median graphs—Mulder’s
convex expansion theorem. Along the way we obtain new properties, including the fact
that median graphs are partial cubes. Then we apply the expansion theorem to prove an
inequality that relates the numbers of vertices, edges, and Θ-classes of a median graph,
and we generalize this inequality to partial cubes. In the second part of the chapter we
characterize median graphs as retracts of hypercubes, prove a fixed cube theorem, and
relate an interesting application of median graph networks to human genetics.

12.1 Mulder’s Convex Expansion

This section begins with several new properties of median graphs and ends with Mulder’s
convex expansion theorem. This most useful structure theorem provides the basis for ad-
vanced recognition algorithms.

Although their definition does not indicate any connection with r-cubes, median graphs
are not only embeddable into r-cubes, they are also isometrically embeddable. To show this,
we decompose a graph by removing all edges in relation Θ to a given edge. We proceed as
in Proposition 11.7, but with the additional assumption that the graph is a median graph.
First we extend our notation. Let e = ab be an edge of a connected graph G. In addition
to the previously defined sets

Wab = {w | w ∈ V (G), d(w, a) < d(w, b)},
Wba = {w | w ∈ V (G), d(w, b) < d(w, a)},
Fab = {f | f ∈ E(G), eΘf},

we introduce the sets

Uab = {u | u ∈Wab, u is adjacent to a vertex in Wba},
Uba = {u | u ∈Wba, u is adjacent to a vertex in Wab}.

145
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(See Figure 12.1.) For clarity, we may sometimes write these sets as UG
ab and WG

ab, etc.

If G is bipartite, we have Fab = {uv ∈ E(G) | u ∈Wab, v ∈ Wba} by Proposition 11.7.

Wab Wba

Uab

Uba

Fab

a b

FIGURE 12.1 Fundamental sets in a median graph.

Lemma 12.1 If ab is an edge of a median graph, then Fab is a matching that induces an
isomorphism between 〈Uab〉 and 〈Uba〉.

Proof Let uv, xy ∈ Fab, with u, x ∈ Uab and v, y ∈ Uba. The result will follow if we can
show that d(u, x) = d(v, y). Suppose that this is not the case; say d(u, x) < d(v, y).

Let c be the median of a, u, x, and d the median of b, v, y. Then c 6= d, as Proposition 11.7
implies c ∈ Wab and d ∈ Wba. Notice that d is also the median of a, v, y. We will arrive at
a contradiction by showing that c equals the median d of a, v, y.

Now, c is on a shortest u, x-path P , and d is on a shortest v, y-path Q. By assumption,
|P | < |Q|. By bipartiteness, the v, y-path P ′ = vu∪P ∪ xy has the same length as Q. Thus
c is on the shortest v, y path P ′.

Clearly, c is on a shortest a, v-path with final edge uv. Similarly, c is on a shortest
a, y-path. Because c is also on the shortest v, y-path P ′, it is the median of a, v, y. 2

To show that median graphs are partial cubes, the following two lemmas will be useful:

Lemma 12.2 If ab is an edge of a median graph, then each shortest path from a to any
u ∈ Uab is completely in 〈Uab〉.

Proof Let P be a shortest a, u-path that is not contained in Uab. By Proposition 11.7, it
lies completely in 〈Wab〉. Let w ∈ V (P ) be the vertex closest to u that is not in Uab. We
can assume w is adjacent to u. Let v be the neighbor of u in Uba.

Clearly, d(b, w) = d(a, u) = d(b, v) and d(w, v) = 2. Let c be the median of b, v, w.
Lemma 3.5 yields d(w, c) = 1

2

(
d(b, w) + d(v, w) − d(b, v)

)
= 1, so w is adjacent to c.

Now, the median c is on a shortest path from b to v, so c ∈ Wba, by Proposition 11.7.
But w is not adjacent to any vertex in Wba. 2

Lemma 12.3 For any edge ab of a median graph, 〈Uab〉 and 〈Uba〉 are isometric subgraphs.

Proof Let u, x ∈ Uab. The median c of a, u, x must be on shortest paths P from a to u
and Q from a to x. By Lemma 12.2, these paths are in Uab. On the other hand, the part of
P from u to c, together with the part of Q from c to x, is a shortest u, x-path in Uab. 2

Proposition 12.4 Median graphs are partial cubes.
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Proof Suppose uvΘab and abΘxy in a median graph. The preceding lemmas yield uvΘxy.
Thus Θ = Θ∗ for median graphs, and the assertion follows by Theorem 11.8 (iii). 2

The graph Q−
3 (Figure 3.2) is the standard example of a partial cube that is not a

median graph. Other examples include even cycles of length 6 or greater.
Recall that there are two ways that a bipartite graph may fail to be a median graph: It

may have too many medians or not enough. In the case of partial cubes, which are isometric
subgraphs of r-cubes, only the latter applies, because medians in r-cubes are unique.

The next property of median graphs requires a new concept. We say a subgraph H ⊆ G
is gated in G if for every v ∈ V (G) there is an x ∈ V (H) that is on a shortest v, u-path for
every u ∈ V (H). Note that such an x must be unique. It is called the gate of v in H .

Suppose that H is a gated subgraph of G. Let u, v be vertices of H and x be a vertex on
a shortest u, v-path P . Let y be the gate of x in H . If x 6= y, then P is not a shortest path.
Thus x = y ∈ V (H), which means that H is convex. Thus gated subgraphs are convex.

For median graphs, the converse holds as well. To show this, we introduce the distance
of a vertex from a subgraph. Let H be a subgraph of a connected graph G and v ∈ V (G).
Then the distance d(v,H) of v from H is defined as min{d(v, x) | x ∈ V (H)}.

Lemma 12.5 A subgraph of a median graph is convex if and only if it is gated.

Proof We have already seen that gated subgraphs are convex. For the converse, let G be a
median graph and H be a convex subgraph of G. Given a vertex v ∈ V (G), fix a vertex x ∈
V (H) that is closest to v. Given any u ∈ V (H), we claim that x lies on a shortest u, v-path.
Let y be the median of u, x and v, so y lies on a shortest u, v-path. We complete the proof
by showing y = x. Because u, x ∈ V (H), it follows by convexity that y ∈ V (H), and thus
d(v, y) ≥ d(v, x) by choice of x. Now we have d(v, x) = d(v, y) + d(y, x) ≥ d(v, x) + d(y, x),
which implies d(y, x) = 0, so x = y. 2

We now prove a characterization of median graphs due to Mulder (1978, 1980a). We first
formulate his theorem in a form that is most suitable for the algorithms that we present
later. Then we state the theorem in its original form. First a lemma.

Lemma 12.6 For any edge ab of a median graph, 〈Wab〉 is a median graph and 〈Uab〉 is a
convex subgraph of 〈Wab〉.

Proof Notice that Wab is convex, by Proposition 12.4 and Theorem 11.8. Then the first
assertion follows from the fact that a convex subgraph of a median graph is a median graph.

Suppose that 〈Uab〉 is not convex. By the Convexity Lemma 11.6, there is an edge xy in
〈Wab〉 with x ∈ Uab and y /∈ Uab that is in relation Θ to an edge uv of 〈Uab〉. By Lemma 11.2,
we can assume that d(x, u) = d(y, v). Let v′ and x′ be the neighbors of v and x in 〈Uba〉.
Clearly, d(v, x) = d(v′, x′) and d(x′, y) = 2. As in the proof of Lemma 12.2, it follows that
v′, x′, and y have no median. 2

Theorem 12.7 Let ab be an edge of a connected, bipartite graph G. Then G is a median
graph if and only if the following three conditions are satisfied:

(i) Fab is a matching defining an isomorphism between 〈Uab〉 and 〈Uba〉.
(ii) 〈Uab〉 is convex in 〈Wab〉, and 〈Uba〉 is convex in 〈Wba〉.

(iii) 〈Wab〉 and 〈Wba〉 are median graphs.

Proof If G is a median graph, then (i)–(iii) hold by Lemmas 12.1 and 12.6.
Conversely, say (i)–(iii) hold. In particular, 〈Uab〉 is gated in 〈Wab〉 by Proposition 12.5.

We make a preliminary claim about paths in G.
Fix a vertex v in Wab. Let x ∈ Uab be the gate of v in Uab, and xx′ ∈ Fab. We claim
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that for any z ∈ Wba, there is a shortest v, z-path that includes the edge xx′. To see this,
note that condition (i) implies that any shortest v, z-path has exactly one edge uu′ in Fab.
Moreover, by convexity of Uab, such a path is a concatenation P ∪ Q ∪ uu′ ∪ R of paths,
where P ⊆ 〈Wab〉 − E(〈Uab〉), Q ⊆ 〈Uab〉, and R ⊆ 〈Wba〉. (Possibly P or R is trivial.) We
can assume P ∪ Q passes through the gate x, and x is the initial vertex of Q. By (i), the
v, z-path P ∪Q∪ uu′ ∪R can be replaced by the shortest v, z-path P ∪ xx′ ∪Q′ ∪R, where
Q′ is the image of Q under the isomorphism induced by Fab. This proves the claim.

Note also that (using the same notation as in the previous paragraph) the concatenation
of P ∪ xx′ with a shortest path in 〈Wba〉 is still a shortest path.

Now we can prove the theorem. Take v, y, z ∈ V (G). We must show that these have a
unique median in G. If they are all in Wab (or Wba), then there is nothing to prove. Thus
say v ∈Wab and y, z ∈Wba. The above remarks imply c is a median of v, y, z if and only if
it is a median of x′, y, z ∈ Wba. Because Wba is a median graph, c exists and is unique. 2

To prepare for the original formulation of Theorem 12.7, we first define the concept of
an expansion of a graph G; cf. Exercise 11.6.

Suppose V (G) = V1 ∪ V2, where V1 ∩ V2 6= ∅, each 〈Vi〉 is an isometric subgraphs of G,
and no edge of G joins V1 \ V2 to V2 \ V1. An expansion of G with respect to V1 and V2 is a
graph H obtained from G by the following steps. (See Figure 12.2.)

(i) Replace each v ∈ V1 ∩ V2 by vertices v1, v2, and insert the edge v1v2.
(ii) Insert edges between v1 and all neighbors of v in V1 \ V2;

insert edges between v2 and all neighbors of v in V2 \ V1.
(iii) Insert the edges v1u1 and v2u2 if v, u ∈ V1 ∩ V2 are adjacent in G.

G H

V1

V2

u

v

u1

v1

u2

v2

FIGURE 12.2 Expansion H of G.

An expansion is connected if 〈V1 ∩ V2〉 is a connected subgraph of G. We also say that
the graph H is a connected expansion of G with respect to 〈V1 ∩ V2〉. Isometric and convex
expansions are defined analogously.

A contraction is the inverse operation to an expansion, namely G is a contraction of H .
We say that H can be obtained from G by an expansion procedure if it can be obtained from
G by a sequence of expansions. This leads to another characterization of median graphs:
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Theorem 12.8 (Mulder’s Convex Expansion Theorem) A graph is a median graph
if and only if it can be obtained from the one-vertex graph by a convex expansion procedure.

Proof We use induction to show that every graph obtained from K1 by a convex expansion
procedure is median. Clearly, K1 is median. Suppose H is obtained from a median graph
G by a convex expansion with respect to V1 and V2. Then V (H) is the disjoint union of V1
and V2. Let F be the set of edges of H joining V1 to V2. It is easy to check that the sets F ,
V1, and V2 fulfill conditions (i) through (iii) of Theorem 12.7, where these sets correspond
to Fab, Wab, and Wba, respectively. Hence H is median by Theorem 12.7.

Conversely, we verify that a contraction of a median graph is median (Exercise 12.7). 2

In this section we have proved two characterizations of median graphs. Dozens of other
characterizations are known; see Klavžar and Mulder (1999) for a survey.

12.2 Inequalities for Median Graphs and Partial Cubes

A graph is called cube-free if it does not contain the 3-cube as an induced subgraph. For
cube-free median graphs, Theorem 12.8 reduces to the following:

Corollary 12.9 A graph is a cube-free median graph if and only if it can be obtained from
K1 by an expansion procedure in which each expansion is taken with respect to a convex
tree.

Proof Suppose that a graph G can be obtained from K1 by an expansion procedure in
which every expansion step is taken with respect to a convex tree. Then G is a median
graph by Theorem 12.8. Moreover, as the expansion steps are taken with respect to trees,
G is cube-free by a simple induction argument.

Conversely, let G be a cube-free median graph. Then it can be obtained from K1 by a
convex expansion procedure. Assume that an expansion step was taken with respect to a
graph containing a cycle. Let H be a graph obtained in this step of the expansion procedure,
and let H be an expansion with respect to G′

1, G
′
2. By our assumption, G′

0 = 〈G′
1 ∩ G′

2〉
contains a cycle. Let Cn, n ≥ 4, be a shortest cycle in G′

0. Clearly, Cn is an even isometric
cycle. Let u, v, and w be three consecutive vertices of C, and let x be the antipodal vertex
of v on C. Then the median y of u, w, and x together with u, v, and w form a C4 in G′

0.
Hence, after the expansion step is performed, we find a 3-cube in H and thus also in G. 2

We are now prepared for an inequality for median graphs, due to Klavžar, Mulder, and
Škrekovski (1998).

Theorem 12.10 Let G be a median graph with n vertices, m edges, and k equivalence
classes with respect to the relation Θ. Then

2n−m− k ≤ 2 .

Moreover equality holds if and only if G is cube-free.

Proof We prove the inequality by induction on the number of vertices using Theorem 12.8.
The inequality reduces to 2 ≤ 2 if G = K1. So assume that G is the expansion of the median
graphG′ with respect to its convex subgraphsG′

1,G′
2. By induction we have 2n′−m′−k′ ≤ 2,

where k′, n′, m′ are the parameters of G′. Let t be the number of vertices in G′
0 = G′

1 ∩G′
2.
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Then G′
0, being connected, has at least t− 1 edges. Thus n = n′ + t, m ≥ m′ + 2t− 1, and

k = k′ + 1. So

2n−m− k ≤ 2(n′ + t) − (m′ + 2t− 1) − (k′ + 1)

= 2n′ −m′ − k′

≤ 2 .

Clearly, the equality 2n−m− k = 2 holds if and only if all of the expansions taken on the
way from K1 to G are taken with respect to two isometric subgraphs whose intersection is
a tree. By Corollary 12.9, this is equivalent to G being cube-free. 2

Corollary 12.11 A planar embedding of a cube-free median graph with n vertices and k
Θ-classes has n− k regions.

Proof By Euler’s formula (Theorem 1.11), n−m+ f = 2. Now apply Theorem 12.10. 2

For a median graph without Q4 as a subgraph, the following theorem can be proved:

Theorem 12.12 Suppose a median graph G contains no subgraph isomorphic to Q4. If G
has n vertices, m edges, k Θ-classes, and h subgraphs isomorphic to Q3, then

2n−m− k + h = 2 .

Because Q4 is not planar, no planar graph has a 4-cube as a subgraph (Exercise 3.2).
Thus Theorem 12.12 combined with Euler’s formula yields a corollary:

Corollary 12.13 If a planar embedding of a median graph has n vertices, k Θ-classes, h
subgraphs Q3, and f regions, then

f = n− k + h .

One can prove Theorem 12.12 on almost the same lines as Theorem 12.10, except that
the following result, which is of independent interest, is needed:

Proposition 12.14 Any cube-free median graph with n vertices and m edges has exactly
m− n+ 1 squares.

Proof We use induction on the number of expansion steps. The result is trivial for K1.
Let G be a cube-free median graph obtained by an expansion of a cube-free median

graph H with respect to H ′. By Corollary 12.9, H ′ is a tree. Say H ′ has k vertices, so it
has k − 1 edges. By the induction hypothesis, H has m′ − n′ + 1 squares, where m′ and n′

are its numbers of edges and vertices, respectively.
Now G contains all squares of H and an additional square for every edge of H ′. Hence

the number of squares of G is

m′ − n′ + 1 + (k − 1) = m′ − n′ + k .

On the other hand,

m− n+ 1 = (m′ + k + (k − 1)) − (n′ + k) + 1 = m′ − n′ + k ,

which proves the proposition. 2

Despite the maxim “it is easier to generalize than to specialize,” it took quite some time
until Theorem 12.10 was generalized from median graphs to partial cubes. Before stating
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the generalization due to Klavžar and Shpectorov (2011), we need to define the convex
excess of a graph.

For a graph G, let C(G) = {C | C is a convex cycle of G}. The convex excess of G is

ce(G) =
∑

C∈C(G)

|C| − 4

2
.

Note that for bipartite graphs, ce(G) = 0 if and only if G contains no convex cycle of length
6 or more.

Let F be a Θ-class of a partial cube G. Then the F -zone graph, ZF , is the graph with
V (ZF ) = F , where f and f ′ are adjacent in ZF if they belong to a common convex cycle
of G. Now we can state the generalization of Theorem 12.10.

Theorem 12.15 For a partial cube G with n vertices, m edges, and k Θ-classes,

2n−m− k − ce(G) ≤ 2 . (12.1)

Equality holds if and only all zone graphs of G are trees.

The insight that led to the proof of Theorem 12.15 is that, in an expansion step, convex
cycles lift to convex cycles, but isometric cycles need not lift to isometric cycles. This perhaps
explains the ten-year gap between Theorem 12.10 and Theorem 12.15.

12.3 Median Graphs as Retracts

In this section we characterize median graphs as retracts of a hypercubes. This result, which
we mentioned in Chapter 3, was discovered by Bandelt (1984). Here we follow the approach
of Mulder (1990), using the convex expansion theorem.

But first, a new concept is required. Let uv be an edge of a median graph G for which
Uuv = Wuv. Then 〈Wuv〉 is called a peripheral subgraph of G. Note that in a tree, every
vertex of degree 1 is a peripheral subgraph, and that in the r-cube, all (r − 1)-cubes are
peripheral. Figure 12.3 shows a more general example.

v

u

FIGURE 12.3 Peripheral subgraph of a median graph.

Lemma 12.16 Every median graph has a peripheral subgraph.
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Proof Let ab be an arbitrary edge of a median graph G, and assume that Uab is properly
contained in Wab. Let xy be an edge with y ∈ Uab and x ∈Wab \Uab. Now, 〈Uab〉 is convex
by Lemma 12.6; hence the Convexity Lemma 11.6 implies that no edge of 〈Uab〉 is in relation
Θ to xy. Therefore all edges of Fxy lie in 〈Wab〉, and so Wxy is properly contained in Wab. If
Wxy induces a peripheral subgraph, we are done; otherwise, we repeat the argument until
we arrive at an edge uv with Uuv = Wuv . 2

Actually the proof of the above lemma shows a little more: If uv is an edge of a median
graph, then both Wuv and Wvu contain peripheral subgraphs. In this sense, median graphs
are treelike.

Our characterization of median graphs as retracts of hypercubes requires the following
lemma.

Lemma 12.17 If H is a convex subgraph of a median graph G, then there exists a non-
expansive map f : V (G) → V (G) (i.e., a weak homomorphism) satisfying

(i) If v ∈ V (H), then f(v) = v.
(ii) If v /∈ V (H), then f(v) is adjacent to v, and it is on a shortest path from v to H.

Proof We use induction on |V (G)|. The assertion is trivial if G has only one vertex. Suppose
G has n > 1 vertices, and assume the assertion is true for all median graphs with fewer
than n vertices.

If H = G, then the identity function f has the desired properties. Therefore assume H is
a proper (convex) subgraph ofG, so there is an edge xy with x ∈ V (H) and y ∈ V (G)\V (H).
By the Convexity Lemma 11.6, xy is not in relation Θ to any edge of H , so H ⊆ G−Fxy =
〈Wxy〉 + 〈Wyx〉. Then H is a subgraph of 〈Wxy〉, and, as noted previously, 〈Wyx〉 contains
a peripheral subgraph 〈Uab〉 of G.

Now G′ = G − Uab = 〈Wba〉 is a median graph (by Theorem 12.7) with fewer vertices
than G, and H is a convex subgraph of G′. By the induction hypothesis, there is a map
f : V (G′) → V (G′) satisfying the stated properties. We can extend f to V (G) as follows: If
v ∈ Uab, let vv′ ∈ Fab, and put f(v) = v′.

It is straightforward to verify that this extended map is a weak homomorphism, and it
clearly satisfies (i) and the first part of (ii). To complete the proof, note that if v ∈ Uab,
then the fact that Fab induces an isomorphism 〈Uab〉 → 〈Uba〉 means that any shortest path
from v to H can be rerouted as a shortest path from v to H that passes through v′ = f(v).
2

Lemma 12.17 was also found by Tardif (1996). The map f in our version of the lemma is
called a mooring there. For the proof, Tardif invoked Theorem 12.18. (See Exercise 12.13.)

Theorem 12.18 A graph G is a median graph if and only if G is a retract of a hypercube.

Proof As r-cubes are median graphs, Proposition 3.11 implies that every retract of an
r-cube is a median graph.

Conversely, suppose G is a median graph. Then it is a partial cube, by Proposition 12.4.
In other words, it is an isometric subgraph of a hypercube.

We will show that if an isometric subgraph G of a hypercube is a median graph, then
G is a retract of the hypercube. We use induction on the number of Θ-classes of G. If G
has one Θ-class, then G = K2, and the assertion is trivial. Assume G has more than one
Θ-class, and that the theorem is true for all median graphs with fewer Θ-classes than G.

Say that G is an isometric subgraph of Qr. By Lemma 12.16, G has a Θ-class Fuv

with Uuv = Wuv. Figure 12.4 is a schematic representation of this situation. Here the set
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· · ·

· · ·

· · ·

· · ·

· · ·

· · ·Z Uuv

UvuWvu

Q2 ∼= Qr−1

Q1 ∼= Qr−1
ρ ρ ρ

FIGURE 12.4 Sets from the proof of Theorem 12.18.

Uuv = Wuv is in a copy of an (r − 1)-cube Q1 ⊆ Qr, and Wvu lies in a copy of an (r − 1)-
cube Q2. The edges of Qr joining Q1 to Q2 induce an isomorphism µ : Q1 → Q2. Then
Z = µ−1(Wvu) induces an isomorphic copy of 〈Wvu〉 in Q1.

Now, Theorem 12.7 asserts that 〈Wvu〉 is a median graph. Also, because 〈Wvu〉 is convex
in G, and G is isometric in Qr, it is clear that 〈Wvu〉 is isometric in Q2. Thus the induction
hypothesis guarantees a retraction r2 : Q2 → 〈Wvu〉. Let r1 = µ−1r2µ be the corresponding
retraction Q1 → 〈Z〉. It is straightforward to verify that the map r : Qr → 〈Z ∪ Wvu〉
defined as

r(x) =

{
r1(x) if x ∈ V (Q1) ,
r2(x) if x ∈ V (Q2)

is a retraction of Qr to 〈Z ∪Wvu〉.
We complete the proof by constructing a retraction ρ : 〈Z ∪Wvu〉 → G, for then the

composition ρr is the desired retraction of Qr to G. Construct ρ as follows: By Lemma 12.6,
〈Uvu〉 is convex in 〈Wvu〉; hence Lemma 12.17 yields a map f : Wvu → Wvu that is the
identity on Uvu and which sends vertices of Wvu \ Uvu to adjacent vertices closer to Uvu.
Define ρ : 〈Z ∪Wvu〉 → G as

ρ(x) =

{
fµ(x) if x ∈ Z \ Uuv ,
x otherwise .

By construction, this is the identity on G. To show it is a retraction, we just need to show
that it is a homomorphism. The straightforward details are left to the reader. 2

In Exercise 3.11 we claimed that the median of three vertices u, v, and w of a hypercube
can be denoted by the Boolean espression (u ∨ v) ∧ (u ∨w) ∧ (v ∨w). Feder (1995) showed
that median graphs can similarly be characterized by Boolean equations. For example, the
median graph consisting of the vertices 000, 100, 010, 110, and 011 in Q3 can be described
as the set of all 3-tuples x1x2x3 over {0, 1} for which the expression (x̄1 ∨ x̄3) ∧ (x2 ∨ x̄3)
has value 1. (Here x̄i = 1 if xi = 0, and x̄i = 0 if xi = 1.) This expression is a conjunction
of clauses consisting of disjunctions of two elements. More generally, it is an instance of a
conjunctive normal form with two literals per clause. The problem of satisfying such forms
is known as the 2-satisfiability problem, or 2SAT. Feder showed that a set of vertices of a
hypercube induces a median graph if and only if it is the set of solutions of a 2SAT instance
with no equivalent variables. (Two nontrivial variables xi and xj are equivalent if either
xi = xj or xi = x̄j in all solutions.) This leads to an alternative proof of Theorem 12.18;
see Theorem 3.38 of Feder (1995).
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12.4 A Fixed Cube Theorem

In this section we present three proofs that every median graph G has a subcube that is
stabilized by every automorphism of G. This generalizes Theorem 2.5 for trees. It is also a
special case and probably the origin of the more general fixed-box theorems of Chapter 16.
It deserves special attention, and we present different approaches that can, in turn, lead to
different fixed cubes.

For the first proof we begin with the so-called Helly property of convex subgraphs of
median graphs.

Theorem 12.19 Let H be a set of convex subgraphs of a median graph G, where any two
elements of H have nonempty intersection. Then

⋂
H∈HH 6= ∅ .

Proof We first show that any three subgraphs in H have nonempty intersection. Let A, B,
C be three such subgraphs. Consider vertices u, v, and w from A ∩ B, B ∩ C, and C ∩ A,
resectively. Because G is a median graph, u, v, w have a unique median, say z. By convexity,
z belongs to A ∩B ∩ C.

Let the theorem be true for any collection of fewer than n convex subgraphs, and suppose
that H consists of n pairwise intersecting subgraphs. Replace any two of them, say A and
B, by A ∩B. The new family (H \ {A,B}) ∪ {A ∩B} has fewer than n subgraphs and, by
the above, still satisfies the pairwise intersection property. Its nonempty intersection is the
nonempty intersection of H. 2

Lemma 12.20 For a median graph G, the following are equivalent:

(i) G is a hypercube.
(ii) For any edge uv of G, Wuv has |V (G)|/2 vertices.

(iii) For any edge uv of G, Wuv = Uuv.

Proof Clearly, (i) implies (ii).
To show that (iii) follows from (ii), assume that for some edge uv of G we have Wuv 6=

Uuv. Let w be a vertex of Wuv \ Uuv. We may, without loss of generality, assume that w
is adjacent to a vertex x in Uuv. By the Convexity Lemma, wx is not in relation Θ to any
of the edges of 〈Uuv〉. Therefore the set of edges Fwx is completely contained in Wuv, and
thus Wwx cannot have |V (G)|/2 vertices because |Wuv| = |V (G)|/2.

Assume now that (iii) holds for G. Let ab be an edge of G and H be the contraction of
G with respect to Fab. Then H satisfies condition (iii), and by induction on the number of
Θ-classes, H is a hypercube, say Qd. But then G is Qd+1. 2

Theorem 12.21 (Fixed cube theorem) Every median graph G contains a subcube that
is invariant under all automorphisms of G.

First proof We note that theorem is true for the trivial median graph and proceed by
induction on the number of vertices. Suppose that G is a median graph on n vertices and
that the theorem is true for median graphs on fewer than n vertices. We may assume that
G is not a hypercube; otherwise, the entire graph is an invariant hypercube.

By Lemma 12.20, there is a set Wuv with |Wuv| > n/2. The image of a Wuv under an
automorphism φ is Wφ(u)φ(v). It has the same size as Wuv. We say that the collection of all
Wuv of this size is invariant under automorphisms of G. Because any two such Wuv have
nonempty intersection, the intersection of all of them is nonempty by Theorem 12.19. It
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induces a median graphH on fewer than n vertices and is invariant under all automorphisms
of G. Thus any subcube of H invariant under all elements of Aut(H) is also invariant under
all elements of Aut(G). 2

The second proof is modeled closely after that of Theorem 2.5 and uses Lemma 12.16,
which asserts that every median graph has a peripheral subgraph.

Second proof Suppose that every subgraph 〈Wuv〉 of G is peripheral. Then V (G) =
Uuv ∪ Uvu for every edge uv of G. Because the sets Uuv and Uvu are disjoint and have the
same number of vertices, we infer that |Uuv| = |V (G)|/2 for every edge uv of G. Moreover, if
all Wuv are peripheral, |Wuv | = |V (G)|/2 for uv ∈ E(G). By Lemma 12.20,G is a hypercube
and of course stabilized by every automorphism of G.

If not every 〈Wuv〉 of G is peripheral, we proceed by induction. We only have to note
that every automorphism of G preserves the collection of peripheral subgraphs and the
(nonempty) subgraph of G obtained by removing all peripheral 〈Wuv〉 from G. 2

For another approach that also yields invariant subcubes, we introduce a new concept.
The distance center of a connected graph G is defined as the set of vertices u of G that
minimize

∑
v∈V (G) dG(u, v). For example, let T be the path of length 2 with two pendant

edges attached to one endpoint. Then the distance center of T consists of the vertex of
degree 3 in T . It is different from the center of T , which consists of the endpoints of the
interior edge of T , that is, of the vertex of degree 2 and the vertex of degree 3 in T .

If G is a subgraph of H , then then distance center C(G,H) of G in H is defined as

{u ∈ V (H) |
∑

v∈V (G)

dH(u, v) is minimal} .

C(G,H) need not be contained in G. For example, consider an isometric subgraph C6 of
Q3. The Q3 = C(C6, Q3). However, the situation changes when G is a retract of H .

Lemma 12.22 If G is a retract of H, then the distance center C(G,H) of G in H is a
subgraph of G.

Proof Let f : H → G be a retraction and u ∈ C(G,H). Because retractions are nonex-
pansive, ∑

v∈V (G)

dH(f(u), v) ≤
∑

v∈V (G)

dH(u, v).

If u is not in V (G), then w = f(u) ∈ V (G), and so dH(f(u), w) = 0 < dH(u,w). This means
that the preceding inequality is strict, which is not possible. Thus C(G,H) ⊆ V (G). 2

The following lemma is due to Nieminen (1987). The proof presented here is adapted
from Feder (1995), who also developed algorithms for minimal fixed cubes.

Lemma 12.23 If G is a retract of Qr, then the distance center C(G,Qr) is a subcube of
G.

Proof By Lemma 12.22, C(G,Qr) ⊆ V (G). Furthermore

∑

v∈V (G)

dQr (u, v) =

r∑

i=1

∑

v∈V (G)

di(ui, vi),

where di denotes the distance in the ith factor K2 of Qr and ui, vi the ith coordinates of
u, v in Qr. Let Ci be the set of vi that minimize

∑
v∈V (G) di(ui, vi). Then u ∈ C(G,Qr)

if and only if ui ∈ Ci for all i. This is equivalent to the assertion that C(G,Qr) induces a
subcube of Qr. 2
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Theorem 12.24 Let G be a retract of Qr. Then C(G,Qr) is a subcube of G that is invariant
under all automorphisms of G.

Proof Let G be a median graph represented as a retract f(Qr). By Lemma 12.23, C(G,Qr)
induces a subcube of G. Because distances are preserved by automorphisms, C(G,Qr) is
invariant under all automorphisms of G. 2

An even stronger result is the following:

Theorem 12.25 Every nonexpansive map from a median graph to itself has a fixed cube.

Proof We first show that the statement holds for hypercubes. Let f be a nonexpansive
map of Qr. Clearly, f j+1(Qr) ⊆ f j(Qr) for all natural numbers j. Because Qr is finite,
there is a k with fk+1(Qr) = fk(Qr). Let G = fk(Qr). Then the restriction of f to G is
an automorphism of G. For u ∈ V (G), let n(u) be the least integer for which fn(u)(u) = u,
and let ` be the least common multiple of {n(u) |u ∈ V (G)} that is greater than or equal
to k. Then f ` : Qr → G is a retraction. By Lemma 12.23, the distance center of G is the
fixed cube.

For the general case, let G be a median graph represented as g(Qr), where g is a retrac-
tion, and h a nonexpansive map of G. Then hg is a nonexpansive map of Qr for which the
preceding argument applies. 2

Theorem 12.25 is due to Bandelt and van de Vel (1987). Their results can also be
presented in the framework of metric spaces. This is the reason for our use of the terminology
“nonexpansive map” rather than “weak homomorphism.”

Similar results hold for retracts of Hamming graphs, that is, Cartesian products of com-
plete graphs, and general Cartesian products. They will be treated as “fixed box theorems”
in Chapter 16.

12.5 Median Networks in Human Genetics

Median graphs have been applied to problems in human genetics, though a detailed treat-
ment of this topic would be beyond the scope of this book. We thus take only a quick
glance at the main ideas. See Bandelt (2006) for a brief overview on evolutionary networks
in general and median networks in particular.

The first use of median networks in human genetics goes back to Bandelt, Forster,
Sykes, and Richards (1995). The central object of their study was the mitochondrial DNA,
or mtDNA for short. Realizing that traditional tree-building methods were unsatisfactory
when analyzing human mtDNA, they developed an approach that distinguishes between
unresolvable and resolvable character conflicts. They attained this goal with the following
model.

In the first phase, the mtDNA of certain number of individuals from a given population
is examined and converted to binary data. (This is possible because the great majority of
observed changes are the so-called transitions A ↔ G or C ↔ T.) This preprocessing yields
a set of binary vectors of a fixed length, say d, which are regarded as vertices of Qd. The
corresponding median network is the smallest median subgraph of Qd containing the data
vectors. Equivalently, this network is obtained by adding medians to triples of the original
vectors, and continuing this process until no new vertices are added.
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In their seminal paper, Bandelt et al. (1995) show that all the so-called most parsimo-
nious trees1 for the given vectors can be realized in the corresponding median network.
(This is perhaps not surprising, as median graphs have a treelike structure, as we noted
earlier.) They also give an efficient procedure for constructing median networks, as well as
a reduction procedure to be used when median networks become too large. This median
network approach is then applied to several concrete data sets. For example, Figure 12.5,
which is adapted from their paper, is the median network for a set of twenty-eight Frisians.

81 108

259 261

263 272

270

N

265

N

264

N

269

N

267

N

260

N

262

N

266

N

271

N

9

258

20

N

76

257 N

120

65100

273

N

N N

N

220

268

N

219

221

214

224 311

292

355

231

145

261

209

176

104

256

270354

126 294

189

296

298

278263

93

165

221

162

343

FIGURE 12.5 A median network.

We remark that the displayed network encodes more information than the mere graph
structure. For instance, the areas of circles representing “haplotyles” are proportional to
the number of individuals with that haplotype, while the small circles are hypothetical
haplotypes. The letter N stands for individuals from North Frisian islands and the bold
lines indicate the unique most parsimonious tree.

The median network approach led to numerous developments. We list a selection of
important achievements in chronological order.

• See Richards et al. (1996) for another early application of median networks to human
genetics. This influential paper studied the mtDNA of 821 individuals from Europe and
the Middle East and concluded that ancestors of the great majority of modern, extant
lineages entered Europe during the Upper Paleolithic. This research used median
networks as the basis for the phylogenetic analysis.

• A significant problem with the mtDNA data in publications and databanks is that
they can contain serious artifacts. Bandelt, Quintana-Murci, Salas, and Macaulay
(2002) considered one type of such errors—the so-called phantom mutations—and
designed a procedure for filtering out highly mutable sites. Their analysis made use
of the sequence (fd)d≥0, where fd is the number of d-cubes of the median network.

• Bandelt, Salas, and Lutz-Bonengel (2004) describe four main errors that occur in

1Roughly speaking, phylogenetic trees requiring the fewest evolutionary changes.
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sequencing mtDNA for forensic purposes and give specific published data that are not
appropriate for such purposes. They propose a solution, and give small, specifically
selected databases that can be represented by full median networks.

• Kong et al. (2008) propose the technique of recombination diagrams in order to deal
with errors that occur in virtually every mtDNA database.

• Using the median network method, Bandelt et al. (2009) contrast some early re-
ports of complete mtDNA sequences to more recent total mtDNA data in studies of
various mitochondrial diseases. They give diagrams displaying incomplete reading of
sequences.

To close, we mention that quasi-median networks show promise in situations where the
data do not allow binary representation. (Chapters 14 and 22 treat quasi-median graphs.)

Exercises

12.1. Find all retracts of the 3-cube.

12.2. (Klavžar and Škrekovski, 2000) Show that if e is an edge of a graph G that lies in
at least two squares, then not both G and G− e can be median graphs.

12.3. (Klavžar and Škrekovski, 2000) Show that a connected subgraph of the Cartesian
product of two paths with n vertices and m edges is a median graph if and only if
it contains m− n+ 1 squares.

12.4. (Klavžar and Škrekovski, 2000) Let G be a plane median graph with n vertices and
m edges that is a subgraph of the Cartesian product of two paths. Show that the
length of its outer face is 4n− 2m− 4. This is twice the number of its Θ-classes.

12.5. (Isbell, 1980) Show that a median graph G is a hypercube if and only if V (G) =
Wab ∪Wuv for any disjoint sets Wab and Wuv.

12.6. (Bandelt and Mulder, 1983) Show that every interval of a median graph induces a
median graph.

12.7. Complete the proof of Theorem 12.8 by showing that a contraction of a median
graph is median.

12.8. (Mulder, 1980b) Show that a graph is an n-cube if and only if it is an n-regular
median graph.

12.9. Give an example of a partial cube that does not have a peripheral subgraph.

12.10. (Soltan and Chepŏı, 1987; Škrekovski, 2001) Let qr denote the number of subgraphs
of a median graph isomorphic to Qr and k be the number of its Θ-classes. Show
that ∑

i≥0

(−1)iqi = 1 and k = −
∑

i≥0

(−1)iiqi .

12.11. Deduce Theorem 12.10 as a consequence of Theorem 12.15.

12.12. Show that any median subgraph of a median graph G is a retract of G.

12.13. Prove Lemma 12.17 with the aid of Exercise 12.12.
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The main theme of this chapter is the canonical isometric embedding, which embeds any
graph isometrically into a Cartesian product. We begin by defining the map, proving that
it is an isometry, and deducing several of its properties. Then we take a closer look at
the role of the relation Θ in Cartesian products. Among others things, we prove that the
only isometric irredundant embeddings into Cartesian products of complete graphs are
the canonical isometric embeddings. We close with a description of the automorphisms of
canonically embedded graphs.

13.1 The Embedding and Its Properties

Suppose Π a partition of the vertices of a graph G. The quotient graph G/Π is a graph with
vertex set Π, and for which distinct classes C1, C2 ∈ Π are adjacent if some vertex in C1 is
adjacent to a vertex of C2.

The canonical embedding of a connected graph G is defined as follows: Let the Θ∗-classes
of G be E1, E2, . . . , Ek, and for each index i, put Gi = G − Ei. Let Πi be the partition of
V (Gi) whose classes are the vertices of the connected components of Gi. Let αi : G→ G/Πi

be the map sending any v to the component of Gi that contains it. The canonical embedding

α : G→ G/Π1 2G/Π2 2 · · · 2G/Πk

is defined by
α(v) =

(
α1(v), α2(v), . . . , αk(v)

)
.

Figure 13.1 shows an example. Here Θ∗ has three equivalence classes, giving rise to
quotients K4 − e, K2, and K2. Thus we have an embedding α : G → (K4 − e)2K22K2.
Observe that this embedding is indeed isometric.

In Section 11.1 we defined a function µ on ordered pairs of vertices p = (a, b) and
q = (x, y) by

µ(p, q) = d(a, y) − d(a, x) − d(b, y) + d(b, x) .

Recall that µ is symmetric; that is µ(p, q) = µ(q, p). By arbitrarily orienting edges e and
f , we see that eΘf if and only if µ(e, f) 6= 0. Furthermore, for sets (or multisets) A, B of
ordered pairs of vertices, we define

µ(A,B) =
∑

p∈A

∑

q∈B

µ(p, q) .

159
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G

G1 G2 G3

G/Π1 G/Π2

G/Π3

FIGURE 13.1 Canonical embedding of G.

We are interested in the case where B is a path Q = y0y1 . . . yk with edges oriented as
(yi−1, yi) for i = 1, 2, . . . , k. If p = (y0, yk) and q is an ordered pair of vertices, then it is
easily seen that µ(q,Q) = µ(q, p). (Lemma 11.3 is a special case.) Thus

µ(A,Q) = µ(A, p)

for any set (or multiset) A of ordered pairs of vertices. Also µ(Q,A) = µ(p,A), by symmetry
of µ.

The following lemma is the key for the proof of the most important property of the
canonical embedding—the fact that it is an isometry.

Lemma 13.1 If P is a shortest u, v-path in G and Q is an arbitrary u, v-path, then

|E(P ) ∩ Ei| ≤ |E(Q) ∩Ei|

for any Θ∗-class Ei.
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Proof Orient P and Q so that each edge is directed toward the endpoint v. Set p = (u, v).
Let us abbreviate E(P )∩Ei as P ∩Ei, etc. In the following computations we agree that in
expressions such as P ∩Ei, each edge from Ei that intersects P is given the same orientation
as the edge of P that it coincides with. Then

µ(p, P ∩ Ei) = µ(Q,P ∩ Ei)

= µ(Q ∩ Ei, P ∩ Ei)

= µ(Q ∩ Ei, P )

= µ(Q ∩ Ei, p) .

To see this, we note that the first and the last equality hold by the above observation. The
other two equalities follow from the fact that if e and f are arbitrarily directed edges of G,
then µ(e, f) = 0 whenever e and f are not in the relation Θ.

As P is a shortest path, the definition of µ yields µ(p, f) = 2 for any directed edge f of
P . Hence

µ(p, P ∩B) = 2|P ∩B|
for any set (or multiset) B of directed pairs. Therefore

2|P ∩ Ei| = µ(p, P ∩ Ei) = µ(Q ∩ Ei, p) ≤ 2|Q ∩ Ei| ,

where the inequality follows from the observation that |µ((x, y), (x′, y′))| ≤ 2 if at least one
of xy and x′y′ is an edge. 2

We have now prepared all prerequisites for the main theorem of this section.

Theorem 13.2 (Graham-Winkler) The canonical embedding is an isometry.

Proof Let uv ∈ E(G) and assume that uv ∈ Ei. From Lemma 11.3 we infer that
αi(u)αi(v) ∈ E(G/Πi). Moreover, if j 6= i, then αj(u) = αj(v). Thus α maps edges onto
edges. Lemma 11.3 also implies that α is injective.

Suppose α is not an isometry. Then there is a shortest path P joining vertices x and y

in G, and an even shorter shortest path R from α(x) to α(y) in �
k
i=1G/Πi. Now, R can

be written as

α(x) = (C1,1, C2,1, . . . , Ck,1)(C1,2, C2,2, . . . , Ck,2) . . . (C1,`, C2,`, . . . , Ck,`) = α(y) ,

where each Ci,j is a component of G− Ei, and x is in each Ci,1, and y is in each Ci,`.

For each 1 ≤ i ≤ k, let Fi be the set of edges in �
k
i=1G/Πi whose endpoints differ only

in the ith coordinate. Then

k∑

i=1

|P ∩Ei| = |P | > |R| =

k∑

i=1

|R ∩ Fi|,

so there is an index i for which |P ∩Ei| > |R∩Fi|. Consider the sequence Ci,1, Ci,2, . . . , Ci,`

of components of G− Ei. For any two successive terms Ci,j , Ci,j+1 in this sequence, either
Ci,j = Ci,j+1 or there is an edge ej ∈ Ei joining Ci,j to Ci,j+1, and there is a total of
r = |R ∩ Fi| such edges. List them in order of traversal as ej1 , ej2 , . . . ejr . These edges can
be extended by edges in the components Ci,j to form a path Q in G joining x to y with
|Q ∩ Ei| = |R ∩ Fi| < |P ∩ Ei|, in contradiction to Lemma 3.1. 2

The isometry α possesses several other properties that are collected in the following
theorem. First two definitions.
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We call an isometric embedding β : G → �
m
i=1Hi irredundant if |V (Hi)| ≥ 2 for

i = 1, . . . ,m, and if every vertex h ∈ ⋃m
i=1 V (Hi) occurs as a coordinate in the image of

some g ∈ V (G). (This means that an irredundant embedding has no unused factors or
vertices.) The image of β(G) in �

m
i=1Hi is called an irredundant subgraph.

A graph G is called irreducible if any irredundant isometric embedding β : G→�
m
i=1Hi

is trivial, namely m = 1 and G = H1. Note that an irreducible graph is necessarily prime,
but not conversely. (The path on three vertices is a counterexample.) The next theorem is
by Graham and Winkler (1985).

Theorem 13.3 If α is the canonical embedding of a connected graph G, then

(i) α is irredundant.
(ii) α has the most factors among all irredundant isometric embeddings of G.

(iii) Each quotient graph G/Πi is irreducible.
(iv) α is unique among the embeddings satisfying (ii).

Proof Consider (i). If uv is an edge of an equivalence class Ei, then, by Lemma 13.1, u
and v belong to different connected components of Gi. Thus G/Πi has at least two vertices.
The second condition for irredundancy follows from the fact that each αi is surjective.

For (ii), let β : G → �
m
i=1Hi be any irredundant isometric embedding. Furthermore,

let e and f be two edges of β(G) that are in layers with respect to different factors Hi,
Hj . We wish to show first that e and f are not in the relation Θ in this case.1 For m = 2
this is obvious by Corollary 5.1. Thus e, f are not in the relation ΘHi 2Hj . By the Distance

Formula (Corollary 5.2), Hi2Hj is an isometric subgraph of �
m
i=1Hi, hence eΘf cannot

hold either. This means that all edges of an equivalence class Ei must be in layers with
respect to the same factor, say Hi. Hence α has the largest possible number of factors.

Statement (iii) follows from (ii), because the reducibility of a quotient graph G/Πi would
lead to an irredundant isometric embedding of G with a larger number of factors than α.

Statement (iv) follows by the same argument as the one used for (ii). 2

Corollary 13.4 Let G be a connected graph on n vertices. Suppose α embeds G into k
factors. Then G is a tree if and only if k = n− 1.

Proof We already know (see the remark after Lemma 11.3) that α embeds in at most n−1
factors. Furthermore, if G is a tree, no two edges of G are in the relation Θ, by Lemma 11.1.
Thus k = n− 1.

Conversely, if G has a cycle, then at least two edges, say e and f , are in the relation Θ.
Consider a spanning tree T of G containing the edges e and f . By Lemma 11.3, every edge
of E(G) \ E(T ) is in relation Θ to an edge of T . Thus k < n− 1. 2

13.2 The Relation Θ and the Cartesian Product

If G ∼= �
k
i=1Gi, then we say �

k
i=1Gi is a product representation of G. With respect to

this representation, we introduce a product coloring c : E(G) → {1, . . . , k} as follows: For
uv ∈ E(G) we set c(uv) = i if u and v differ in coordinate i. Thus all edges in any layer Ga

i

have color i. Note that c is not an edge-coloring in the usual sense, because incident edges
may have the same color. Figure 13.2 shows an example of a product coloring.

1This fact also follows from the more general Lemma 13.5.
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FIGURE 13.2 Product coloring of G = P3 2K2 2K2.

Lemma 13.5 Suppose G = �
k
i=1Gi and e, f ∈ E(G).

(i) If c(e) = c(f) = i and pi(e) = pi(f), then eΘf .
(ii) If eΘf , then c(e) = c(f).

Proof Put e = uv = (u1, . . . , uk)(v1, . . . , vk) and f = xy = (x1, . . . , xk)(y1, . . . , yk).

(i) Because c(e) = c(f) = i, we have v = (u1, . . . , vi, . . . , uk) and y = (x1, . . . , yi, . . . , xk).
In view of pi(e) = pi(f), we may assume, without loss of generality, that ui = xi and vi = yi.
By the Distance Formula (Corollary 5.2), d(u, x) < d(u, y) and d(v, y) < d(v, x). Thus eΘf .

(ii) Suppose c(e) 6= c(f). Without loss of generality, say c(e) = i < j = c(f). Then

u = (u1, . . . , ui, . . . , uj, . . . , uk), x = (x1, . . . , xi, . . . , xj , . . . , xk),
v = (u1, . . . , vi, . . . , uj , . . . , uk), y = (x1, . . . , xi, . . . , yj , . . . , xk).

By the Distance Formula, both dG(u, x) + dG(v, y) and dG(u, y) + dG(v, x) are equal to

dGi(ui, xi) + dGj (uj , xj) + dGi(vi, xi) + dGj (uj , yj) + 2

` 6=i,j∑

1≤`≤k

dG`
(u`, x`).

Therefore eΘf does not hold. 2

Notice that eΘf need not imply pi(e) = pi(f), even if c(e) = c(f). An example are edges
e and f in different K3-layers of K3 2K2 with p1(e) 6= p1(f).

The fact that eΘf implies c(e) = c(f) means that Θ is finer than the product relation
c. Because c is an equivalence relation, the transitive closure Θ∗ of Θ is also contained in c.
K2 2P3 shows that Θ∗ can be strictly finer than c.

Let G = �
k
i=1Gi be the Cartesian product of connected graphs. Then every set of

edges of color i is an equivalence class of c and thus a union of equivalence classes of Θ∗.
Hence the connected components of the subgraph of G spanned by the edges of color i are
convex by Lemma 11.5. As these connected components are the Gi-layers of G, we have
just reproved the fact that layers in Cartesian products are convex, which we already know
from Lemma 6.5.

As an application of Lemma 13.5 we consider embeddings into products of triangles.
We know that partial cubes can be characterized as bipartite graphs with transitive Θ
(Theorem 11.8). What happens if the bipartiteness condition is dropped? Following the
approach of Winkler (1984), Lemma 13.5 and the canonical embedding combine to answer
this question.

Corollary 13.6 Let G be a connected graph. Then G is isometrically embeddable into a
Cartesian product of triangles if and only if Θ = Θ∗.
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164 The Canonical Isometric Embedding

Proof Let G be a connected graph and uv ∈ E(G). Recall that Wuv denotes the set of
vertices closer to u than to v. Let uWv be the set of vertices of G at equal distance from u
and v. Clearly, Wuv, Wvu, and uWv form a partition of V (G). Note that uvΘxy if and only
if xy is an edge between two different parts of this partition.

Let Θ = Θ∗ and Ei be the equivalence class of Θ containing uv. Then G/Πi is K3 if

uWv is nonempty, and K2 otherwise. Thus G canonically embeds into a Cartesian product
of complete graphs on two or three vertices. It is easy to extend this embedding to an
isometric embedding into a product of triangles.

Conversely, let β be an isometric embedding of G into a Cartesian product of triangles
and c be the corresponding product coloring. Let e = uv and f = xy be two edges of G.
We claim that eΘf if and only if c(e) = c(f).

If eΘf , then c(e) = c(f) by Lemma 13.5 (i). Conversely, let c(e) = c(f) = i. Because we
have an embedding into a product of triangles, we may assume without loss of generality
that pi(u) = pi(x). Then d(u, x) < d(u, y) and d(v, y) ≤ d(v, x). It follows that eΘf , which
proves the claim. Thus Θ is equal to the equivalence relation c. 2

Another application of Lemma 13.5 (and Theorem 13.3), although not related to prod-
ucts of triangles, is the following:

Corollary 13.7 Let β : G → H1 2 · · · 2Hm be an isometric irredundant embedding of
a graph G into a product of complete graphs Hi. Then this embedding is the canonical
isometric embedding.

Proof Let H = H1 2H2 2 · · · 2Hm and U and V be two Hi-layers. We claim that
pi(β(G) ∩ U) ⊆ pi(β(G) ∩ V ), or vice versa. If this is not the case, there are vertices
u, u′ ∈ U and v, v′ ∈ V such that

u ∈ β(G) ∩ U, u′ /∈ β(G) ∩ U, v ∈ β(G) ∩ V, v′ /∈ β(G) ∩ V ,
where pi(u) = pi(v

′), pi(u
′) = pi(v). See Figure 13.3.

v v′

u′ u U

V

FIGURE 13.3 Layers U and V .

Suppose that the distance between U and V in H is k. Then, because β(G) is isometric in
H , we have k+ 1 = dH(u, v) = dβ(G)(u, v), which is only possible if u′ ∈ β(G) or v′ ∈ β(G).
This proves the claim.

Let the edges e and e′ in β(G) belong to layers U and V , respectively. If pi(β(G)∩U) ⊆
pi(β(G)∩V ), then, by Lemma 13.5 (i), there is an edge e′′ in β(G)∩V with eΘe′′. Because
β(G) ∩ V is complete, we have e′′Θ∗e′, hence eΘ∗e′.

We have thus proved that any two edges e, e′ in β(G) are in relation Θ∗ if they have the
same color with respect to the product coloring of H . In other words, all edges of the same
color lie in a common equivalence class of Θ∗. On the other hand, no two edges of different
colors are in a common equivalence class by Lemma 13.5 (ii). Hence the number of colors
is equal to the number of equivalence classes of Θ∗. Because, by Theorem 13.3 (iv), α is
unique, we conclude that β = α. 2
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13.3 Automorphisms of Canonical Embeddings

In this section we follow the approach of Imrich (1989) to show that the canonical isometric
embedding of a graph G into a Cartesian product G∗ = G∗

1 2 · · · 2G∗
k establishes a strong

connection between G and G∗.
We begin by showing that automorphisms of G give rise to automorphisms of G∗. Be-

cause any ϕ ∈ Aut(G) preserves distances between vertices, it follows that eΘf if and only
if ϕ(e)Θϕ(f). This means that ϕ permutes the equivalence classes E1, E2, . . . , Ek of Θ∗. Let
π be the permutation of {1, 2, . . . , k} with ϕ(Eπ(i)) = Ei.

Recall that the G∗
i are formed by contractions of the connected components of Gi =

(V (G), E(G) \Ei) to single vertices. By the above, ϕ(Gπ(i)) =
(
V (G), E(G) \ ϕ(Eπ(i))

)
=(

V (G), E(G) \ Ei

)
= Gi. In particular, the image ϕ(C) of a connected component C of

Gπ(i) is a component of Gi. Moreover, if an edge e joins two components C,C′ of Gπ(i),
then ϕ(e) joins ϕ(C) to ϕ(C′). We infer that ϕ induces an isomorphism ψπ(i) : G∗

π(i) → G∗
i .

For the contraction αi of Gi to G∗
i , we have

αi ϕ(v) = ψπ(i) απ(i)(v).

In coordinate representation this reads as

αϕ(v) =
(
α1ϕ(v), α2ϕ(v), . . . , αkϕ(v)

)

=
(
ψπ(1)απ(1)(v), ψπ(2)απ(2)(v), . . . , ψπ(k)απ(k)(v)

)
.

Let ϕ∗ denote the automorphism of G∗ that sends the vertex (v1, v2, . . . , vk) of G∗ to(
ψπ(1)(vπ(1)), ψπ(2)(vπ(2)), . . . , ψπ(k)(vπ(k))

)
. Then

αϕ(v) = ϕ∗ α(v)

and
α(G) = αϕ(G) = ϕ∗α(G).

We have thus proved the following theorem:

Theorem 13.8 Let α be the canonical isometric embedding of a graph G into a Cartesian
product G∗ = G∗

1 2 · · · 2G∗
k. Then every automorphism of α(G) is induced by an automor-

phism of G∗.

Despite this theorem, it is in general not easy to deduce much about the group of a
canonically embedded graph G from the group of G∗. For example, P3 canonically embeds
into K22K2. Both factors have a transitive group, but not P3. It works better the other
way.

Theorem 13.9 Let G be a connected graph with transitive automorphism group and α the
canonical isometric embedding of G into the Cartesian product G∗ = G∗

1 2 · · · 2G∗
k. Then

Aut(G∗) is transitive.

Proof It suffices to show that each G∗
i has a transitive group. Suppose that this is not the

case. Without loss of generality, we can assume that Aut(G∗
1) is intransitive. Let V1 be the

orbit of a vertex v1 ∈ V (G∗
1), that is,

V1 = {ϕ(v1) |ϕ ∈ Aut(G∗
1) }.
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Because Aut(G∗
1) is not transitive, the set V2 = V (G∗

1) \ V1 is not empty.
If all the other G∗

i are nonisomorphic to G∗
1, we choose two vertices v, w in α(G) for which

the first coordinate of v in G∗
1 2 · · · 2G∗

k, say v1, is in V1, whereas the first coordinate of w is
in V2. Such vertices exist becauseG is canonically embedded into G∗. Now, by Theorem 13.3,
the G∗

i are irreducible, hence also prime. We infer from Theorem 6.10 that Aut(G∗) is not
transitive.

Thus suppose that G∗
1
∼= G∗

2
∼= · · · ∼= G∗

l , where 2 ≤ l ≤ k, and that no other factor of
G∗ is isomorphic to G∗

1. We can further assume that G∗
1 = G∗

2 = · · · = G∗
l . Thus, for any

v ∈ G∗, the ith coordinate, say vi, of v, 1 ≤ i ≤ l, is either in V1 or in V2. Set

n(v) =
∣∣{v1, v2, . . . , vl} ∩ V1

∣∣.

Clearly, n(v) = nϕ(v) for any automorphism ϕ of G∗.
As before, we choose vertices v, w ∈ V (α(G)) for which v1 ∈ V1 and w1 ∈ V2. Let P

be a path in α(G) from v to w. Every edge connects vertices that differ in exactly one
coordinate. Thus there must be an edge, say v′w′, in P for which v′1 ∈ V1, but w′

1 ∈ V2.
Then n(v′) 6= n(w′), and there is no automorphism of G∗, and thus of α(G), that maps v′

into w′. But then G is not transitive. 2

As an example, consider the six-cycle C6. It has transitive group and canonically embeds
into Q3, whose every factor also has transitive group.

Exercises

13.1. Find the canonical isometric embedding of P3 2P3.

13.2. Show that a graph G is irreducible if and only if G has a single Θ∗-class.

13.3. Prove that an irreducible graph has no cut vertex.

13.4. Find an irreducible graph with no cut vertex in which every edge is contained in an
odd cycle.

13.5. (Graham, 1988) In the usual random graph model, an edge between two vertices of
a random graph is selected with probability one half. Based on this model, prove
that almost all graphs are irreducible. More precisely, prove that the number of
irreducible graphs on n vertices divided by the total number of graphs on n vertices
tends to 1 as n→ ∞.

13.6. Embed C6 isometrically into Q3. Show directly that every automorphism of C6 is
induced by an automorphism of Q3.
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This chapter develops a graph invariant called windex, introduced by Chung, Graham,
and Saks (1987, 1989) in the context of dynamic location theory. It is closely connected
to Cartesian products of complete graphs. These graphs, known as Hamming graphs, are
treated in the first section, while the second section introduces the dynamic location problem
and the corresponding invariant windex. Then quasi-median graphs are introduced as a
natural generalization of median graphs. The chapter culminates with a proof that graphs
with finite windex coincide with quasi-median graphs.

14.1 Hamming Graphs

Hypercubes can be generalized as follows. Take integers ki ≥ 2 for i = 1, 2, . . . , r. Form a
graph whose vertices are the r-tuples b1b2 . . . br with bi ∈ {0, 1, . . . , ki − 1}. Two tuples are
adjacent if they differ in precisely one place. Such a graph is called a Hamming graph. Clearly,
a graph is a Hamming graph if and only if it is a Cartesian product of nontrivial complete
graphs (Exercise 14.1). For example, Figure 14.1 shows the Hamming graph K4 2K32K2.

FIGURE 14.1 Hamming graph K4 2K32K2.
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168 A Dynamic Location Problem

Recall from Proposition 3.1 that the interval I(u, v) between vertices u and v of a
hypercube induces a d(u, v)-cube. This observation generalizes directly to Hamming graphs.

Proposition 14.1 Let u and v be vertices at distance r in a Hamming graph. Then I(u, v)
induces a hypercube of dimension r.

The proof of this proposition follows the lines of the analogous proof for hypercubes. We
leave the details to the reader (Exercise 14.2).

Just as we defined partial cubes as isometric subgraphs of hypercubes, we define partial
Hamming graphs as isometric subgraphs of Hamming graphs. The following is an equivalent
definition of partial Hamming graphs: Let Σ be a finite alphabet. Given two r-tuples w1

and w2 of elements from Σ, their Hamming distance H(w1, w2) is the number of positions in
which they differ. A graph G is a partial Hamming graph if and only if each vertex v ∈ V (G)
can be labeled by a tuple w(v) of fixed length such that H(w(u), w(v)) = dG(u, v) for all
u, v ∈ V (G). Such a labeling is a Hamming labeling.

Let us apply this concept to a communication network represented by a graph. Informa-
tion between vertices is transmitted in packets, where many of these packets may be on the
network simultaneously. A particular packet cannot be transmitted until a corresponding
path is clear. Local routing realizes such a system by assigning an address to each vertex
and using only local information to route each packet to its destination. Graham and Pollak
(1971, 1972) suggested an addressing system in which the distance between two vertices is
the Hamming distance between their addresses. Then, if a packet has distance k from its
destination, it checks the addresses of neighboring vertices and moves to a vertex of distance
k − 1. Continuing this process, the packet reaches its destination via a shortest path. Such
a scheme is possible if the graph corresponding to the network is a partial Hamming graph.

Chepoi (1988) obtained several interesting characterizations of partial Hamming graphs.
One of them is an expansion theorem for which the expansion theorem for partial cubes
mentioned in Section 11.2 is a special case. Another result asserts that a graph is a partial
Hamming graph if and only if for any edge uv the sets Wuv, Wvu, uWv, and their comple-
ments induce convex subgraphs. (For the definition of uWv, see the proof of Corollary 13.6.)
Wilkeit (1990) gives five other characterizations of partial Hamming graphs.

Not all graphs are partial Hamming graphs, that is, not all graphs can be embedded iso-
metrically into Hamming graphs. To circumvent this difficulty, Graham and Pollak (1971)
devised a method of labeling the vertices of a graph over the alphabet {0, 1, ∗}, where
distances from ∗ to 0 and to 1 are defined as zero. (The symbol ∗ is the so-called “don’t
care” symbol.) The distance between any two labels is then the sum of the distances be-
tween respective positions. For such distances the triangle inequality need not hold, and the
distance between two different labels can be zero. Nonetheless, they conjectured that for
graphs on n vertices, one can always construct such labelings isometrically representing the
distance of the respective graphs using labels of length at most n− 1. This conjecture was
known as the squashed cube conjecture and was settled affirmatively by Winkler (1983); see
Chapter 9 of van Lint and Wilson (1992) for details.

14.2 Graphs with Finite Windex

We now describe the central problem of this chapter—the dynamic location problem and
the associated invariant windex. We will show that Hamming graphs and their weak retracts
have finite windex, thus paving the way for the rest of the chapter.
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Suppose that a system is represented by a connected graph G, and a common resource
is located at some vertex s. This vertex is called the state of the system, and it can be
changed to any other vertex. However, the cost of moving the resource from state s to state
s′ is equal to d(s, s′). A sequence of requests is then made, each consisting of a vertex r at
which some processing must be done. The cost of this processing is d(s, r), where s is the
current state of the system.

Let s0 = r0 be the initial state of the system, and r1r2 . . . rl be a request sequence.
When the system is in state si−1, it moves to state si and processes request ri. (Possibly,
si = si−1.) This procedure is repeated indefinitely.

Our goal is to find a state sequence s1s2 . . . sl such that the cost

l∑

i=1

(d(si−1, si) + d(si, ri))

of the state sequence with respect to the request sequence is as small as possible. We call
this the dynamic location problem. If the request sequence is known in advance, the problem
can be solved by a standard dynamic programming approach. However, we wish to solve
the problem in real time, because in general we have only incomplete knowledge of future
requests. In fact, we will assume that for some integer k, the system knows the next k
requests.

An algorithm for the dynamic location problem works within window k if the choice
of each si depends only on the rj with i ≤ j < i + k. The window index, or windex of a
graph G, denoted WX(G), is the smallest k for which there exists an optimal algorithm
for the dynamic location problem that works within window k. If no such k exists, then
WX(G) = ∞.

We note that WX(G) ≥ 2 for any graph with at least one edge. Indeed, let uv ∈ E(G)
and assume that s0 = u. Suppose that we can “see” only the first request, which is v. If we
set s1 = v, then the request sequence vuuuu . . . shows that our strategy is not optimal, for
the state sequence uuuu . . . has a lower cost. On the other hand, if we set s1 = u (or any
other vertex), then the request sequence vvvv . . . tells the same. Hence no algorithm can
work within window 1.

In fact, the windex may even be infinite:

Lemma 14.2 If G = K4 − e, then WX(G) = ∞.

Proof Let V (K4 − e) = {u, v, w, z} with nonadjacent u and z. Let s0 = v, and consider
the request sequence

σ = wuzuz . . . uz ,

where the two-element subsequence uz is repeated k times. Because d(u, z) = 2 and s0 = v,
the cost of any state sequence for σ is at least 2k + 1.

Assume that the request following σ is v. Then the cost of the state sequence consisting
solely of v’s is 2k+1. Moreover, if s1 6= v, then we will either change the state of the system
at least twice or end up with a state different from v. In any case, the cost is at least 2k+2.
It follows that s1 = v is optimal.

If, on the other hand, the request following σ is w, then we infer by a similar argument
that s1 = w is optimal.

Because k can be arbitrarily large, no algorithm works within a finite window. 2

Contrary to K4 − e, complete graphs have finite windex.

Lemma 14.3 For any n ≥ 2, WX(Kn) = n.
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Proof Let V (Kn) = {u0, u1, . . . , un−1}. Consider the request sequence σ = u0u1 . . . un−1,
where u0 is the initial state. If the first request after σ is u0, an optimal state sequence must
begin (and continue) with u0, because then the cost is n− 1 while in any other case it is at
least n. Analogously we see that an optimal state sequence must begin with u1 if the first
request after σ is u1. This proves that WX(Kn) > n− 1.

To prove that WX(Kn) ≤ n, consider the following strategy. Let si be the current state,
and let ri+1ri+2 . . . ri+n be the next n requests. Let r be the first repeated vertex in the
sequence siri+1ri+2 . . . ri+n (e.g., in the sequence u1u3u2u3u2u1, such a vertex is u3). Put

si+1 =

{
ri+1 if r = ri+1 ,
si otherwise .

Clearly, this algorithm works within window n. Moreover, it is not difficult to show by
induction on the length of the request sequence that the algorithm produces an optimal
state sequence. 2

We have just seen that complete graphs have finite windex. To obtain a much larger
class of graphs with this property, two additional observations are helpful.

Proposition 14.4 If H is a weak retract of G, then WX(H) ≤WX(G).

Proof Let f : G → H be a weak retraction and σ = r0r1 . . . rn a request sequence to
H . Then σ is also a request sequence to G. Let s1s2 . . . sn be an optimal state sequence
in G. We claim that f(s1)f(s2) . . . f(sn) is an optimal state sequence in H for the request
sequence σ. Let s′1s

′
2 . . . s

′
n be an optimal state sequence in H . Observe that

n∑

i=1

(
dH(s′i−1, s

′
i) + dH(s′i, ri)

)
≥

n∑

i=1

(
dG(s′i−1, s

′
i) + dG(s′i, ri)

)

≥
n∑

i=1

(
dG(si−1, si) + dG(si, ri)

)

≥
n∑

i=1

(
dH
(
f(si−1), f(si)) + dH(f(si), ri)

)
.

(The third inequality follows because weak homomorphisms are nonexpansive by Proposi-
tion 3.8.) We conclude that f(s1)f(s2) . . . f(sn) is indeed an optimal state sequence. But this
means that, if WX(G) = k <∞, we obtain a window k algorithm for H using a window k al-
gorithm for G and converting the output s1s2s2 . . . to the state sequence f(s1)f(s2)f(s3) . . ..
2

Proposition 14.4 cannot be extended to isometric subgraphs. For example, C6 is an
isometric subgraph of the 3-cube Q3, but WX(C6) = ∞ (Exercise 14.5) and WX(Q3) = 2
(Exercise 14.10).

We have now arrived at a point where the window index and Cartesian products meet.

Proposition 14.5 WX(G2H) = max{WX(G),WX(H)} for all graphs G and H.

Proof Let σ = (a0, x0)(a1, x1) . . . (an, xn) be a request sequence to G2H and τ =
(b1, y1)(b2, y2) . . . (bn, yn) be a state sequence. Then the Distance Formula (Corollary 5.2)
implies that τ is a minimal state sequence for σ if and only if b1b2 . . . bn is a minimal state
sequence for a0a1 . . . an in G and y1y2 . . . yn a minimal state sequence for x0x1 . . . xn in
H . Hence a window k algorithm in G2H induces window k algorithms for G and H , and
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window k1 and k2 algorithms for G and H produce a window max{k1, k2} algorithm for
G2H . 2

The generalization of Proposition 14.5 to finitely many factors is obvious. Note also that
Proposition 14.5, together with Lemma 14.3, immediately implies that WX(Qn) = 2 for
n ≥ 1.

From Propositions 14.4 and 14.5 and Lemma 14.3, we infer the main result of this
section.

Theorem 14.6 If G is a weak retract of a Hamming graph, then WX(G) is finite.

We conclude this section with a necessary condition for a graph to be of finite windex.
This requires two definitions.

A graph has the triangle property if, for any edge uv and any vertex w with d(u,w) =
d(v, w) = k ≥ 2, there exists a common neighbor x of u and v with d(x,w) = k−1. A graph
has the quadrangle property if, for any vertices u, v, w and z, where d(u,w) = d(v, w) =
k = d(z, w) − 1 and z is a common neighbor of u and v, there exists a common neighbor
x of u and v with d(x,w) = k − 1. See Figure 14.2 for schematic representations of these
properties.

w w

x x

z

v
v

u
u

k k k k

k−1 k−1

k+1

FIGURE 14.2 Triangle property (left) and quadrangle property (right).

A (connected) graph is weakly modular if it possesses the triangle and the quadrangle
property.

Proposition 14.7 Let G be a connected graph with finite windex. Then G is weakly modular
and contains no K4 − e or K2,3 as an induced subgraph.

Proof Suppose that K4 − e is an induced subgraph of G. Then it is a weak retract of
G. Indeed, map all vertices of V (G)\V (K4 − e) to a vertex of K4 − e of degree 3. By
Proposition 14.4, we have WX(K4 − e) ≤WX(G) <∞, in contradiction to Lemma 14.2.

In the remainder of the proof, we show that if G contains K2,3 as an induced subgraph
or if G is not weakly modular, then WX(G) = ∞. For each case we list an arbitrarily long
request sequence σ such that the selection of an initial state depends on a request after σ.
We will not provide all details; they can be found in Chung, Graham, and Saks (1989).

Assume that K2,3 is an induced subgraph of G, and let {u, v, w} ∪ {x, y} be the bipar-
tition of V (K2,3). Let σ = (uvw)j , where 3j > WX(G). It is not difficult to see that if the
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first request after σ is x, then x must be selected as the first state vertex and, if the first
request after σ is y, this vertex must be the first state vertex.

Suppose that G does not satisfy the quadrangle property. Then there are vertices
u, v, w, z ∈ V (G) with d(u,w) = d(v, w) = m = d(z, w)− 1, where z is a common neighbor
of u and v, d(u, v) = 2, and there is no common neighbor x of u and v with d(x,w) = m−1.
Let σ = uzw(vwu)j , where 3j > WX(G). Now, if the first request after σ is u, then u must
be selected as the first state vertex; and if the first request after σ is v, then the vertex z
must be the first state vertex.

Finally, for the triangle property where uv ∈ E(G) and d(u,w) = d(v, w), consider
σ = uwv(wu)j with 2j > WX(G). 2

14.3 Quasi-Median Graphs and Generalizations

Median graphs form a proper subclass of partial cubes, a class of graphs that in turn
naturally generalizes to partial Hamming graphs. What could be a natural generalization
of median graphs?

To answer this question, consider a median graph G isometrically embedded in Qn. Let
u = u1u2 . . . un, v = v1v2 . . . vn, and w = w1w2 . . . wn be arbitrary vertices of G. Then the
median x = x1x2 . . . xn of the triple u, v, w is obtained by majority rule in every coordinate;
see the proof of Proposition 3.7. More precisely, we set xi equal to the element that appears
at least twice among ui, vi, wi. Call a subgraph G of a hypercube median-closed if for any
three vertices u, v, and w of G, the vertex obtained from them by majority rule belongs to
G as well. This leads to the following observation.

Proposition 14.8 A graph is a median graph if and only if it is a median-closed partial
cube.

Mulder (1978, 1980a) noticed that the conditions of Proposition 14.8 can be weakened:

Corollary 14.9 A graph is a median graph if and only if it is a median-closed induced
subgraph of a hypercube.

Proof By Proposition 14.8, it remains to prove that a median-closed induced subgraph G
of a hypercube H is an isometric subgraph.

Suppose not. Let u and v be vertices of G such that k = dG(u, v) > dH(u, v), and assume
that k is as small as possible. Because G is an induced subgraph, we have k ≥ 3. Note also
that dH(u, v) ≤ k − 2 because H is bipartite.

Let P be a shortest u, v-path in G and w be the vertex of P of distance 2 from v. Let
x be the vertex obtained by majority rule from u, v, w. Because G is induced and median-
closed, x belongs to G and is adjacent to v and w. Furthermore, because of the way we
selected k, we infer that dG(u, x) = dH(u, x) = dH(u, v) − 1 ≤ k − 3, which implies that
dG(u, v) ≤ k − 2, a contradiction. 2

To generalize median graphs, we extend the concept of median-closed subgraphs of
hypercubes to arbitrary Cartesian products as follows: Let G = G1 2G2 2 · · · 2Gn. For
vertices u, v, w ∈ V (G), the the imprint imp(u, v;w) of u and v on w is the vertex x of G
defined by

xi =

{
ui if ui = vi ,
wi otherwise .
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Note that if Gi = K2, then xi is obtained from ui, vi, wi by majority rule. Consequently,
if G = Qn, then imp(u, v;w) is just the median of u, v, w. Therefore the imprint function
generalizes the notion of a median from hypercubes to Hamming graphs.

In addition, we call a subgraph H of G imprint-closed if for any vertices u, v, and w of
H , the imprint imp(u, v;w) also belongs to H .

In view of Corollary 14.9, we now generalize median graphs as follows: A connected
graph G is a quasi-median graph if G is an imprint-closed induced subgraph of a Hamming
graph. We first observe:

Proposition 14.10 A graph is a median graph if and only if it is a bipartite quasi-median
graph.

Proof Suppose G is a median graph. Then it is bipartite by Proposition 3.6, and by Corol-
lary 14.9 it is a median-closed induced subgraph of a hypercube. Because for hypercubes
imp(u, v;w) equals the median of u, v, and w, G is an imprint-closed induced subgraph of
a Hamming graph.

Conversely, suppose G is a bipartite quasi-median graph, which means it is a connected,
bipartite, imprint-closed, induced subgraph of a Hamming graph G1 2G2 2 · · · 2Gk. It
suffices to show that the projection of G onto any factor contains at most two vertices.
(For then G is an imprint-closed induced subgraph of a hypercube, hence also a median-
closed induced subgraph, and therefore a median graph by Corollary 14.9.) We need only
show that the projection to the first factor has fewer than three vertices, for the same
argument will work for any factor. Suppose to the contrary that π1(G) has more than two
vertices, and represent G1 2G2 2 · · · 2Gk as G1 2H , where H = G2 2 · · · 2Gk. Because
G is connected, it must have an edge joining some H-layer π−1

1 (a1) to another H-layer
π−1
1 (a2), where a1, a2 ∈ π1(G). This edge must have form (a1, x)(a2, x) for some x ∈ V (H).

Let a3 ∈ π1(G) \ {a1, a2} and choose a vertex (a3, y) ∈ V (G). Note that

imp
(
(a1, x), (a2, x); (a3, y)

)
= (a3, x) .

Because G is imprint-closed, it follows that (a3, x) ∈ V (G). But then the vertices (a1, x),
(a2, x), and (a3, x) induce a triangle, contradicting bipartiteness. 2

The concept of quasi-median graphs is due to Mulder (1980a), who introduced them as
follows: Let u1, u2, u3 be a triple of vertices of a graph G. A quasi-median of u1, u2, u3 is a
triple x1, x2, x3 such that for any distinct i and j,

(i) d(ui, uj) = d(ui, xi) + d(xi, xj) + d(xj , uj),
(ii) d(xi, xj) = k, and

(iii) k is minimal with respect to (i) and (ii).

The integer k is called the size of the quasi-median. A quasi-median of size 0 is a median of
the triple u1, u2, u3. See Figure 14.3 for an example of size 3. Mulder defined quasi-median
graphs as graphs satisfying the following conditions.

(i) Any triple of vertices in G has a unique quasi-median,
(ii) G does not contain K4 − e as an induced subgraph, and

(iii) The smallest convex subgraph of G that contains an isometric C6 is Q3.

Numerous additional characterizations of quasi-median graphs are known; see the sur-
vey by Bandelt, Mulder, and Wilkeit (1994). Among these characterizations we select the
following, because it nicely connects various concepts defined in this book.

Recall that a subgraph H of G is gated in G if there exists a vertex x ∈ V (H) to every
v ∈ V (G) such that x lies on a shortest v, u-path for every u ∈ V (H). Let H1 and H2 be
gated subgraphs of a graph G such that V (H1)∪ V (H2) = V (G), V (H1)∩ V (H2) 6= ∅, and
no edges join H1 \H2 to H2 \H1. Then G is called the gated amalgamation of H1 and H2.
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u1

x1

u2

x2

u3

x3

FIGURE 14.3 The triple u1, u2, u3 has a quasi-median x1, x2, x2 of size 3.

Theorem 14.11 A connected graph is a quasi-median graph if and only if it can be obtained
from Hamming graphs by a sequence of gated amalgamations.

In Chapter 12 we showed that every nonexpansive map of a median graph has a fixed
cube. Clearly, a subcube of a hypercube is a subproduct; thus every nonexpansive map of
a median graph G contains a fixed box. For quasi-median graphs, a result analogous to
Theorem 12.25 holds.

Theorem 14.12 Every nonexpansive map of a quasi-median graph has a fixed box, namely
a fixed Hamming graph.

This theorem is due to Chastand (1992); see also Chastand and Polat (1996). The proof
is identical to that of Theorem 12.25.

In addition to quasi-median graphs, there are numerous other important nonbipartite
generalizations of median graphs. We briefly mention some of them.

Pseudo-median graphs A graph is called pseudo-median if every triple of vertices either
has a unique median or there exists a unique triangle that is contained in the union of
any three shortest paths joining the vertices of the triple. Clearly, a graph is a median
graph if and only if it is a pseudo-median triangle-free graph. Unfortunately, the
Cartesian product of two pseudo-median graphs need not be pseudo-median, but the
Cartesian product of a median graph and a pseudo-median graph is pseudo-median.
The main result of Bandelt and Mulder (1991) asserts that a graph is pseudo-median if
and only if it can be obtained from graphs of the form H 2Qn by a sequence of gated
amalgamations, where H belongs to one of three relatively simple families of graphs.
Bandelt and Mulder (1988) proved that a graph G is a regular pseudo-median graph if
and only ifG is eitherQn 2Km orQn2Km×2, whereKm×2 is the cocktail-party graph,
that is, the graph obtained from K2m by removing a set of m independent edges. This
generalizes Exercise 12.8. The same paper extends Theorem 12.21 to pseudo-median
graphs as follows: If f : G → G is a nonexpansive map of a pseudo-median graph,
then G has a regular pseudo-median subgraph that is invariant under f .

Weakly median graphs A weakly median graph is a weakly modular graph in which
every triple of vertices has a unique quasi-median. The latter condition can also be
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expressed by saying that they do not contain any two vertices with an unconnected
triple of common neighbors that can in turn be described by a list of four forbidden
induced subgraphs. Weakly median graphs contain quasi-median graphs as a proper
subclass (cf. Theorem 14.13). Moreover, they also generalize pseudo-median graphs
and are, contrary to pseudo-median graphs, closed under Cartesian product.

Weakly median graphs were first studied in Chepoi (1989). Later, Bandelt and Chepoi
(2000) proved that they are precisely the graphs that can be obtained by successive
applications of gated amalgamations from Cartesian products of the following graphs:
K2’s, 5-wheels, induced subgraphs of cocktail-party graphs Kn×2 (n ≥ 3) that contain
either K4 or an induced 4-wheel, and 2-connected bridged graphs not containing K4

or the complete multipartite graph K1,1,3 as an induced subgraph. Here a graph is
called bridged if it does not contain any isometric cycle of length greater than 3.
They also deduced that weakly median graphs are `1-graphs. (See p. 143 for the
definition of `1-graphs.) Brešar (2003) proved that regular weakly median graphs are
precisely Cartesian products of complete graphs and cocktail-party graphs. For further
developments on weakly median graphs, see Polat (2004), Chastand and Polat (2006),
Bandelt and Chepoi (2008a), and the survey by Bandelt and Chepoi (2008b).

Fiber-complemented graphs Chastand (2001, 2003) introduced a class of graphs that
is even more general than the class of weakly median graphs, hence his graphs include
quasi-median graphs, pseudo-median graphs, and weakly median graphs. For a graph
G, a gated set A of G, and x ∈ A, let k−1

A (x) be the set of all vertices of G whose gate
in A is x. A graph G is fiber-complemented if for any gated set A of G and any vertex
x ∈ A, the set k−1

A (x) is gated. Chastand (2001) proved that fiber-complemented
graphs can be characterized as the graphs obtained by successive applications of gated
amalgamations from Cartesian products of graphs that are not decomposable with
respect to these two graph operations. However, contrary to the weakly median case,
the list of graphs from which all fiber-complemented graphs can be generated using
these two operations is not known. Further results on fiber-complemented graphs were
obtained in Brešar (2003), Bandelt and Chepoi (2007), and Brešar and Tepeh Horvat
(2008); see also the survey in Bandelt and Chepoi (2008b).

Cage-amalgamation graphs These graphs were introduced by Brešar and Tepeh Horvat
(2009) as a common generalization of median graphs and chordal graphs.1 A graph is
a cage-amalgamation graph if it can be obtained by successive applications of gated
amalgamations from Cartesian products of 2-connected chordal graphs andK2’s. They
give several characterizations of cage-amalgamation graphs and prove a couple of
equalities for these graphs in the spirit of Exercise 12.10.

Brešar, Chalopin, Chepoi, Kovše, Labourel, and Vaxès (2010) proved that cage-
amalgamation graphs are precisely the weak retracts of Cartesian products of chordal
graphs. In addition, these graphs can be further characterized as weakly modular
graphs that do not contain K2,3, k-wheels, and k-wheels minus one spoke (k ≥ 4) as
induced subgraphs. This characterization was conjectured in Brešar and Tepeh Horvat
(2009).

1Recall that a graph is chordal if each of its cycles on at least four vertices has a chord, that is, an edge
joining two nonconsecutive vertices of the cycle.
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14.4 Graphs with Finite Windex Are Quasi-Median Graphs

We are now ready for the central theorem of this chapter. Its proof uses several key ideas,
including the canonical isometric embedding.

Theorem 14.13 For a connected graph G, the following conditions are equivalent:

(i) G is a quasi-median graph.
(ii) G is a weak retract of a Hamming graph.

(iii) G has finite windex.
(iv) G is weakly modular and contains no K4 − e or K2,3 as an induced subgraph.

We first point out two important consequences of the theorem.
By Bandelt’s Theorem 12.18 a graph is a median graph if and only if it is retract of a

hypercube. Since every retract is a weak retract, the class of median graphs is contained
in the class of weak retract of hypercubes. By condition (ii) of Theorem 14.13 every weak
retract of a hypercube is a quasi-median graph, and as subraphs of hypercubes they are
bipartite. Now Proposition 14.10 says that a quasi-median graph is bipartite if and only if
it is a median graph. We conclude that every weak retract of a hypercube is a retract. We
thus have the following corollary:

Corollary 14.14 A weak endomorphism of a hypercube is a weak retract if and only if it
is a retract.

For the second consequence notice that weak retracts are isometric subgraphs by Corol-
lary 3.9. By condition (ii) of Theorem 14.13 (ii) we thus infer:

Corollary 14.15 Quasi-median graphs are partial Hamming graphs.

The converse of Corollary 14.15 is false as we already know from the bipartite case.
The proof of Theorem 14.13 is not easy. The implication (ii) ⇒ (iii) is Theorem 14.6

while the implication (iii) ⇒ (iv) is Proposition 14.7. It remains to prove the implications
(i) ⇒ (ii) and (iv) ⇒ (i).

Proof of Theorem 14.13, Step (i) ⇒ (ii) We first extend our notation. Let u =
(u1, . . . , un) be a vertex of G = G1 2G2 2 · · · 2Gn and I = {i1, . . . , ij} be a subset of
{1, . . . , n}. Then we set pI(u) = (ui1 , . . . , uij ). For X ⊆ V (G), let pI(X) = {pI(x) | x ∈ X}.
Furthermore we define

Si(u) = {(w1, . . . , wn) ∈ V (G) | wi = ui},

and if v = (v1, . . . , vn) is another vertex of G and i 6= j, then

L(u, i; v, j) = Si(u) ∪ Sj(v) .

The set L(u, i; v, j) is called an L-set and {i, j} is its support. Figure 14.4 is a schematic
representation of an L-set in a Cartesian product of three factors.

Assume now that H is a quasi-median graph; that is, H is a connected, imprint-closed
subgraph of a Hamming graph G = G1 2 · · · 2Gn. (Clearly, every Gi is complete.) We can
assume without loss of generality that H is proper and irredundant in G.

Lemma 14.16 The set V (H) is an intersection of L-sets of G. If V (H) ⊆ L(u, i; v, j),
then L(u, i; v, j) is unique among all L-sets that contain V (H) and have support {i, j}.
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FIGURE 14.4 An L-set.

Proof Let u ∈ V (G)\V (H). To prove that V (H) is an intersection of L-sets of G, it suffices
to show that there exists an L-set of G that contains H but not u. Let I ⊆ {1, . . . , n} be a
minimal set such that pI(u) /∈ pI(H). Because H is irredundant in G, |I| ≥ 2.

Let |I| ≥ 3 and i1, i2, i3 ∈ I. By the choice of I, there are vertices x, y, and z of H with

pI\{i1}(x) = pI\{i1}(u),

pI\{i2}(y) = pI\{i2}(u),

pI\{i3}(z) = pI\{i3}(u).

Because H is imprint-closed, the vertex w = imp(x, y; z) belongs to H . However, pI(w) =
pI(u), contrary to the choice of I.

It remains to consider the case |I| = 2. We may assume that I = {1, 2}. By irredundancy,
there exist v, w ∈ V (H) with v1 = u1 and w2 = u2 (clearly, v2 6= u2 and w1 6= u1), and

u = (u1, u2, u3, . . . , un) ,

v = (u1, v2, v3, . . . , vn) ,

w = (w1, u2, w3, . . . , wn).

Note that u /∈ L(w, 1; v, 2). We will show that V (H) ⊆ L(w, 1; v, 2).
Define a bipartite graph B as follows: Set V (B) = V (G1) ∪ V (G2), and for a ∈ V (G1),

b ∈ V (G2), let ab be an edge of B if there is a vertex x ∈ V (H) such that pI(x) = (a, b).
Because H is connected and irredundant, B is connected.

Let x be a vertex ofH . By the definition ofB, we have x1x2 ∈ E(B). Assume now that x1
has another neighbor in V (G2). Then there is a vertex y ∈ V (H) with x1 = y1 and x2 6= y2.
Let z be any vertex of H . Then imp(x, y; z) is a vertex of H and pI(imp(x, y; z)) = (x1, z2).
It follows that x1 is adjacent in B to all vertices of G2. We conclude that x1 is adjacent in
B to either all vertices of G2 or to a single vertex. If it is adjacent to a single vertex, then
the connectedness of B implies that this neighbor of x1 is adjacent to all vertices of V (G1).

In view of v1v2 ∈ E(B), w1w2 ∈ E(B), and v1w2 = u1u2 /∈ E(B), every edge of B must
be incident with w1 or v2. Therefore V (H) ⊆ S1(w) or V (H) ⊆ S2(v) and we have proved
that V (H) ⊆ L(w, 1; v, 2).

For the second assertion of the lemma, assume that V (H) ⊆ L(u, i; v, j). Because H is
an irredundant subgraph, there are vertices x, y ∈ V (H) with xi 6= ui, and yj 6= vj . As
V (H) ⊆ L(u, i; v, j), we also have xj = vj and yi = ui. Consider an arbitrary path P in
H between x and y (recall that H is connected), and let z be the first vertex of P with
zi = ui. For any vertex w of P between x and z, we must have wj = vj ; thus also zj = vj .
We conclude that the only L-set with support {i, j} containing x, y, z is L(u, i; v, j). 2
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By Lemma 14.16, it suffices to prove that intersections of L-sets are weak retracts of G.
Appropriate weak retractions will be composed from the mappings

f (u,i;v,j) : V (G) → L(u, i; v, j)

defined as

f (u,i;v,j)(x) =

{
x if xi = ui or xj = vj ,
(x1, . . . , ui, . . . , vj , . . . , xn) otherwise .

Lemma 14.17 The map f (u,i;v,j) is a weak retraction.

Proof Let xy be an edge of G and k an index for which xk 6= yk. If k 6= i, j, then f (u,i;v,j)(x)
and f (u,i;v,j)(y) differ precisely in position k. On the other hand, if k = i (or k = j), we see
that f (u,i;v,j)(x) and f (u,i;v,j)(y) either differ in position k or not at all. 2

The maps f (u,i;v,j) are called elementary retractions. Suppose that V (H) is contained
in an L-set with support {i, j}. Then, by Lemma 14.16, this L-set is unique, and we may
denote it by Lij . Let f i,j be the corresponding elementary retraction.

Lemma 14.18 For any vertex x of G, there is a sequence of elementary retractions f i,j

that maps x to H.

Proof Let Γ be the graph with vertex set {1, . . . , n}, where i is adjacent to j if V (H) is
contained in Lij . We say that x satisfies the edge ij if x ∈ Lij . If Lij = L(u, i; v, j), then

we set `ji = ui and `ij = vj .
We proceed by induction on the number of unsatisfied edges of Γ. If there is no such

edge, then x ∈ V (H), and the conclusion is trivial. So let there be at least one unsatisfied
edge.

Define a relation → on V (Γ) as follows: If ij is an edge of Γ, xi = `ji , and xj 6= `ij ,

then we set i → j. Suppose that i → j and j → k. Then xi = `ji , xj 6= `ij , xj = `kj , and

xk 6= `jk. Because x ∈ Lij , x ∈ Ljk, and `kj 6= `ij , we must have xi = `ji or xk = `jk. Thus

x ∈ Lik. Furthermore, because xk 6= `jk, we have i → k. It follows that → is a transitive
acyclic orientation. Moreover, it is clearly antisymmetric, whence → is a partial order.

Let ij be an arbitrary unsatisfied edge. Call an element of {1, . . . , n} a sink if no edge is
directed away from it. Because → is a partial order, there is a sink h for which either h = i or
i→ h. Then hj is an unsatisfied edge of Γ. Likewise we see that we have a sink k if k = j or
j → k and hk is an unsatisfied edge of Γ. Now consider the elementary retraction fh,k, and
note that fh,k(x) ∈ Lhk. Moreover, because h and k are sinks, we also have fh,k(x) ∈ Lij

whenever x ∈ Lij . It follows that fh,k(x) has fewer unsatisfied edges, which completes the
induction. 2

To complete the proof of (i) ⇒ (ii), we make repeated use of Lemma 14.18. Let x be any
vertex of V (G) \V (H). Then the composition ϕ of the sequence of weak retractions (which
is a weak retraction) of Lemma 14.18 maps x to H and fixes H . If there are vertices left in
V (G) \ V (H) not mapped into H by ϕ, then we continue by induction.

Proof of Theorem 14.13, Step (iv) ⇒ (i) Let G be weakly modular, and assume that
it contains no K4 − e or K2,3 as an induced subgraph. The key step to prove that G is a
quasi-median graph is to show that G is a partial Hamming graph. It suffices to show that
the quotient graphs G/Πi of the canonical embedding α are complete. We first construct
the equivalence classes of Θ∗; then the result readily follows.
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Recall that a subgraph H of G is gated in G if for every v ∈ V (G), there exists a vertex
x ∈ V (H) such that, for every u ∈ V (H), x lies on a shortest u, v-path. If such a vertex
exists, it is unique and called the gate of v in H . We denote it by kH(v).

Let Q be the set of all cliques of G. Because G contains no K4 − e, each edge of G
belongs to a unique member of Q. Another basic property of members of Q is gatedness.

Lemma 14.19 Every clique of G is gated.

Proof Let Q ∈ Q , and w ∈ V (G) \ V (Q). Assume that d(w,Q) = d(w, u) = d(w, v)
for u, v ∈ V (Q). By the triangle property, there is a common neighbor x of u and v and,
because G has no K4−e as an induced subgraph, x ∈ V (Q). But then d(x,w) = d(u,w)−1,
a contradiction. 2

Let Q,Q′ ∈ Q. Then Q and Q′ are called parallel if the vertices of Q and Q′ can be
labeled {u1, . . . , uk} and {v1, . . . , vk}, respectively, such that

d(ui, vj) =

{
d(Q,Q′) if i = j ,
d(Q,Q′) + 1 otherwise .

Note that parallel cliques have equal sizes.
The cliques Q and Q′ are called opposite if there exist unique vertices u ∈ V (Q) and

u′ ∈ V (Q′) such that d(u, u′) = d(Q,Q′), and d(u, v′) = d(v, u′) = d(Q,Q′) + 1 as well as
d(v, v′) = d(Q,Q′) + 2 for v ∈ V (Q) − u and v′ ∈ V (Q′) − u′. Figure 14.5 shows examples
of parallel and opposite cliques.

Q Q′ Q

Q′

u1

u2

u3

uk

v1

v2

v3

vk

u u′

FIGURE 14.5 Parallel cliques (left) and opposite cliques (right).

Lemma 14.20 Two cliques Q and Q′ of G are either parallel or opposite.

Proof Let X = {u ∈ V (Q) | d(u,Q′) = d(Q,Q′)} and X ′ ⊆ V (Q′) be defined analogously.
By Lemma 14.19, the gate kQ′(u) lies in X ′ for any u ∈ X and the gate kQ(u′) in X
for any u′ ∈ X ′. Moreover, the maps kQ′ and kQ are inverses of each other. Therefore, if
X = Q and X ′ = Q′, then Q and Q′ are parallel. Suppose now that v ∈ V (Q) \X . Then
d(v,Q′) = 1 + d(u, kQ′(u)) for any u ∈ X . Because the gate kQ′(u) is unique, |X | = 1.
Analogously one shows |X ′| = 1. Thus, using Lemma 14.19, one proves that Q and Q′ are
opposite in this case. 2

To indicate that Q and Q′ are parallel cliques of G, we introduce the notation Q|Q′. We
will show that | is an equivalence relation on Q and that the Θ∗-classes are determined by
the equivalence classes of | . We first need the following lemma:
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Lemma 14.21 Let Q0, Qm ∈ Q with d(Q0, Qm) = m and Q0|Qm. Then there exist cliques
Q1, . . . , Qm−1 such that Qi|Qi+1 and d(Qi, Qi+1) = 1 for i = 0, . . . ,m− 1.

Proof For m = 1, the statement is trivial. Thus let m > 1. Set V (Q0) = {u1, . . . , uk} and
V (Qm) = {v1, . . . , vk}, where d(ui, vi) = m. Let w1 be the neighbor of v1 on a shortest path
from v1 to u1. Because Q0|Qm, the vertices w1, v2, u2, and v1 satisfy the conditions of the
quadrangle property. Hence there is a common neighbor w2 of w1 and v2 with d(w2, u2) =
m − 1. Let Qm−1 be the clique containing the edge w1w2. Note that v1 /∈ V (Qm−1),
because G contains no induced K4 − e. Furthermore, for j > 1, we have vj /∈ V (Qm−1)
because d(w1, vj) = 2. It follows that Qm−1 ∩Qm = ∅, and therefore d(Qm−1, Qm) = 1. As
d(w1, v1) = d(w2, v2) = d(Qm−1, Qm), Lemma 14.20 implies that Qm−1|Qm. On the other
hand, d(Q0, Qm−1) = m− 1 = d(u1, w1) = d(u2, w2). Hence, invoking Lemma 14.20 again,
Q0|Qm−1. Induction completes the argument. 2

Lemma 14.22 The relation | is an equivalence relation on Q.

Proof The relation | is clearly reflexive and symmetric. Assume that it is not transitive;
then there are cliques Q, Q′, and Q′′ with Q|Q′, Q′|Q′′ but not Q|Q′′. Let d(Q,Q′) = m
and Q′ = Q0, Q1, . . . , Qm = Q be a sequence of cliques as in Lemma 14.21 and j be the
largest index for which Qj |Q′′. By our assumptions, 0 ≤ j < m. Set p = d(Qj , Q

′′), V (Qj) =
{u1, . . . , uk}, V (Qj+1) = {v1, . . . , vk}, and V (Q′′) = {w1, . . . , wk}, where d(ui, vi) = 1 and
d(ui, wi) = p for i = 1, . . . , k.

Case 1. d(Qj+1, Q
′′) = p+ 1.

In this case we have d(vi, Q
′′) = d(Qj+1, Q

′′) for any i. Hence Qj+1|Q′′, in contradiction to
the choice of j.

Case 2. d(Qj+1, Q
′′) = p− 1.

Then d(vi, ws) = p − 1 for some vi ∈ V (Qj+1) and ws ∈ V (Q′′). Because d(ui, ws) ≤ p,
Lemma 14.19 implies that s = i. Assume without loss of generality that i = 1. Then the
vertices v1, u2, w2, and u1 satisfy the conditions of the quadrangle property. Hence there is
a common neighbor v of v1, and u2 with d(v, w2) = p− 1. Then u1, v2, and v are adjacent
to both v1 and u2. If v /∈ V (Qj+1) we would have an induced K2,3. Therefore v ∈ V (Qj+1),
and thus v = v2. We conclude that d(v2, w2) = p − 1, and by Lemma 14.20, we infer that
Qj+1|Q′′, a contradiction.

Case 3. d(Qj+1, Q
′′) = p.

This case is treated similarly to the previous one and left to the reader. 2

Let [Q] denote the equivalence class with respect to | containing a clique Q and E[Q] be
the set of edges induced by the cliques of [Q], namely

E[Q] =
⋃

Q′∈[Q]

E(Q′) .

Lemma 14.23 The Θ∗-classes coincide with the sets E[Q].

Proof Let e, f ∈ E[Q] and e ∈ E(Q′), f ∈ E(Q′′). Because any two edges of a triangle are
in relation Θ, any two edges of Q′ and any two edges of Q′′ are in relation Θ∗. Moreover,
because Q′|Q′′, the edge e = u1u2 is in relation Θ to v1v2, where v1 = kQ′(u1) and v2 =
kQ′(u2). Thus eΘ∗f .

For the converse, note first that if edges e = uv and e′ = u′v′ belong to opposite cliques,
then d(u, u′) +d(v, v′) = d(u, v′) +d(v, u′); that is, e and f are not in relation Θ. Therefore,
if eΘ∗f , then e and f must necessarily belong to the same set E[Q]. 2
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Lemma 14.24 Let Q|Q′ and u ∈ V (Q). Then there is a shortest path from u to kQ′ (u)
consisting only of edges in E(G) \ E[Q].

Proof Let d(Q,Q′) = m. By Lemma 14.21, there exists a sequence of parallel cliques
Q = Q0, Q1, . . . , Qm = Q′. For i = 1, . . . ,m, let ui = kQi(ui−1). Then the sequence u0 =
u, u1, . . . , um = kQ′(u) defines a shortest path from u to kQ′(u). Furthermore, because
Qi ∈ [Q] and because the members of [Q] are disjoint, the clique containing the edge ui−1ui
is not a member of [Q]. 2

We are now ready to complete the proof that G is a partial Hamming graph. As already
mentioned, it suffices to show that the quotient graphs G/Πi of α are complete. In other
words, ifH ′,H ′′ is an arbitrary pair of connected components of a graph (V (G), E(G)\E[Q]),
then it is enough to show that there is an edge of E[Q] with one endpoint in H ′ and the
other in H ′′. Because G is connected, there are vertices v′ ∈ V (H ′) and v′′ ∈ V (H ′′) such
that v′ ∈ V (Q′) and v′′ ∈ V (Q′′) for Q′, Q′′ ∈ [Q]. By Lemma 14.24, there is a path from v′

to kQ′′(v′) consisting only of edges from E(G)\E[Q]. The observation that kQ′′ (v′) ∈ V (H ′)
and kQ′′ (v′) is in E[Q] adjacent to v′′ proves the claim.

To complete the proof of step (iv) ⇒ (i), letG be embedded isometrically into a Hamming
graph and let u, v, w ∈ V (G). We wish to show that imp(u, v;w) ∈ V (G).

Let I = {i | ui 6= vi}, Iu = {i ∈ I | ui = wi}, Iv = {i ∈ I | vi = wi}, and I ′ = I\(Iu∪Iv).
Then I = Iu ∪ Iv ∪ I ′. If I = Iu, then u = imp(u, v;w); and if I = Iv, then v = imp(u, v;w).
We may therefore assume that I ′ 6= ∅.

Let |I| = |I ′| = 1. Then uv ∈ E(G) and d(u,w) = d(v, w) = m. If m = 1, then
imp(u, v;w) = w; and if m > 1, then imp(u, v;w) is the vertex adjacent to u and v and of
distance m− 1 from w. Because G satisfies the triangle property, imp(u, v;w) ∈ V (G).

Let I = {i, j}. Because G is isometric and d(u, v) = 2, there is a vertex x ∈ V (G)
adjacent to u and v. We may, without loss of generality, assume that xi = ui and xj = vj .
Let u′ = imp(u, x;w) and v′ = imp(v, x;w). Because x differs from both u and v in exactly
one coordinate, we infer that u′, v′ ∈ V (G). If ui = wi, then imp(u, v;w) = u′; and if
vj = wj , then imp(u, v;w) = v′.

For |I| > 2, we proceed by induction. Let P be a shortest u, v-path, x the neighbor of
u, and y the neighbor of v on P . By the induction hypothesis, u′ = imp(u, y;w) ∈ V (G)
and v′ = imp(v, x;w) ∈ V (G). Note also that d(u′, v′) = 2. Hence, because imp(u, v;w) =
imp(u′, v′;w), we conclude that imp(u, v;w) ∈ V (G).

Exercises

14.1. Show that a graph is a Hamming graph if and only if it is a Cartesian product of
complete graphs.

14.2. Show that every interval of a Hamming graph induces a hypercube.

14.3. Show that every interval of a partial Hamming graph is bipartite.

14.4. Show that median graphs satisfiy the quadrangle property. Is the same true for
partial cubes?

14.5. Show directly that WX(C6) = ∞.
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14.6. A subgraph is called ∆-closed if, provided it contains an edge of a triangle, it contains
the whole triangle. Show that a subgraph of a weakly modular graph is gated if and
only if it is convex and ∆-closed.

14.7. (Bandelt, Mulder, and Wilkeit, 1994) Show that a graph G is a Hamming graph if
and only if G is a quasi-median graph that contains no convex P3.

14.8. Show that the graph in Figure 11.4 is a quasi-median graph.

14.9. Let G be a quasi-median graph and let x1, x2, x3 be the quasi-median of u1, u2, u3.
Express the quasi-median in terms of the imprint function.

14.10. (Chung, Graham, and Saks, 1987) Show that a connected graph G is a median
graph if and only if WX(G) = 2.
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The first four chapters of Part III dealt with isometric subgraphs of Cartesian products.
We now turn our attention to the strong product. We show that any connected graph
isometrically embeds into the strong products of paths, a result that leads naturally to the
notion of the strong isometric dimension of a graph. Then we consider special isometric
subgraphs of strong products—their retracts—and characterize the weak retracts of strong
products of paths as Helly graphs. We close the chapter with a brief overview of other
notions of graph dimension that are analogous to the strong isometric dimension.

15.1 Strong Isometric Dimension

Theorem 13.2 asserts that any connected graph isometrically embeds into a Cartesian prod-
uct. Unfortunately, these embeddings are quite often trivial (cf. Exercise 13.5) because they
reduce to the identity map. In contrast to this, we now show that every graph is isometrically
embeddable into a strong product of paths. Hence, except for paths, any such embedding
is nontrivial.

As usual, we label the vertices of the path Pm consecutively as 0, 1, 2, . . . ,m− 1.

LetG be an isometric subgraph of a strong product of paths. By the Distance Formula for
the strong product (Corollary 5.5), the distance between two vertices of G is the maximum
absolute value of the differences of their corresponding coordinates. For instance, Figure 15.1
describes an isometric embedding of the Petersen graph into P�,5

3 .

The following general embedding result goes back all the way to Schönberg (1938).

Theorem 15.1 Any connected graph on n vertices can be isometrically embedded into a
strong product of n paths.

Proof Let G be a connected graph with vertices {v1, . . . , vn}. Let e(vi) be the eccentricity
of vi, that is, the maximum distance from vi to any other vertex of G. For each 1 ≤ i, j ≤ n,
set βi(vj) = dG(vi, vj). We define

β : V (G) → H =
n

�
i=1

Pe(vi)+1

183

© 2011 by Taylor & Francis Group, LLC
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as β(vj) =
(
β1(vj), β2(vj), . . . , βn(vj)

)
. We claim that β is an isometry. Note first that

βi(vj) ≤ e(vi), so β indeed maps V (G) to V (H). Let vk and v` be two vertices of G.
Because βk(vk) = dG(vk, vk) = 0 and βk(v`) = dG(vk, v`), the Distance Formula for strong
products (Corollary 5.5) implies that

dH(β(vk), β(v`)) ≥ dG(vk, v`) .

Given a vi, we may assume without loss of generality that dG(vi, vk) ≥ dG(vi, v`). Then

|βi(vk) − βi(v`)| = dG(vi, vk) − dG(vi, v`) ≤ dG(vk, v`) .

By Corollary 5.5 we thus conclude that dH(β(vk), β(v`)) = dG(vk, v`). 2

12021
21012

22101

11202

12210
21120

02112

01221

20211

10122

FIGURE 15.1 Isometric embedding of the Petersen graph into P�,5
3 .

In view of Theorem 15.1, we define the strong isometric dimension of a connected graph
G, denoted sdim(G), as the smallest integer k such that G isometrically embeds into the
strong product of k paths. Theorem 15.1 can be rephrased as follows.

Corollary 15.2 If G is a connected graph, then sdim(G) ≤ |V (G)|.

A closer look at the proof of Theorem 15.1 reveals that the result still holds if the last
coordinate βn of β is deleted. Hence, sdim(G) ≤ |V (G)| − 1. Fitzpatrick and Nowakowski
(2000) observed that the bound can be further improved as follows. (The proof is reserved
for Exercise 15.1.)

Corollary 15.3 If G is a connected graph, then sdim(G) ≤ |V (G)| − diam(G).

The strong dimension is generally difficult to compute, but some bounds and exact
values are known. We collect several of these in the next theorem.

Theorem 15.4
(i) For n ≥ 2, sdim(Kn) = dlog2 ne.

(ii) For m+ n ≥ 3, sdim(Km,n) = dlog2me + dlog2 ne.
(iii) For n ≥ 4, sdim(Cn) = dn/2e.
(iv) For n ≥ 1, sdim(Qn) = 2n−1.
(v) For a tree T with k leaves, dlog2 ke ≤ sdim(T ) ≤ 2dlog2 ke.

(vi) The Petersen graph has strong dimension 5.
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(vii) For k ≥ 1 and
(

k
bk/2c

)
< n ≤

(
k+1

b(k+1)/2c

)
, sdim(K2 2Kn) = k + 1.

Theorem 15.4 (i) is left for Exercise 15.2, (ii) is due to Dewdney (1977), while items
(iii) through (v) were proved by Fitzpatrick and Nowakowski (2000). Equation (vi) is from
Jerebic and Klavžar (2006), while (vii) is from Fronček, Jerebic, Klavžar, and Kovář (2007).

To prove the lower bound for trees, Fitzpatrick and Nowakowski showed that the con-
traction of an interior edge of a tree does not increase the dimension. Their proof of the
upper bound is more involved and they ask if the true dimension is always the lower bound.

For the lower bound of (vii), see Exercise 15.3. To prove the upper bound, two additional
tools were used. One is Sperner’s celebrated theorem. The other is the following result, first
obtained by Dewdney (1977) in a different context. The theorem deals with coverings by
complete bipartite graphs, where we view K1 = K1,0 as a complete bipartite graph.

Theorem 15.5 If G is a graph with diam(G) = 2, then sdim(G) equals the smallest r for
which the edges of G can be covered with complete bipartite subgraphs B1, . . . , Br of G, such
that for any xy ∈ E(G), there exists a Bi with x ∈ V (Bi) and y /∈ V (Bi).

Proof Assume sdim(G) = r and let β = (β1, . . . , βr) be an isometric embedding of G into
the strong product of r paths. Because diam(G) = 2, we may assume (Exercise 15.4) that
β : G→ P�,r

3 . Set V (P3) = {0, 1, 2} and for i = 1, . . . , r, let

Xi = {u ∈ V (G) | βi(u) = 0} and Yi = {u ∈ V (G) | βi(u) = 2} .

Suppose x ∈ Xi and y ∈ Yi. Because β is an isometry, we infer that dG(x, y) = 2, and
hence xy ∈ E(G). Therefore Xi ∪ Yi forms the vertex set of a complete bipartite subgraph
Bi of G. Moreover, any edge of G is covered by at least one of these subgraphs. Finally,
if xy ∈ E(G), then there is an index i such that |βi(x) − βi(y)| = 1, say βi(x) = 0 and
βi(y) = 1. Then x lies in Bi and y does not. If βi(x) = 1 and βi(y) = 2, then y lies in Bi

and x does not, etc.
Conversely, assume that the edges of G can be covered with r complete bipartite graphs

Bi with bipartitions Xi, Yi, 1 ≤ i ≤ r, such that for any edge xy of G, there is an i with
x ∈ V (Bi) and y /∈ V (Bi). Define β : G→ P�,r

3 as

βi(x) =





0 if x ∈ Xi ,
2 if x ∈ Yi ,
1 otherwise .

We next verify that β is a homomorphism. Let xy ∈ E(G). Consider an index 1 ≤ j ≤ r.
If both x and y belong to Bj , then because xy /∈ E(G), we have βj(x) = βj(y) ∈ {0, 2}.
If neither x nor y belongs to Bj , then βj(x) = βj(y) = 1. If x ∈ Bj , but y /∈ Bj , then the
definition of β gives |βi(x) − βi(y)| = 1. Because there does exist an index i with x ∈ Bi

and y /∈ Bi, it follows that d(β(x), β(y)) = 1. Hence β maps edges to edges.
Assume dG(x, y) = 2. Then xy ∈ E(G) and so xy is covered with at least one Bi. Hence

|βi(x) − βi(y)| = 2. We infer d(β(x), β(y)) = 2, so β is an isometry. 2

Figure 15.2 illustrates Theorem 15.5 and its proof. In this example, G is covered with two
complete bipartite graphs, K1,3 and K2,2, with bipartitions {z}, {u, v, w} and {x, u}, {y, w},
respectively. The embedding into P3 � P3 is shown on the right-hand side of the figure.

The condition concerning edges in Theorem 15.5 is rather technical but cannot be omit-
ted in general. To see this, consider G = K4 − e, which has strong dimension 2. Now, G is
an edge and two isolated vertices, so its edge(s) can be covered with a single B1 = K1,1.
However, the edge of G connecting vertices of degree 3 does not fulfill the condition of the
theorem. We need to include one of the vertices of degree 3 as a second B2 = K1,0 = K1.
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0 1 2
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2z

x y
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x y

u v w

G G

FIGURE 15.2 Graph G and its isometric embedding into P3 � P3.

But a careful modification of the proof of Theorem 15.5 yields a result with simpler
hypotheses:

Corollary 15.6 Suppose G is a graph of diameter 2, for which any edge is contained in an
induced path on three vertices. Then sdim(G) equals the smallest r such that the edges of G
can be covered with r complete bipartite subgraphs.

Corollary 15.6 applies to the Petersen graph. We already know from Figure 15.1 that
sdim(P ) ≤ 5. Hence to prove Theorem 15.4 (vi), one needs to argue that the edges of the
Petersen graph cannot be covered with fewer than five complete bipartite graphs.

We close the section with an application of the strong isometric dimension to an interest-
ing two-player game called Cops and Robbers, which is played on undirected graphs. Player 1
chooses an initial set of vertices, which represent the locations of cops. Then Player 2 chooses
a vertex for a robber. Subsequently, they take turns alternately. Player 1 moves a subset of
the cops along the edges of G to adjacent vertices, and Player 2 responds by either keeping
the robber at the present vertex or moving it to an adjacent vertex. This is the so-called
passive variant of the game. In the active variant, both the robber and a nonempty subset
of the cops must move at their turns. Both players know each other’s positions throughout,
and we assume that they always play their optimal strategy. The cop-number of a graph G
is the smallest number of cops such that in a finite number of moves, at least one of them
occupies the same vertex as the robber. For the passive variant, this number is denoted by
c(G) and for the active variant by c′(G).

Fitzpatrick and Nowakowski (2001) prove the following relationship with the strong
isometric dimension.

Theorem 15.7 If G is a graph with sdim(G) = 2, then c(G) ≤ 2.

For the Cartesian product, Tošić (1986) proved subadditivity:

Theorem 15.8 c(G2H) ≤ c(G) + c(H).

Neufeld and Nowakowski (1998) improved this bound in several special cases. Maamoun
and Meyniel (1987) determined the (passive) cop-number for Cartesian products of trees,
and Neufeld and Nowakowski (1998) extended their investigation by considering Cartesian
products of trees and cycles. The cops and robbers game was played on infinite graphs
by Bonato, Hahn, and Tardif (2010). To construct largest possible classes of infinite graphs
with finite cop number, they used the so-called weak strong product. (See p. 417 for the
details.)

For the active version, we have the following theorem, which was anticipated by Tošić
(1986). It was proved by Neufeld and Nowakowski (1998), who also considered the direct
and the strong product.
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Theorem 15.9 If n ≥ 3, then c′(Qn) = dn/2e.

There is also a tandem version of the cops and robbers game: the cops move in pairs
such that they are at distance at most one from each other after every move. This game
was studied on Cartesian, direct, and strong products by Clarke and Nowakowski (2005).

15.2 Retracts of Strong Products

Note that a path of length 2 in K2 2K2 is a retract, so retracts of Cartesian products need
not be boxes. In this section we show that the situation is different for the strong product.
In addition, we characterize weak retracts of strong products of paths in two ways, and show
that they always contain a complete subgraph invariant under all automorphisms. First a
lemma.

Lemma 15.10 If R is a retract of G �H and (a1, a2)(b1, b2) is a non-Cartesian edge of
G�H in R, then (a1, b2) and (b1, a2) are also in R.

Proof Let ϕ : V (G � H) → V (R) be a retraction, and suppose (a1, a2)(b1, b2) is a non-
Cartesian edge in R. Then a1 6= b1 and a2 6= b2, so the vertices {(a1, a2), (b1, b2), (a1, b2),
(b1, a2)} induce a K4 in G �H . By symmetry, it is enough to prove that (b1, a2) ∈ V (R).
Suppose to the contrary that (b1, a2) /∈ V (R). Set (c1, c2) = ϕ(b1, a2). Clearly, (c1, c2) 6=
(b1, a2). Because (c1, c2) is adjacent to (b1, b2), we have b1 = c1 or b1c1 ∈ E(G). Similarly,
because (c1, c2) is adjacent to (a1, a2), we infer that a2 = c2 or a2c2 ∈ E(H). Thus (c1, c2) =
ϕ(b1, a2) is adjacent to (b1, a2), a contradiction. 2

The next theorem is from Imrich and Klavžar (1992), who also prove that if G and H
are triangle-free, then retracts of G�H are precisely products of retracts of the factors.

Theorem 15.11 Let G and H be connected graphs and R a retract of G �H. Then R =
G′ �H ′, where G′ and H ′ are weak retracts of G and H, respectively.

Proof Lemma 15.10 implies that the Cartesian edges of R induce a connected graph with
the square property in G2H . By Lemma 6.4, the Cartesian edges of R are a box in G2H .
Because convex subgraphs are induced, R = G′ �H ′, where G′ and H ′ are subgraphs of G
and H .

To show that G′ and H ′ are weak retracts, let ϕ : G � H → G′ � H ′ be a retraction
and b ∈ V (H ′). Define a map ϕ′ : V (G) → V (G′) by ϕ′(x) = p1ϕ(x, b). If xy ∈ E(G), then
ϕ(x, b) is adjacent to ϕ(y, b); hence either ϕ′(x) = ϕ′(y) or ϕ′(x)ϕ′(y) ∈ E(G′). Finally, for
x ∈ V (G′), we have ϕ(x, b) = (x, b). Thus ϕ′(x) = x, and ϕ is a retraction. Use the same
argument for H ′. 2

That the weak retracts G′ and H ′ of Theorem 15.11 need not be retracts of G and H
will be demonstrated later in Theorem 26.14.

Notice however that Theorem 15.11 implies that retracts of strong products of paths
are boxes, that is, again strong products of paths. But in general we gain more structure
by considering weak retracts. For this, the following concepts are needed.

We say a family F of sets has the Helly property if any finite collection of pairwise
nondisjoint sets from F has nonempty intersection. We have already seen in Theorem 12.19
that the family of convex subgraphs of a median graph has the Helly property.
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For the definition of a Helly graph, we first extend the concept of a neighborhood. The
ball of radius r and center u is defined to be

Nr(u) = {v ∈ V (G) | d(u, v) ≤ r}.

A Helly graph is a graph in which the family of balls has the Helly property. To show
that Helly graphs can be characterized as weak retracts of strong products of paths, the
following lemma is useful.

Lemma 15.12 Suppose H is a connected graph, W ⊆ V (H), and G is a Helly graph. Then

any nonexpansive map f : W → V (G) can be extended to a nonexpansive map f̃ : V (H) →
V (G) that coincides with f on W .

Proof Consider a nonexpansive map f : W → V (G). We will enlarge the domain of f
vertex-by-vertex. Let w ∈ V (H) \W , and consider the family

B =
{
NdH(u,w)

(
f(u)

)
| u ∈W

}

of balls in G. Let u and v be arbitrary vertices of W . Then

dG(f(u), f(v)) ≤ dH(u, v) ≤ dH(u,w) + dH(w, v).

Thus a shortest path in G from f(u) to f(v) has a vertex that is within a distance of
dH(u,w) of f(u) and dH(w, v) of f(v). Therefore

NdH(u,w)

(
f(u)

)
∩NdH(v,w)

(
f(v)

)
6= ∅ .

As G is a Helly graph, B has nonempty intersection. Let w̃ be a vertex from the intersection.
Extend f to W ∪ {w} by setting f(w) = w̃. Clearly, this extended f remains nonexpansive.
Repeat this procedure until the domain of f is all of V (H). 2

Corollary 15.13 If a Helly graph G is an isometric subgraph of a graph H, then G is a
weak retract of H.

Proof Let W = V (G) ⊆ V (H). The identity map idW : W → V (G) is nonexpansive, and

by Lemma 15.12, it can be extended to a nonexpansive map ĩdW : H → G. This is a weak
retraction. 2

We are now ready for the following theorem by Nowakowski and Rival (1983) and Quilliot
(1983). In particular, Lemma 15.12 is from Quilliot (1983); see also Quilliot (1985b).

Theorem 15.14 For a graph G, the following statements are equivalent:

(i) G is a weak retract of a strong product of paths.
(ii) G is a Helly graph.

(iii) G is a weak retract of any graph of which it is an isometric subgraph.

Proof (i) ⇔ (ii). It is immediate that paths are Helly graphs. From this it follows that the
strong product of paths is a Helly graph as well. (Use the fact that balls in a strong product
are products of balls in the factors.) Now let H be a strong product of paths, and suppose
f : H → G is a weak retraction. Consider a family

NG
r1(u1), NG

r2(u2), . . . , NG
rk

(uk)

of pairwise intersecting balls in G and the corresponding family

NH
r1 (u1), NH

r2 (u2), . . . , NH
rk

(uk)
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in H . Because NG
ri (ui) ⊆ NH

ri (ui), the balls NH
ri (ui) are pairwise intersecting. Then, because

H is a Helly graph,
⋂k

i=1N
H
ri (ui) 6= ∅. For any x in this intersection, we thus infer that

dG(ui, f(x)) ≤ dH(ui, x) ≤ ri.

Hence

f(x) ∈
k⋂

i=1

NG
ri (ui).

This shows that weak retracts of strong products of paths are Helly graphs.
For the converse, we isometrically embed the Helly graph G into a strong product H of

paths (which is possible by Theorem 15.1) and apply Corollary 15.13.
(ii) ⇔ (iii). Assume first that G is a weak retract of every graph into which it

is isometrically embedded. Consider a family of its pairwise intersecting balls B =
{Nr1(u1), . . . , Nrk(uk)}. Then d(ui, uj) ≤ ri + rj . Form a new graph H by adding an extra
vertex x to G and, for each i = 1, . . . , k, a path of length ri connecting x with ui. In view
of d(ui, uj) ≤ ri + rj , we infer that G is an isometric subgraph of H . By assumption, there
exists a weak retraction f : H → G. Finally, because f is nonexpansive, f(x) belongs to all
elements of B.

The converse follows by Corollary 15.13. 2

For additional characterizations of Helly graphs, see Hell and Rival (1987), Bandelt and
Pesch (1989), Bandelt and Prisner (1991), and the book by Pesch (1988). The equivalence
between (i) and (iii) was proved by Hell (1972) in the following similar context: A graph is
a retract of the direct product of paths if and only if it is a retract of any bipartite graph
in which it is an isometric subgraph. For more information, see Bandelt, Dählmann, and
Schütte (1987) and Bandelt, Farber, and Hell (1993). These problems were considered in the
more general context of graphs, metric spaces, and partially ordered sets by Jawhari, Misane,
and Pouzet (1986). We also add that Bandelt and Pesch (1989) presented two recognition
algorithms for Helly graphs, one of complexity O(n4) and the other of complexity O(mn2).

We conclude the section with an appealing result on Helly graphs due to Quilliot (1985a).
It is yet another generalization of the fact that the automorphisms of a tree stabilize its
center.

Theorem 15.15 (Fixed Simplex Theorem) Each Helly graph G has a complete sub-
graph that is invariant under all automorphisms of G.

Proof Let G be a Helly graph. If diam(G) = 1, then G is a complete graph, and we are
done. Therefore assume that d = diam(G) > 1. Set k = dd/2e and consider the family of all
balls NG

k (u). Any two of them have nonempty intersection, and therefore the intersection

S =
⋂

u∈V (G)

NG
k (u)

is nonempty. It is also invariant under automorphisms of G. Let G′ = 〈S〉. The diameter d′ of
G′ is smaller than d, because for any x, y ∈ V (G′), we have x ∈ Nk(y), so dG(x, y) ≤ k < d.

If we can show thatG′ is a Helly graph, the theorem follows by induction on the diameter.
We show first that G′ is isometric in G, that is, we prove dG′(x, y) = dG(x, y) for any

x, y ∈ V (G′). We use induction of r = dG(x, y). Certainly this is true if r = 1 because
G′ is induced; fix an r > 1 and assume it is true for smaller values of r. Now suppose
dG′(x, y) = r. Certainly

NG
1 (x) ∩NG

r−1(y) 6= ∅.
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But also, because x and y are within distance k of any vertex z of G, we have

NG
1 (x) ∩NG

k (z) 6= ∅ and NG
r−1(y) ∩NG

k (z) 6= ∅

for all z ∈ V (G′). Thus the family {NG
1 (x), NG

r−1(y)} ∪ {NG
k (z) | z ∈ V (G)} has pairwise

nonempty intersections. This combined with the fact that G is a Helly graph guarantees a
vertex z ∈ NG

1 (x) ∩NG
r−1(y) ∩ S. This vertex belongs to G′, and we have dG(x, z) ≤ 1 and

dG(z, y) ≤ r−1. Then, by induction, dG(x, z) = dG′(x, z) and dG(z, y) = dG′(z, y). Therefore
dG′(x, y) ≤ dG′(x, z) + dG′(z, y) = dG(x, z) + dG(z, y) ≤ r = dG(x, y). But dG′(x, y) ≤
dG(x, y) implies dG′(x, y) = dG(x, y), so G′ is isometric.

Because G′ is isometric, every ball NG′

r (x) can be represented in the form

NG′

r (x) = NG
r (x) ∩

⋂

z∈V (G)

NG
k (z).

With this representation and the fact that NG′

r (x) ⊆ NG
r (x), it is easy to see that the family

of balls in G′ satisfies the Helly property. 2

For a survey on (convexity and fixed-point properties in) Helly graphs, see Polat (2001).

15.3 Other Product Graph Dimensions

Graphs can be embedded into different products and as different kinds of subgraphs: as
subgraphs, as induced subgraphs, or as isometric subgraphs. Provided that a general em-
bedding theorem can be proved, one can consider the corresponding graph dimension, just
as we did for the strong isometric dimension. In this short section we give a brief overview
of several dimensions involving the Cartesian product and the direct product. For more
information on such dimensions, including complexity issues, we refer to Nešetřil and Rödl
(1985) and Nešetřil (1981).

Cartesian product dimensions

An obvious possibility for a (Cartesian) isometric dimension would be to define it as the
number of factors of its canonical isometric embedding. Instead, the term isometric dimen-
sion of a graph G, idim(G), is reserved for the bipartite case: it is the smallest (and by
Theorem 13.3 (ii) also the largest) integer d for which G embeds isometrically and irredun-
dantly into the d-dimensional cube. If there is no such d, we set idim(G) = ∞.

Clearly, idim(G) < ∞ if and only if G is a partial cube and is in that case equal to the
number of Θ-classes of G.

The lattice dimension of a graph G, ldim(G), is the smallest integer d such that G
embeds isometrically into the d-dimensional integer lattice. Again, if there is no such d,
we set ldim(G) = ∞. Notice that the two-sided infinite path has lattice dimension 1. For
finite graphs, the definition is equivalent to saying that d is the smallest integer (if it exists)
such G is isometric in P�,d

n for some n. In Exercise 15.6 the reader is invited to prove the
following:

Proposition 15.16 For a finite graph G, ldim(G) <∞ if and only if G is a partial cube.
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Determining the lattice dimension of a partial cube is generally hard. However, Eppstein
(2005) designed an O(|E(G)|2) algorithm for this task. The main idea is to reduce the
determination of the lattice dimension of a given graph to the computation of the size of
a maximum matching in an associated graph (the so-called semi-cube graph). Imrich and
Kovše (2009) followed with a linear algorithm that isometrically embeds a given tree T into
an integer lattice of dimension ldim(T ).

Using a poset-based approach Cheng (2011) computes the lattice dimension of median
graphs G and embeds them in O(|V (G)| ldim(G) + (ldim(G))2.5) time. This can be consid-
erably better than O(|E(G)|2). Cheng also computes the isometric dimension idim(G), that
is, the number of Θ-classes, of a median graph in O(|V (G)| + |E(G)|) time. The Θ-classes
themselves are not determined however. In other words, the algorithm does not provide an
embedding.

One of the motivations for embedding graphs into lattices comes from graph drawing.
Compare Eppstein (2004) for applications in this direction.

Direct product dimensions

The direct dimension ddim(G) is the smallest number n for which G is an induced subgraph
of the direct product of n complete graphs. This concept was introduced by Nešetřil and
Rödl (1978).

Lovász, Nešetřil, and Pultr (1980) studied the direct dimension of a graph extensively
and proved that, with the exception of some very special cases, ddim(G) ≤ |V (G)| − 2.
They also computed the dimension for several classes of graphs. This problem has also
been investigated by Křivka (1981a), who showed that ddim(Qn) = n − 1 for n ≥ 3. The
direct dimension of the disjoint union of graphs was investigated by Křivka (1981b, 1985)
and Alles (1985). The problem of how the addition of an edge to a graph affects its direct
dimensions was considered by Křiž (1984).

Eaton and Rödl (1996) obtained a very strong result. Extending a result of Alon (1986),
which asserts that there exists a constant c to every positive integer d such that

ddim(G) ≤ c(d+ 1)2 logn+ 1

for any graph G on n vertices with maximum degree ∆(G) ≤ d, they proved the following.

Theorem 15.17 There exists a constant c to every positive integer d such that ddim(G) ≤
cd logn for every graph G on n vertices with maximum degree ∆(G) ≤ d.

We close by mentioning that the bipartite dimension of a bipartite graph G is defined
as the smallest number k such that G is an induced subgraph of the direct product of k
copies of P3; see Poljak and Pultr (1981) and Poljak, Rödl, and Pultr (1983).

Exercises

15.1. Show that sdim(G) ≤ |V (G)| − diam(G) for any connected graph G.

15.2. Show that sdim(Kn) = dlog2 ne for n ≥ 2.

15.3. Let k ≥ 1 and n ≤
(

k
bk/2c

)
. Then show that sdim(K2 2Kn) ≤ k.
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192 Isometries in Strong Products and Product Dimensions

15.4. Let G be a graph with diam(G) = d. Show that if G isometrically embeds into the
strong product of n paths, then G also isometrically embeds into P�,n

d+1.

15.5. Determine idim(Pn 2Pm).

15.6. Show that a finite graph has finite lattice dimension if and only if it is a partial
cube.

© 2011 by Taylor & Francis Group, LLC



Chapter 16

Fixed Box Theorems

16.1 Gated Subgraphs and Median Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193
16.2 A Fixed Box Theorem for Median Function-Closed Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197
16.3 Feder-Tardif’s Fixed Box Theorems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199
16.4 Fixed Points of Several Nonexpansive Mappings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201

This chapter is concerned with fixed box theorems. We saw that trees have two types of
subgraphs that are stabilized by all automorphisms: the center and the distance center. This
holds for median graphs in general. Theorem 12.21 states that every median graph (i.e.,
retract of a hypercube) contains a subcube that is stabilized by all automorphisms. One
type of subcube is obtained by successive removal of vertices at the periphery, the other
type is the distance center.

In Chapter 14 we also saw that every quasi-median graph (i.e., weak retract of a Ham-
ming graph) contains a fixed Hamming graph, and from Chapter 15 we know that every
Helly graph (i.e., weak retract of a strong product of paths) contains an invariant complete
subgraph.

In all these cases, a weak retract of a Cartesian product of complete graphs or of a strong
product of paths is considered, and the existence of an invariant subgraph is asserted. In
the Cartesian case, the invariant subgraph is a box, and the theorems are called called fixed
box theorems . The main aim of this chapter are extensions to weak retracts of Cartesian
products of arbitrary simple graphs. They are due to Feder (1995) and Tardif (1997).

The chapter ends with a result of Feder (2006) about the computation of fixed points of
several nonexpansive mappings. A complete characteristic of families G of graphs G is given,
such that the fixed points of several nonexpansive mappings of �G∈G G can be computed
in polynomial time. When the conditions are not satisfied, very simple examples with two
retractions give NP-completeness for the computation of a common fixed point.

16.1 Gated Subgraphs and Median Functions

To prepare for the first fixed box theorem, we begin with a generalization of the concept of
a weak retraction. We continue with several new results about gated sets. In particular, we
show that the family of gated sets in a graph has the Helly property. We also extend the
concept of a median to that of a median function. Moreover, we introduce the concept of
median-compatible relations, so-called tolerances.

Let H be a subgraph of G. A map f : G → H is called weakly nonexpansive if
d(f(u), v)) ≤ d(u, v) holds for all vertices u ∈ V (G) and v ∈ V (H). Clearly, a weak
retraction to H is a weakly nonexpansive map. Indeed, if f is a weak retraction, then
d(f(u), v)) = d(f(u), f(v)) ≤ d(u, v).

Together with the concept of the distance center (p. 155) we obtain the following result,
the proof of which is identical to the proof of Lemma 12.23.

193
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194 Fixed Box Theorems

Theorem 16.1 Let G = �
k
i=1Gi and let f : G→ H be a weakly nonexpansive map. Then

the distance center of H in G is a box. In particular, this holds if H is a weak retract of G.

Despite its easy proof, this theorem is quite powerful. Clearly, Theorems 14.12 and 12.24
are immediate consequences. Various other theorems, such as Theorem 12.25, also easily
follow.

The question whether there exist fixed boxes that are retracts is much more difficult.
In particular, we have not yet shown that the fixed boxes of Theorems 14.12 and 12.24 are
weak retracts. Different approaches to the solution of this and related problems are due to
Feder and Tardif but neither approach is easy. We will follow the approach of Tardif because
it is more along the line of this book.

Let H be a gated subgraph of a graph G. Recall that that gated subgraphs are convex.
We denote the gate of v in H by kH(v), and we show next that kH is a weak retraction.

Lemma 16.2 Let H be a gated subgraph of a graph G. Then kH is a weak retraction.

Proof Clearly, kH is idempotent. To show that it is nonexpansive, consider two vertices
u, v. Suppose that d(u, v) < d(kH(u), kH(v)), and let the notation be chosen such that
d(u, kH(u)) ≤ d(v, kH(v)). Then

d(v, kH(u)) ≤ d(v, u) + d(u, kH(u))

< d(kH(v), kH(u)) + d(v, kH(v))

= d(v, kH(v)) + d(kH(v), kH(u))

= d(v, kH(u)) ,

which is impossible. 2

Lemma 16.3 Let H1, H2 be gated subgraphs of a graph G with H1 ∩ H2 6= ∅. Then
kH1

(H2) = kH2
(H1) = H1 ∩H2 is gated, and kH1∩H2

= kH1
kH2

= kH2
kH1

.

Proof Let v be a vertex in H1 ∩ H2 and x an arbitrary vertex of H2. Because there is a
shortest x, v-path via kH1

(x) and because H2 is convex, the gate kH1
(x) must also be in

H2. Thus kH1
(H2) ⊆ H2. Because every kH1

(x) is in H1 and because kH1
(y) = y for every

y of H1 ∩H2, we infer that kH1
(H2) = H1 ∩H2. The assertion kH2

(H1) = H1 ∩H2 follows
by interchanging the role of H1 and H2.

Consider an arbitrary vertex z and a vertex w in H1 ∩H2 of minimum distance from z.
There is a shortest z, w-path via kH1

(z), and this path meets H1 ∩H2 in kH2
kH1

(z). Thus
w must be the unique vertex kH2

kH1
(z). By the same argument, w = kH1

kH2
(z), whence

kH1
kH2

= kH2
kH1

. Because H2 is gated, every vertex of H1 ∩ H2 can be reached from z
by a shortest path via kH2

(z). Furthermore, every such path contains w = kH1
kH2

(z). This
implies that H1 ∩H2 is gated too; the gate of z being w. Thus kH1∩H2

= kH1
kH2

. 2

Because of this result, there exists a smallest gated set containing a given set S. We
denote it �S�. It is the intersection of all gated sets containing S.

Corollary 16.4 The family of gated sets in a graph has the Helly property.

Proof We show first that the assertion holds for families of three sets and continue by
induction.

Let H1, H2, H3 be gated sets with pairwise nonempty intersection and let u ∈ H1 ∩H2.
Then kH3

(u) ∈ H3 ∩ H1 and kH3
(u) ∈ H3 ∩ H2 because of Lemma 16.3. Then kH3

(u) ∈
H1 ∩H2 ∩H3 and H1, H2, H3 have nonempty intersection.

Suppose now that the assertion holds for k ≥ 3 sets, and let H1, . . . , Hk+1 be a family of
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k+1 sets with pairwise nonempty intersections. ConsiderH ′
1, . . . , H

′
k, whereH ′

i = Hi∩Hk+1,
i = 1, . . . , k. Then H ′

i ∩H ′
j = Hi ∩Hj ∩Hk+1 6= ∅ for 1 ≤ i, j ≤ k. Thus the family of sets

H1, H2, . . . , Hk+1 also has nonempty intersection. 2

We now define a median function by setting m(x, y; z) = k�x,y�(z). In the case of median
graphs, it yields the median of x, y, z, and for quasi-median graphs, it coincides with the
imprint function.

Lemma 16.5 Let m be the median function of a graph G. Then

(i) m(x, y; m(x, y; z)) = m(x, y; z),
m(x, y; z) = m(y, x; z),
m(x, x; y) = m(x, y;x) = x.

(ii) If z ∈ I(x, y), then m(x, y; z) = z.

(iii) A subgraph H of G is gated if and only if m(x, y; z) ∈ H for each x, y ∈ V (H)
and z ∈ V (G).

Proof Parts (i), (ii), and the if part of (iii) are easily seen to be true. Thus suppose that
H is a subgraph of G for which m(x, y; z) ∈ V (H) for x, y ∈ V (H) and z ∈ V (G). We have
to show that H is gated; that is, we have to show for arbitrary z ∈ V (G) that there exists a
y in H such that y ∈ I(x, z) for any x ∈ V (H). Let y be a vertex in H of minimal distance
from z. By assumption, m(x, y; z) ∈ V (H) for any x ∈ V (H) and d(m(x, y; z), z) ≤ d(y, z).
Thus y = m(x, y; z) ∈ I(x, z). 2

We have seen in the previous chapters that median graphs and quasi-median graphs can
be characterized by closure properties under majority rule and the imprint function. We are
therefore interested in subgraphs of Cartesian products that are closed under the median
function and, given a subgraph with this property, wish to find other subgraphs with the
same property. We thus define a relation on the vertex set of a graph that is compatible
with the median function.

Let xi, yi, i = 1, 2, 3, be arbitrary vertices of G. We say a binary, reflexive, and symmetric
relation α is a tolerance on V (G) if

m(x1, x2;x3)αm(y1, y2; y3)

whenever xi αyi for i = 1, 2, 3.
For S ⊆ V (G), set α(S) = {x ∈ V (G) |xα y for some y ∈ S}. For S = {s}, we simply

write α(s). Furthermore, we call a subset B of V (G) a block of α if B =
⋂

b∈B α(b). In
other words, the blocks of α are the maximal subsets of V (G) any two elements of which
are in relation α.

For induced subgraphs H of G we shall abuse the above notation and write α(H) for
the subgraph 〈α(H)〉 induced by α(H).

Lemma 16.6 Let α be a tolerance on a graph G and H a gated subgraph of G. Then α(H)
is also gated, and for u ∈ V (G), u ∈ α(H) if and only if kH(u)αu.

Proof Consider vertices x, z ∈ V (α(H)) and u, v ∈ V (H) for which uαx and v α z hold.
Then for any w ∈ V (G), m(u, v;w)αm(x, z;w). Now, m(u, v;w) ∈ H by Lemma 16.5 (iii)
and thus m(x, z;w) ∈ α(H). But then, again by Lemma 16.5 (iii), α(H) is gated.

This also implies that α(u) is convex for any u ∈ V (G). Then kH(u) ∈ α(u) if α(u)∩H 6=
∅. Finally, if kH(u) ∈ α(u), then clearly α(u) ∩H 6= ∅. 2

Corollary 16.7 Let α be a tolerance on a graph G. Then (the subgraphs induced by) the
blocks of α are gated.
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Because the one-vertex subgraphs of G are gated, all αi(u) are gated for any u ∈ V (G).
Here αi(u) is defined by α(αi−1(u)) for i > 1. We also set α0(u) = u, namely α0 = id. It is
easy to see that αi ⊆ αi+1. It is known that the transitive closure α∗ is

⋃
i≥0 α

i.

Lemma 16.8 Let α be a tolerance on a connected graph G. Then α∗ = V (G) × V (G) if
and only if E(G) ⊆ α.

Proof Suppose that α∗ = V (G)×V (G), and let uv be an edge of G. We have to show that
v αu holds. Because u 6∈ α0v and because G is finite, there is a largest k with u 6∈ αk(v).
Set H = αk(v). Clearly, u ∈ α(H). By Lemma 16.6, H is gated and kH(u)αu. Because
v = kH(u), we conclude that v α u.

The converse immediately follows from the connectedness of G. 2

Let α be a tolerance on a graph G. Then the block graph B(G,α) is defined on the blocks
of α, two blocks being adjacent if they have nonempty intersection.

Lemma 16.9 Suppose α is a tolerance on a graph G. Let A, B be blocks of α, and r > 0.
Then the following statements are equivalent:

(i) B ⊆ αr(A).
(ii) B ∩ αr−1(A) 6= ∅.
(iii) B ∈ Nr(A).

Proof (i) ⇒ (ii). Assume that B ⊆ αr(A) and B is disjoint from C = αr−1(A). Choose
u ∈ B and set v = kC(u). For any w ∈ B we have w ∈ αr(A) = α(C). Therefore wαkC(w)
by Lemma 16.6. Setting w′ = kC(w), we thus have w = m(w,w; v) α m(u,w′; v) = v,
because v = kC(u) ∈ I(u,w′). But this is not possible, as B is a block of α and v 6∈ B.

(ii) ⇒ (iii). For an arbitrarily chosen element ar−1 ∈ B∩αr−1(A) for which ar−1 αar−2,
there exists a sequence of elements ar−2 αar−3 α . . . α a1 αa0, where ai ∈ αi(A). For i =
1, . . . , r − 1, let Ci denote the smallest block containing {ai−1, ai}. Then AC1C2 . . . Cr−1B
is a path of length r in B(G,α) from A to B.

(iii) ⇒ (i). If B ∈ Nr(A), then there exists a path

A = C0C1C2 . . . Cr−1Cr = B

from A to B in B(G,α). Let u0, u1, u2, . . . , ur−1 be chosen such that ui ∈ Ci ∩ Ci+1. Then
u0 αu1 αu2 α . . . α ur−1 and ur−1 αu for any u ∈ B. Hence u ∈ αr(A). 2

Corollary 16.10 Let α be a tolerance on a connected graph G. Then B(G,α) is connected
if and only if E(G) ⊆ α.

Proof By the above, B(G,α) is connected if and only if every pair of elements of G is in
relation α∗. By Lemma 16.8, this is the case if and only if E(G) ⊆ α. 2

Proposition 16.11 Let α be a tolerance on a graph G. Then each connected component of
B(G,α) is a Helly graph.

Proof For an index set I, let {Nri(Ai)}i∈I be a family of pairwise intersecting balls in
B(G,α) and i, j ∈ I. Then there exists a block Bi,j of α with Bi,j ∈ Nri(Ai) ∩ Nrj (Aj).
By Lemma 16.9, Bi,j ∩ αri−1(Ai) 6= ∅ and Bi,j ∩ αrj−1(Aj) 6= ∅. Thus there exist ele-
ments ui,j ∈ αri−1(Ai) and uj,i ∈ αrj−1(Aj) that are in relation α. Again by Lemma 16.9,
Bi,j ⊆ αri(Ai) ∩αrj (Aj) 6= ∅. This means that the family {αri(Ai)}i∈I consists of pairwise
intersecting gated sets of G. By Corollary 16.4, this family has nonempty intersection. Let
u be an element of this intersection and ui = kαri−1(Ai)(u) for i ∈ I. By Lemma 16.6, uαui.
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Now, let j ∈ I. Then m(u, ui,j;ui) = ui, because ui ∈ I(u, ui,j). Also, m(uj , uj,i;u) = uj
because �uj , uj,i�⊆ αrj−1(Aj). Finally, m(uj , uj,i;u) = k�uj ,uj,i�(u).

We therefore conclude that ui = m(u, ui,j;ui)αm(uj, uj,i;u) = uj for any pair i, j ∈ I of
indices. This means that {ui}i∈I is contained in a block B of α and that B ∩αri−1(Ai) 6= ∅
for i ∈ I. By Lemma 16.9, B ∈ ⋂i∈I Nri(Ai). 2

16.2 A Fixed Box Theorem for Median Function-Closed Graphs

We now derive fixed box theorems for subgraphs of Cartesian products that are closed
under the median function. Special cases include the invariance of the distance center of
a tree under all automorphisms and Theorem 12.24. The main result of this section is
Theorem 16.17, due to Imrich (2000, first edition of this book).

Lemma 16.12 Let G = �
k
i=1Gi and Hi be a gated subgraph of Gi, i = 1, . . . , k. Then

H = �
k
i=1Hi is a gated subgraph of G with kH = kH1

× kH2
× . . .× kHk

=
∏

1≤i≤k kHi .

The proof follows from the Distance Formula (Corollary 5.2) and is omitted.

Lemma 16.13 Let G be an irredundant isometric subgraph of �
k
i=1Gi, and let H be a

gated subgraph of G. Then for every i = 1, . . . , k, the projections Hi = pi(H) are gated in

Gi, kHipi = pikH and H =
(
�

k
i=1Hi

)
∩ G. Also, B = �

k
i=1Hi is gated in G, and for

u ∈ G, kB(u) = kH(u).

Proof For u ∈ V (G), v = kH(u), and w ∈ V (H), we have d(u,w) = d(u, kH(u)) +
d(kH(u), w). By the Distance Formula and the triangle inequality, this implies dGi(ui, wi) =
dGi(ui, vi) + dGi(vi, wi) for all i = 1, . . . , k. Because pi(G) = Gi, we infer that Hi = pi(H)

is gated in Gi and that kHiui = pikH(u). By Lemma 16.12, B = �
k
i=1Hi is gated, and for

u ∈ V (G), kHiui = pikB(u); therefore kB = kHi . 2

Corollary 16.14 Let G = �
k
i=1Gi and m be the median function on G. Then m is the

product of the median functions mi of the factors.

Proof If u, v, w ∈ V (G), then �u, v� ⊆∏k
i=1�ui, vi� and

∏k
i=1�ui, vi� ⊆ �u, v�,

by Lemma 16.13. Thus we infer that � u, v �=
∏k

i=1 � ui, vi � and pi(m(u, v;w)) =
mi(ui, vi;wi). 2

LetG be the Cartesian product G1 2G2 andH a subproduct of G. Suppose that (u1, u2),
(v1, v2) are vertices of H . Then the vertices (u1, v2), (v1, u2) are also in H . Clearly, this prop-
erty characterizes subproducts. For the characterization of subproducts that are retracts,
we need a condition that somehow captures the property that subcubes of hypercubes are
closed under the operation of taking medians. The problem is that mH(u, v;w) can be dif-
ferent from mG(u, v;w), because � u, v�H may be different from � u, v�G. We call a
subgraph H of G median function-closed if the median function of H is identical with the
restriction of the median function of G to H .

Proposition 16.15 Let H be a median function-closed subgraph of a Cartesian product
G1 2G2. Then the relation α(G1, G2) defined on H by setting (u1, u2)α(v1, v2) if (u1, v2) ∈
V (H) and (v1, u2) ∈ V (H) is a tolerance on H, and E(H) ⊆ α(G1, G2).
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Proof By assumption, the median function on H is the restriction of the median function
m of G to H , which in turn is the product m1 × m2 of the median functions m1 and m2 of
G1 and G2, respectively. Now consider u1, . . . , u6 ∈ V (H) with ui αui+3 for i = 1, 2, 3 and
let ui = (si, ti) for i = 1, . . . , 6. Then

m(u1, u2;u3) = ((m1(s1, s2; s3),m2(t1, t2; t3))

and
m(u4, u5;u6) = (m1(s4, s5; s6),m2(t4, t5; t6)).

By the definition of α, we further have

(m1(s1, s2; s3),m2(t4, t5; t6)) = m((s1, t4), (s2, t5); (s3, t6)) ∈ V (H),

(m1(s4, s5; s6),m2(t1, t2; t3)) = m((s4, t1), (s5, t2); (s6, t3)) ∈ V (H).

Thus m(u1, u2;u3)αm(u4, u5;u6) and α is a tolerance.
It remains to show that E(H) ⊆ α. Let uv be in E(H). Then p1u = p1v or p2u = p2v,

and uα v by the definition of α. 2

Before stating and proving a fixed box theorem for median-closed subgraphs of a Carte-
sian product, we need a lemma that extends the Fixed Simplex Theorem 15.15. First a few
remarks.

Let m be the median function on a graphG. Because the definition of the median function
is invariant under automorphisms, we have ϕm(u, v;w) = m(ϕ(u), ϕ(v);ϕ(w)). Moreover,
if α is a tolerance, then ϕα, defined by uϕα v ≡ ϕuαϕv, is also a tolerance on G. Also,
E(G) ⊆ α if and only if E(G) ⊆ ϕα. Let β be the least tolerance on G containing E(G).
Then β is invariant under all automorphisms of G, and every automorphism permutes the
blocks of G and induces an automorphism of B(G, β).

Lemma 16.16 Let G be a graph and β the least tolerance of G that contains E(G). Then
there exists a gated subgraph H of G on which β is transitive and which is invariant under
every automorphism of G.

Proof Note that B(G, β) is a Helly graph by Corollary 16.10 and Proposition 16.11. By the
Fixed Simplex Theorem, there exists a set {B1, B2, . . . , Bk} of pairwise intersecting blocks
of β that is invariant under all automorphisms of G. By Corollary 16.7, these blocks induce
gated subgraphs and have nonempty intersection H by Lemma 16.4. 2

Theorem 16.17 (Fixed Box Theorem for Median Function-Closed Subgraphs)

Let H be a median function-closed subgraph of a Cartesian product G = �
k
i=1Gi. Then

there exists a box S ⊆ H that is a weak retract of H and that is invariant under every
automorphism of H.

Proof Let β be the least tolerance containing E(H) and let S be the gated set given
by Lemma 16.16. Any two elements of S are in relation β, and S is invariant under all
automorphisms of H . Because S is gated, it is a weak retract. It remains to show that
S =

∏k
i=1 pi(S). Let v ∈ ∏k

i=1 pi(S). Then there are vertices u1, u2, . . . , uk in S with
pi(v) = pi(ui). We now recursively define vertices v1, v2, . . . , vk ∈ S, beginning with v1 = u1.
Suppose that vi−1 has already been defined. To define vi, we consider the product tolerance

α = α(Gi,
∏k

j=1,j 6=iGj) of Proposition 16.15. Because β ⊆ α, and as any two elements of S
are in relation β, we infer vi−1 αui. By the definition of α, there exists a vi ∈ S for which
pi(vi) = pi(ui) and pj(vi) = pj(vi−1) for all j 6= i, 1 ≤ i ≤ k. Then vi ∈ S, because S is
convex. Thus the v1, v2, . . . , vk are well defined and vk ∈ S. 2
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Note that the subgraph S is gated, isometric, and induced. In Section 14.3, quasi-median
graphs were defined as imprint-closed induced subgraphs of Hamming graphs. Because the
median function generalizes the imprint function, we immediately deduce the following
generalization of Theorem 14.12.

Theorem 16.18 Every quasi-median graph G contains a weak retract that is a Hamming
graph and which is invariant under all automorphism of G.

Of course, this also strengthens Theorem 12.21. In general, retracts of a product are a
proper subset of the class of graphs satisfying the conditions of Theorem 16.17. For example,
consider G = K22C5 and H = Kv

2 ∪Cv
5 for v ∈ V (G). Note that H satisfies the conditions

of Theorem 16.17 but is not a weak retract.

Brešar (2002) continued the study of median-function closed subgraphs of Cartesian
products. He introduced absolute C-median graphs as graphs G such that whenever G is an
isometric subgraph of a Cartesian product graph, G is a median-function closed subgraph of
it. Absolute C-median graphs form a large class of graphs that includes numerous median-
lime graphs, as for instance the pseudo-median graphs introduced at the end of Section 14.3.
To decide whether a graph is an absolute C-median graph, it suffices to look at the canonical
isometric embedding:

Theorem 16.19 Let G be a graph and α : G → �
k
i=1G/Πi the canonical isometric em-

bedding. Then G is as absolute C-median graph if and only if α(G) is a median-function

closed subgraph of �
k
i=1G/Πi.

Brešar also conjectured that absolute C-median graphs can be, roughly speaking, ob-
tained by a sequence of gated amalgamations along gated boxes. The truth of the conjecture
would lead to an alternative, more transparent proof of the Fixed Box Theorem for Median
Function-Closed Subgraphs.

16.3 Feder-Tardif’s Fixed Box Theorems

We now prove the two original fixed box theorems for graphs, both of which are due to
Feder (1995) and Tardif (1997). They are Theorem 16.22, which states that every retract
of a Cartesian product has a fixed box, and Theorem 16.23, which asserts that every endo-
morphism of a Cartesian product stabilizes a fixed box.

We wish to show that retracts of Cartesian products are median function-closed under a
mild additional assumption. We begin with the intersection of gated subgraphs and retracts.

Lemma 16.20 Let R be a weak retract of a graph G. Then the intersection of every gated
subgraph H of G with R is gated in R.

Proof Let ϕ : G→ R be a weak retraction. Then ϕ(I(u,w)) ⊆ I(u,w) for u,w ∈ V (R) by
Proposition 3.8.

Suppose that u ∈ V (R) and v is a vertex from H ∩ R. Then ϕ(I(u, v)) ⊆ I(u, v).
Therefore (ϕkH)i+1(u) ∈ I((ϕkH)i(u), v) ⊆ I(u, v) for all i ≥ 0. By the finiteness of G, there
exists an i for which (ϕkH)i+1(u) = (ϕkH)i(u). Because retractions are nonexpansive, we
infer d((ϕkH)i(u), v) ≤ d(kH(ϕkH)i(u), v) ≤ d((ϕkH)i+1(u), v) = d((ϕkH )i(u), v). But then
(ϕkH)i(u) ∈ V (R∩H). Because (ϕkH)i(u) ∈ I(u, v), we conclude that (ϕkH)i(u) = kH(u).
2
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Theorem 16.21 Let R be an irredundant weak retract of a Cartesian product G =

�
k
i=1Gi, and m the median function on G. Then m(x, y; z) ∈ V (R) for all x, y, z ∈ V (R).

Proof Let u, v, w ∈ V (R) and H be the smallest gated subgraph of R containing u and

w. Because of Lemmas 16.12 and 16.13, B =
∏k

i=1 piH is gated in G, H = B ∩ R, and
kH(v) = kB(v). To prove m(u, v;w) = kB(v), it suffices to show that B is the smallest gated
subgraph of G containing u and w. Let C be this subgraph. Then C∩R is a gated subgraph
of R by Lemma 16.20, whence H ⊆ C ⊆ B. Therefore pi(H) ⊆ pi(C) ⊆ pi(B) = pi(H) for

i = 1, . . . , k. Because C =
∏k

i=1 pi(C), we conclude C = B. 2

This is not quite enough for an application of Proposition 16.15 in the proof of Theorem
16.17, because we need median closure without the additional condition that pi(R) = Gi

for every i = 1, 2, . . . , k. But this is easy to achieve; we simply consider
∏k

i=1 pi(R). Clearly,
R is also a weak retract with respect to this product, and thus median function-closed with
respect to the median function of

∏k
i=1 pi(R). We therefore have the following theorem:

Theorem 16.22 (Feder-Tardif’s Fixed Box Theorem I) Let R be a weak retract of
a Cartesian product G. Then there exists a box S ⊆ R that is a weak retract of R and has
the property that ϕ(S) = S for each automorphism ϕ of R.

Actually, Feder’s theorem is more general, because it holds for any subgraph R of G
that is the image of a weakly nonexpansive map of G.

We know from the proof of Theorem 12.25 that the images of iterates of endomorphisms
of finite graphs stabilize after a finite number of steps. Repeating this argument, we obtain:

Theorem 16.23 (Feder-Tardif’s Fixed Box Theorem II) Let G be a Cartesian prod-
uct and ϕ : G → G be a nonexpansive map. Then there exists a box S ⊆ G that is a weak
retract of G and satisfies ϕ(S) = S.

The subgraphs of a graph G that are images of weakly nonexpansive maps are exactly
those subgraphs that have no “holes.” This concept was first introduced under the name
“gaps” by Nowakowski and Rival (1983).

Larose, Laviolette, and Tardif (1998) studied homomorphisms of Cartesian product
graphs and proved numerous interesting results. Among other things, they showed the

following: Let G = �
k
i=1Gi be a core (as defined in Exercise 3.9). Then there exists a

homomorphism G2G → G if and only if there exists a homomorphism Gi 2Gi → Gi for
any i. Cores in Cartesian products were further studied in the paper of Che, Collins, and
Tardif (2008), which we mentioned at the end of Section 6.4.

Nowakowski and Rival (1988) studied the question of for which Cartesian products all
retracts are boxes. (See Exercise 6.10 for a related result.) Their work was later extended by
Che, and Collins (2007). For instance, they proved that if G is a strongly (2k+1)-angulated
graph (for the definition see p. 73) and H is a connected graph with odd girth at least
2k+ 1, then any retract of G2H is a box. More precisely, any retract is of the form S 2T ,
where S is a retract of G and T a connected subgraph of H or S = K1 and T is a retract
of H . (Nowakowski and Rival (1988) proved the theorem for k = 1.)
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16.4 Fixed Points of Several Nonexpansive Mappings

This section is concerned with results of Feder (2006) about finding a vertex in a Cartesian
product that is the fixed point of several given nonexpansive mappings. Feder points out
a dichotomy: either there exists a polynomial algorithm for solving the problem, or the
problem is NP-complete. Because Part IV, which is as such reserved for algorithms, does not
treat the complexity of finding fixed points of contractions, and because most prerequisites
for the description of the results can be found in the present chapter, we outline the main
results here.

The first result says that the problem is solvable in polynomial time for a Cartesian
product G1 2 · · · 2Gk if all factors satisfy the farthest point property. Otherwise there are
Cartesian products of simple counterexamples to the farthest point property, for which one
can construct two retractive mappings such that the problem of finding a common fixed
point is NP-complete.

One says a graph satisfies the farthest point property if for any three vertices x, y, z there
is a unique vertex t in I(x, y) ∩ I(x, z) that maximizes d(x, t) over all t in I(x, y) ∩ I(x, z).
Notice that cliques, cycles, and median graphs satisfy the farthest point property, and that
Cartesian products and retracts of graphs satisfying the farthest point property also satisfy
the farthest point property. The smallest graph not satisfying the farthest point property
is K2,3.

We now state the first result in detail. It is an extension of a theorem of Feder (1995)
from one contraction to a finite number of contractions. Let fi : V (G) → V (G), 1 ≤ i ≤ `,
be nonexpansive mappings on a Cartesian product G = G1 2 · · · 2Gk. Assume further that
every fi is given by a black box that can be queried in polynomial time. Then the following
theorem holds:

Theorem 16.24 Suppose each Gi satisfies the farthest point property. Then there is a
polynomial algorithm that finds sets Sij ⊆ V (Gi 2Gj) for all 1 ≤ i < j ≤ k such that, given
a partial assignment of values ai ∈ V (Gi) for i ∈ S ⊆ {1, 2, . . . , k} with |S| ≥ 2, there exists
a common fixed point x of the nonexpansive mappings fi such that xi = ai for all i ∈ S
if and only if aiaj ∈ Sij for all 1 ≤ i < j ≤ k with i, j ∈ S. The partial assignment of
values ai can thus be extended to a common fixed point x with fi(x) = x for all 1 ≤ i ≤ `
in polynomial time by considering the sets Sj.

This theorem does not completely characterize the products for which a common fixed
point can be computed in polynomial time. For such a characterization, another concept is
needed. A family of graphs G has a majority function if each graph Gi in G has a function
gi such that gi(xi, xi, yi) = gi(xi, yi, xi) = gi(yi, xi, xi) for all xi, yi in V (Gi), and for every
pair of graphs Gi, Gj in G, if f is a nonexpansive mapping on Gi2Gj , and xixj , yiyj , zizj
are fixed points of f , then gi(xi, yi, zi)gj(xj , yj , zj) is a fixed point of f as well. Examples
are families of graphs that satisfy the farthest point property.

The following characterization holds:

Theorem 16.25 The statement of Theorem 16.24 holds for a family G of graphs Gi if and
only if G has a majority function.
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Introduction to Part IV

T
his part focuses on algorithms. We describe polynomial (sometimes linear) algorithms
that find the prime factors of connected graphs over the commutative standard prod-

ucts, under suitable conditions such as connectedness. We also derive recognition and em-
bedding algorithms for many classes of subgraphs of graph products, such as partial cubes,
median graphs, partial Hamming graphs, and quasi-median graphs.

Two chapters treat the rudiments of algorithms. The first chapter of this part, Chap-
ter 17, is a short introduction to graph algorithms and relevant data structures. It also
compares the complexity of simple operations like vertex deletion and insertion for various
data structures. The importance of this will become clear in the following chapters.

Chapter 20, on graph arboricity, is the other chapter on basic algorithms. Many of our
graph classes are sparse, that is, they have few edges and small arboricity, and this helps
bound their recognition complexity. The chapter also describes efficient algorithms that
compute all triangles or all squares in a graph, an important task in recognizing median
graphs.

Chapters 18, 19, 21, and 22 deal with recognizing hypercubes, Hamming graphs and their
isometric subgraphs. These classes include partial cubes, median graphs, partial Hamming
graphs, and quasi-median graphs. Chapter 22 also considers the role of quasi-median graphs
in the solution of the dynamic location problem. Chapter 19 treats chemical graphs and the
computation of the Wiener index, an important graph invariant, and concentrates almost
entirely on applications.

The third group consists of Chapters 23 and 24, which provide polynomial factorization
algorithms of graphs over the commutative standard products. We also explain why the
lexicographic product does not fall into this category. Three algorithms pertain to Carte-
sian product decomposition. Two of them, one of complexity O(mn) and one of complexity
O(m log n), are treated in detail. The third is treated only cursorily; its complexity is linear
but it requires a much more elaborate data structure than the other two algorithms. Inter-
estingly, the simple algorithm of complexity O(mn) uses a relation σ on the edge set of a
graph, and our treatment of it also holds for infinite graphs. As a dividend, we get another
proof for the uniqueness of the Cartesian prime factorization of connected graphs, one that
points toward a theory of factoring infinite graphs.

A large part of Chapter 24 is concerned with computing Cartesian skeletons for the direct
and strong products. In the first edition of this book, the Cartesian skeleton was defined
algorithmically. Here the definition is nonalgorithmic, which makes it easier to handle. The
definition, due to Hammack, will also be of theoretical importance in Chapter 31.

Another new feature in this book is the use of bitvectors for an O(n2) algorithm for the
recognition of partial cubes. The method, due to Eppstein, makes strong use of the RAM
model of computation.

Finally, special mention is appropriate for the close relationship between median graphs
and triangle-free graphs established in Chapter 21. It leads to an interesting algorithm of
complexity O

(
(m logn)2ω/(ω+1)

)
= O

(
(m logn)1.41

)
for the recognition of median graphs.

(Here ω denotes the coefficient of matrix multiplication.)
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Concerning chapter dependencies, Part IV assumes a thorough knowledge of Part I. Also,
the relation Θ is used extensively here, so Chapter 11 (in Part III) is an essential ingredient.
Within Part IV, Chapters 17 through 20 form a core that is indispensable for the remaining
chapters of Part IV. (Chapter 19, on chemical graph theory, could be considered optional
except that the material is quite interesting!)

The remainder of Part IV makes use of relevant earlier parts of the book. For example,
Chapter 21 (Recognizing Median Graphs) clearly assumes knowledge of Chapter 12 (Median
Graphs). Likewise, the material on computing prime factors requires the corresponding
prime factorization results from Part II. (The one exception is that Part IV uses Θ to
develop a wholly different approach to prime factorization of the Cartesian product.)
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A frequent question in graph theory is whether a given graph is a tree, bipartite, connected,
a product, a median graph, a hypercube, or member of some other class of graphs. Our
aim in Part IV is to provide efficient algorithms that answer these questions for the graphs
considered in this book. On the way to answering these questions, we have to solve a number
of lesser problems: We must represent graphs by appropriate data structures and exhibit
efficient algorithms for basic operations, such as vertex insertion or deletion.

The chapter begins with a quick review of time and space complexity of algorithms and
the model of computation. Then we discuss adjacency list representations of graphs. This
is followed by an efficient method for checking whether a given map is an isomorphism, a
short description of breadth-first search, and the complexity of union operations for disjoint
sets. The chapter ends with matrix representations of graphs.

17.1 Time and Space Complexity

Recall that it is customary to express the running time of an algorithm in terms of the size
of its input. We say that an algorithm runs in time O(f(m)) if for some constant c > 0 there
exists an implementation of the algorithm that terminates after at most cf(m) steps for all
inputs of size m. The smallest function f such that the algorithm runs in time O(f(m))
is called the (time) complexity of the algorithm. The (time) complexity of a problem is
the minimum (time) complexity of all algorithms solving the problem—if this minimum
exists. One usually obtains reasonable upper bounds for the complexity of a problem by
exhibiting a specific algorithm; lower bounds are harder to find. Clearly, the statements
that an algorithm has complexity O(logk n), O(log2 n), or O(log n) are equivalent. We will
therefore simply write them as O(log n), likewise O(m logn) instead of O(m log2 n).

It makes sense to list the size of the input in O-notation too. In our case the input size
will mostly be O(m), O(m+n), or O(n2), where m denotes the number of edges and n the
number of vertices of the graph to be investigated.

An algorithm requires storage space, and we define its space complexity just as we defined
its time complexity. Often there is a trade-off between time and space complexity.

We say that an algorithm is linear if its time and space complexity is O(m+n). We will
see later that hypercubes and Hamming graphs can be recognized by linear algorithms, and
that the prime factorization of connected graphs over the Cartesian product can be found
in linear time. This level of efficiency is a rather rare phenomenon.

Many of our algorithms have time complexity O(mn) and are linear in space; some
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are polynomial, that is, their time (and space) complexity is O(nk) for some constant k.
Efficient algorithms that find all squares and triangles in a graph are treated in Chapter 20.
Depending on the type of graph, these complexities are between O(m logn) and O(m

√
n).

Chapter 21 deals with recognizing median graphs. Planar median graphs can be recognized
in linear time, but in general the complexity is only slightly better than O(m

√
n).

Our model of computation is the unit-cost random access machine (RAM). This allows
random access, the use of arrays, unit-cost arithmetic, and bit-vector operations of arbi-
trarily large integers; see Aho, Hopcroft, and Ullman (1974).

We remind the reader that the obvious ways to perform operations on graphs are usually
slower than more sophisticated ones. This makes little difference for small graphs, but
for large graphs it may mean the difference between being able to run the algorithm in
reasonable time or not at all.

17.2 Adjacency List

To describe a graph, it suffices to list the neighbors of every vertex. For example, consider
the graph in Figure 17.1. Each line on the corresponding table is a list Ai of the vertices
adjacent to vi. We call this table the adjacency list representation of the graph.

List Contents

A1 v2, v4, v5

A2 v1, v3

A3 v2, v4

A4 v5, v3, v1

A5 v1, v4
v1 v2

v3

v4

v5

FIGURE 17.1 A graph and its adjacency list representation.

Each list Ai represents the vertex vi. It is understood that Ai may be implemented so as
to contain pertinent information (such as a label or color, etc.) about vi. A similar remark
applies to each item vj in Ai, which can be interpreted as representing the edge vivj .

If a graph has n vertices and m edges, then its adjacency list representation requires
n lists, even if some are empty (as in the case of an isolated vertex), and every edge vivj
gives rise to two entries, one in Ai and the other in Aj . Thus the space needed for the
representation is O(m + n), or simply O(m) if the graph is connected.

The simplest implementation is to store the above data sequentially as a single list and
to provide an address for the head of every sublist Ai. We can store these addresses in an
array of length n, so we have direct access to the entries in linear time. Note that changes
in the list may require that it be rewritten completely; this may take O(m + n) time.

Algorithms generally perform certain basic operations on graphs. Some of the most
common are as follows:

– Check whether a pair vivj is an edge.
– Mark (i.e., label) all neighbors of a vertex vi.
– Mark each edge.
– Insert an edge vivj .
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– Delete an edge vivj .
– Delete all edges incident with a vertex vi.

With the above data structure of sequentially stored adjacency lists, the first two actions
take O(d(vi)) time, the others O(m).

We wish to reduce the time needed for the basic actions as much as possible. For example,
if the entries in the adjacency list are sorted, the complexity of checking whether vivj is an
edge reduces to O(log d(vi)).

Other time reductions require a refinement of our data structure, and with this goal
in mind we now define a multiplylinked data structure called the extended adjacency list
representation of a graph. This is illustrated in Figure 17.2. It is similar to the sequential
adjacency list representation defined above, except that each entry vj of the list Ai is
replaced by an array of length 5 containing vi plus some additional information. For example,
the item v4 of A1 in Figure 17.1 is replaced with the array

p = (v1, v4, &a, &q, &y) .

The entries of this array have the following meanings:

v1 Vertex to which A1 corresponds
v4 Neighbor of v1 that the array p represents
&a Pointer to the preceding array in list A1 (or ∅ if p is the first array in A1)
&q Pointer to the following array in list A1 (or Λ if p is the last array in A1)
&y Pointer to the array representing the neighbor v1 of v4

In addition to the 2m arrays a, p, q, . . ., we must also store the addresses of the heads
of the lists A1, . . . , An. This is best done with an array of length n. Thus the total space
needed to represent a graph is still O(m+ n).

List Name of Array Array

A1 a (v1, v2, ∅, &p, &b)
p (v1, v4, &a, &q, &y)

q (v1, v5, &p, Λ, &e)

A2 b (v2, v1, ∅, &r, &a)

r (v2, v3, &b, Λ, &c)

A3 c (v3, v2, ∅, &s, &r)
s (v3, v4, &c, Λ, &x)

A4 d (v4, v5, ∅, &x, &z)

x (v4, v3, &d, &y, &s)
y (v4, v1, &x, Λ, &r)

A5 e (v5, v1, ∅, &z, &x)

z (v5, v4, &e, Λ, &d)
v1 v2

v3

v4

v5

FIGURE 17.2 A graph and its extended adjacency list representation.

The complexities of basic operations for graphs described with this data structure are
collected in Table 17.1. The first two columns of the table contain the complexities of
these operations with respect to sequential adjacency list and the extended adjacency list.
(The last two columns are for the adjacency matrix and the referenced adjacency matrix
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representations, which will be discussed in Section 17.4. For now we remark that the space
complexity for these last two data structures is O(n2), which can be significantly larger
than O(m). For us the main advantage of the referenced adjacency matrix is that it can be
initialized in O(m) time.)

TABLE 17.1 Complexity of Basic Actions versus Data Structures.

Type of Action Complexity

Sequential Extended Adjacency Referenced
Adjacency Adjacency Matrix Adjacency

List List Matrix

– Check if vivj is an edge O(d(vi)) O(d(vi)) O(1) O(1)
– Mark all neighbors vi O(d(vi)) O(d(vi)) O(n) O(d(vi))
– Mark all edges O(m) O(m) O(n2) O(m)
– Insert an edge vivj O(m) O(1) O(1) O(1)
– Delete an edge vivj O(m) O(d(vi)) O(1) O(1)
– Delete all edges incident

with vi

O(m) O(d(vi)) O(n) O(d(vi))

Notice that the complexities of checking whether vivj is an edge, marking all neighbors
of a given vertex, and marking all edges remain unchanged when switching from sequential
adjacency lists to extended lists. But with the extended adjacency lists an edge can be
inserted in constant time, a single edge vivj can be deleted in O(d(vi)) time, and, perhaps
surprisingly, all edges incident with a vertex vi can be deleted in O(d(vi)) time. Thus, in
comparison with sequentially stored adjacency lists, the complexities of the first three basic
actions remain unchanged, but the other three improve considerably.

To justify these assertions, first consider edge insertion. Suppose that we wish to add
the edge v2v5 to the graph in Figure 17.2. We simply allocate and initialize two new arrays,
say t and w, as

t = (v2, v5, ∅,−,&w) ,

w = (v5, v2, ∅,−,&t) .

Now append t and w to the beginning of lists A2 and A5: Access the first arrays b and e in
A2 and A5, and update t and w as

t = (v2, v5, ∅,&b,&w) ,

w = (v5, v2, ∅,&e,&t) .

Then set the third entry of b equal to &t, and the third entry of e to &w. The edge v2v5
has now been inserted. Clearly, this can be done in constant time.

To delete an edge, say v4v3, we go to A4 and scan its items sequentially until we find
the item x whose second entry is v3. This is the time-consuming part, its complexity being
O(d(vi)), because x could be at the end of the list. The rest is similar to the above and can
be accomplished in constant time. Note the last entry &s of x allows for the quick deletion
of s from A3.

To delete all edges incident with vi, we simply scan the d(vi) items of Ai, deleting each
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from Ai one by one. (In each iteration, we also use the last pointer to reference and delete
the other occurrence of that edge.) This operation has complexity O(d(vi)).

It is clear that this extended adjacency list can be constructed from a given sequentially
stored adjacency list in O(m+ n) time. For most purposes it may suffice to do without the
first entry in the edge array for every edge, and for many the last entry will not be needed.
We then have doubly linked adjacency lists. If we also delete the third entry, we arrive at
singly linked adjacency lists.

We will use extended adjacency lists for all complexity considerations in this book.
(However, for actual implementation, a simpler data structure may be more appropriate.)

Sorting the lists Ai (by the second entry vj) will improve the complexity of checking
whether a pair vivj is an edge. However, this makes the insertion of an edge more costly
and will thus not be beneficial in general. Nonetheless, it allows a standard representation
of a graph for a given ordering of the vertices. We will take advantage of this shortly.

If we sort these lists individually, it will cost us O
(
d(vi) log d(vi))

)
time for every list

and thus O(m logn) time altogether. Luckily, there is a better way. Because the lists
A1, A2, . . . , An are already arranged sequentially, their items are already sorted by the first
entry. We can just transpose the first and second entries and move the corresponding arrays
to the appropriate list.

Algorithm 17.1 Sorting adjacency lists of a graph

Input: The extended adjacency list of a graph G.
Output: A sorted extended adjacency list of G.

1: Allocate a new set B1, . . . , Bn of empty adjacency lists.
2: for all adjacency lists Ai of G from An down to A1 do
3: while Ai is nonempty do
4: Choose the first element of Ai, say, (vi, vj , &x,&y,&z).
5: Transpose its first two entries: (vj , vi, &x,&y,&z).
6: Insert it as the first element of Bj (updating &x and &y accordingly).
7: Delete (unlink) it from Ai.
8: end while
9: end for

Clearly, Steps 4 through 7 of Algorithm 17.1 take constant time. As the total number
of arrays is 2m, and because we create n lists Bi, the overall time complexity is O(m+ n).
(See Golumbic (1980).) Note that this algorithm does not really need linked lists. In the
case of sequentially stored lists, every Ai has length d(vi), and this is the space we have to
allot to the Bi.

Algorithm 17.1 immediately yields a linear algorithm that checks whether a given bijec-
tion between the vertex sets V (G) and V (H) of two graphs G and H is an isomorphism.

Theorem 17.1 Given graphs G and H and a bijection ϕ : V (G) → V (H), one can check
in linear time and space whether ϕ is an isomorphism.

Proof The idea is to sort the adjacency list of H according to the order imposed by the
vertices of G under the mapping ϕ and to compare this list with the sorted adjacency lists
of G.

Let C1, . . . , Cn be the adjacency lists of H and C′
i be the list corresponding to the vertex

ϕ(vi), where vi ∈ G. We now use a variant of Algorithm 17.1. As before, we begin with n
empty lists Bi, but in the next step we let the lists C′

i play the role of the Ai.
Now we rewrite the sorted list for G and the newly sorted list for H as sequentially
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stored lists LG and LH . If ϕ is an isomorphism, then these lists must be identical in the
sense that LH is obtained from LG by replacing every vi by ϕ(vi). If this is not the case,
then ϕ cannot be an isomorphism.

Clearly, all operations can be performed in linear time and space. 2

17.3 Breadth-First Search

This section is concerned with distances, connectedness, bipartiteness, and other standard
graph properties. The basis of our considerations is the well-known breadth-first search
(BFS ) algorithm, which visits all vertices of a connected graph in order of their distances
from a fixed vertex v0.

The following algorithm is the prototype for breadth-first search. It scans the vertices of
G in order of their distances from a fixed vertex v0 and labels each by its distance from v0.

Algorithm 17.2 Breadth-first search

Input: The adjacency list of a connected graph G and a vertex v0.
Output: A labeling of the vertices v of G by integers `(v) = d(v0, v).

1: Start with a list L containing only v0 and set `(v0) = 0.
2: while L is nonempty do
3: Remove the first vertex w from L.
4: for all v in the adjacency list Aw of w for which `(v) is undefined do
5: Set `(v) = `(w) + 1.
6: Append v to the end of L.
7: end for
8: end while

Notice that this algorithm labels every vertex of G. Indeed, the algorithm is structured
so that any labeled vertex is appended to L; and when it is eventually removed from L,
all its neighbors get labels. As L is eventually empty, this means all neighbors of a labeled
vertex are labeled. Because G is connected, all its vertices get labeled.

We say that the order in which Algorithm 17.2 assigns labels to the vertices of G is a
BFS ordering of V (G) with respect to v0. The following theorem asserts that a BFS ordering
lists all vertices at distance 0 from v0, followed by all vertices at distance 1 from v0, then
all vertices at distance 2, and so on.

Theorem 17.2 Algorithm 17.2 labels each vertex v of G with the distance of v0 from v.
The labels in the resulting BFS ordering of V (G) form a monotone nondecreasing sequence.
The complexity of the algorithm is O(m), where m = |E(G)|.

Proof We first assert that as the algorithm runs, L is always a monotone nondecreasing
sequence, and any two of its entries have labels that differ by at most 1. This is clearly true
in the beginning, when L contains only v0. Thereafter, elements are removed from the front
of L, and others are appended to its end. As any appended element has a label that exceeds
that of the most recently removed element by exactly 1, the assertion follows.

Whenever a vertex is labeled, it is immediately appended to the end of L. Because L is
nonempty (until the algorithm terminates), the previous paragraph implies that whenever a

© 2011 by Taylor & Francis Group, LLC



Breadth-First Search 213

vertex is labeled, its label is not less than that of the previously labeled vertex, and exceeds
it by at most 1. Thus the labels in a BFS ordering are monotone nondecreasing.

We now claim that for each integer k ≥ 0, any vertex v with d(v0, v) = k receives the
label `(v) = k. This is certainly true for k = 0, for in this case v = v0 is the only vertex
labeled with 0. Assume that it is also true for all k ≤ K for some fixed K. Now consider
how a vertex v gets the label K + 1: A vertex w with label `(w) = K is removed from the
head of L, an unlabeled neighbor v ∈ N(w) is found, and the value `(v) = K+1 is assigned.
By assumption, `(w) = K = d(v0, w). We must have d(v0, v) > K, for otherwise v would
have been labeled previously (by a value of at most K). But then because v is a neighbor
of w, we have d(v0, v) = K + 1 = `(v). This proves the claim.

Notice that the algorithm examines every edge of G at most twice. This yields the
assertion about complexity. 2

It is important to note that Step 5 of the BFS algorithm can be replaced by some other
processing of the vertex v. If this is done, we say the algorithm processes the vertices of G
in BFS order. If Step 5 has complexity O(κ), then the amended algorithm has complexity
O(m+ nκ).

In particular, we can (in linear time) arrange for the algorithm to place the vertices of
G into sets L0, L1, . . . , Lk, where each Li is the set of vertices at distance i from v0. We call
these sets the distance levels of G with respect to v0.

Suppose that uv is an edge of G, where u ∈ Li. We distinguish the cases in which
v ∈ Li−1, v ∈ Li or v ∈ Li+1. In the first case, uv is called a down-edge (with respect to u);
in the second, a cross-edge; and in the third, an up-edge. We can split every adjacency list
into three sublists (possibly empty) containing the down-, cross-, and up-edges, respectively.
This can be done in linear time and space. Note that the list of cross-edges may be empty
for every vertex, that the list of down-edges is always nonempty with the sole exception of
the list for v0, and that all vertices in the highest level have an empty list of up-edges.

We define the up- and down-degree of vertices with respect to a given BFS-order in the
obvious way. These degrees can be determined in linear time.

Slight adaptations of the BFS algorithm can determine all connected components of a
graph in linear time and space and find the distances d(vi, vj) between all pairs of vertices
of G. Customarily, one stores these values in a matrix D with entries dij = d(vi, vj), the
so-called distance matrix of G.

Corollary 17.3 Let G be a graph with n vertices and m edges. Then

(i) The connected components of G and their adjacency lists can be determined in
linear time and space.

(ii) The distance matrix of G can be determined in O(mn) time and O(n2) space.

Proof To prove (i), we first observe that any component C of G can be determined in
O(|E(C)|) time by applying Algorithm 17.2 to one of its vertices. Then any remaining
component can be found by applying the algorithm to an unlabeled vertex. As long as
unlabeled vertices remain, we can find additional components. Thus to prove (i), it suffices
to show that the effort of finding an unlabeled vertex is not larger than O(|E(C)|), where
C is the component that has been determined last.

This can be achieved with two auxiliary arrays P,Q and a running index k. The index
k is initially 0, so that it references the first entry of Q. The array Q is initialized so that
its entries are the vertices v0, v1, . . . , vn−1 of G, in order of their indexing. The array P is
initialized so that each entry is a pointer to the corresponding entry of Q. From here on, we
will maintain P so that that its ith pointer always points to the entry of Q that contains
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vi. We now run the BFS algorithm with respect to v0. Each time the algorithm labels a
vertex vi, we interchange the kth entry vik of Q with the entry of Q pointed to by the ith
entry of P . Then we interchange the ikth and ith entries of P and increment k. In this way,
k always indexes an unlabeled vertex in Q, so once the algorithm labels the vertices of a
component, it can immediately set to work on the next component.

If we also note the positions of the starting vertices for a new component, we can easily
write the new adjacency lists within the claimed time and space complexity.

For (ii) we note that one run of Algorithm 17.2 determines the distances of all vertices
from a given one in O(m) time. Repeating this step for all n vertices results in an algorithm
of time complexity O(mn). Although every run requires only linear space, the overall space
requirement is determined by the distance matrix, which needs O(n2) space. 2

Proposition 17.4 Bipartite graphs can be recognized in linear time and space.

Proof By Corollary 17.3 (i) we can restrict attention to connected graphs. Use the BFS
algorithm to determine the set R of all cross-edges in linear time. (Begin with R = ∅. Then,
in Step 4, whenever w has a neighbor v with `(w) = `(v), append wv to R.)

Observe that G is bipartite if and only if R = ∅. Indeed, if R = ∅, the distance levels
L0 ∪ L2 ∪ L4 ∪ . . . and L1 ∪ L3 ∪ L5 ∪ . . . form a bipartition of G. On the other hand, if
wv ∈ R, then d(v0, w) = d(v0, v), and G has an odd closed walk containing wv. 2

We have already seen that subgraphs of hypercubes have few edges. In fact, the Density
Lemma 3.2 implies that the average degree of the vertices of such graphs is at most log2 n.
Unfortunately, this does not bound the maximum degree. However, for partial cubes we
have the following result.

Proposition 17.5 Let G be a partial cube on n vertices, L0, L1, . . . , Lk the BFS-levels of
G with respect to a vertex v0, and v ∈ Li. Then the down-degree of v is bounded by i.

Proof Every down-neighbor of v has distance i − 1 from v0 and is thus in the interval
I(v, v0). If G is a hypercube, we infer from Proposition 3.1 (iii) that this interval is a
hypercube of dimension i and thus regular of degree i. If G is a proper subgraph of a
hypercube H , then, by isometry, IG(v, v0) is a subgraph of IH(v, v0) and the degrees in
IG(v, v0) are still bounded by i. 2

Some of our algorithms will require a spanning tree of a graph, and we now present an
algorithm that accomplishes this. In fact, given a vertex v0 of a connected graph G, we are
interested in a spanning tree T for which dT (v0, v) = dG(v0, v) for every vertex v ∈ V (G).
Such a tree is called a BFS-tree.

Proposition 17.6 A BFS-tree for a connected graph can be built in linear time and space.

Proof Run the BFS algorithm and choose one down-edge at every vertex different from
v0. The resulting graph T consists of the n vertices of G, and has n − 1 edges. As every
vertex v ∈ Li is connected by a path of length i with v0, the new graph T is connected, and
dT (v0, v) = dG(v0, v) for every v ∈ V (G). Also, T is a tree by Proposition 1.8, because it is
connected and |E(T )| = |V (T )| − 1. 2

In the sequel we will have to merge lists into larger ones in several steps. To do so, we
also keep track of the size of the lists and always merge the smaller into the larger. This way
we only have to change the back pointers of the smaller lists. Clearly, every vertex can have
its back pointer changed at most n log2 n times, where n = |V (G)|, because every time the
size of its list at least doubles. For later reference we state this observation as a proposition.

Proposition 17.7 Let G be a graph on n vertices. Then any sequence of merging operations
of the components of G takes altogether at most O(n logn) time.
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17.4 Adjacency Matrix

The adjacency matrix A(G) = [aij ] is another natural representation of a graph G with
vertices {v1, v2, . . . , vn}. It is the n×n matrix for which aij = 1 if vivj ∈ E(G) and aij = 0
otherwise.

If G ∈ Γ, then A(G) is symmetric and all diagonal entries are 0. For graphs in Γ0, every
loop is represented by a 1 in the main diagonal.

Clearly, A(G) depends on the indexing of the vertices. If there is a permutation π that
relabels each vi as vπ(i), then adjacency matrix of G with this new indexing is P−1A(G)P ,
where P is the 0-1 permutation matrix with piπ(i) = 1. Moreover, a map ϕ : vi 7→ vπ(i) is
an automorphism if and only if A(G) = P−1A(G)P .

If the adjacency matrix is stored as an array, then we can check in constant time whether
vivj is an edge, and we can insert and delete single edges in constant time as well. Thus we
have two considerable improvements compared to extended adjacency lists at the expense
of O(n2) space instead of O(m). This is negligible for small or dense graphs, but enormous
for large sparse ones.

Another drawback is that marking each vertex adjacent to a vertex vi takes O(n) time,
as does marking or deleting all edges adjacent to a single vertex.

We can overcome this by combining the adjacency matrix with the extended adjacency
list structure. Let A(G) be an n × n array of pointers that are initially null. Scan the
extended adjacency list, and for each x = (vi, vj , . . .), set aij to point to x. We call this
structure the referenced adjacency matrix for G.

The complexities for basic operations are at least as good as for the extended adjacency
list, but the addition of A(G) provides some benefits. We can now check in constant time
whether vivj is an edge by confirming that aij is not null. Also we can delete an edge vivj in
constant time by accessing aij and aji, unlinking the arrays that they point to, and setting
aij and aji to null. See the last column of Table 17.1.

One disadvantage of the above scheme is that the initialization of A(G) to null pointers
takes O(n2) time, even for sparse graphs where m = O(n) or O(n log n). The initialization
is necessary to eliminate any “stray” pointers from A(G) that do not represent valid edges.
But we can bypass the initialization of A(G) by introducing a stack array R(G) that allows
us to determine whether entries of A(G) correspond to valid edges. We scan the extended
adjacency list of G. If entry (vi, vj , . . .) is the kth array encountered, we set the kth entry
of R(G) to (i, j) and set a (second) pointer from aij to the kth entry of R(G). Then aij
references a valid edge if and only if it points to an entry of R(G) containing (i, j).

Of course, R(G) must be updated when basic operations are performed on the overall
data structure. When an edge vivj is deleted, we simply set to null the entries of R(G)
pointed to by aij and aji. If an edge vivj is added, we add corresponding entries (i, j) and
(j, i) to the top of the stack R(G), and arrange aij and aji to point to them. This extension
of the referenced adjacency matrix does not change the complexities in Table 17.1, but it
allows us to initialize it in O(m) time. See Cormen, Leierson, and Rivest (1990, Exercise
12.1- 4).

Notice that the (extended) adjacency list itself can play the role of the reference vector.
If we only wish to initialize the ith line of A(G), then we can use Ai as a reference vector.

Another feature of the adjacency matrix is that many graph properties can be read off
it directly or can be determined by elementary matrix operations. For instance, the degree
of vi is the sum of the elements of the ith row (or column), although the complexity of
determining it is O(n) compared to O(d(vi)) in the case of adjacency lists.

More importantly, powers of the adjacency matrix can count walks and find distances.
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Theorem 17.8 If A(G) is the adjacency matrix of a graph G with vertices v1, v2, . . . , vn,
then

(i) The i, j-entry of A(G)k is the number of walks of length k from vi to vj, and

(ii) The distance d(vi, vj) is the least k for which the i, j-entry of A(G)k is nonzero.

The proof is by induction and is omitted. We emphasize that (i) implies that the ith
element in the main diagonal of A(G)2 is the degree of vi. For A(G)3 this element is twice
the number of triangles, because every triangle containing vi gives rise to two walks—in
opposite directions—of length 3 from vi to vi.

The assertion (ii) is true for k = 0 because A(G)0 is the identity matrix. Also, if vi and
vj are in different connected components, no finite power of A(G) has nonzero i, j-entry.

We can therefore use matrix multiplication

(a) To determine whether a graph is triangle-free,
(b) To determine all distances d(vi, vj), and
(c) To determine the connected components of G.

We have already seen how these actions can be executed with the aid of adjacency lists.
Which method is faster depends very much on the graph. Let us consider the complexities
of matrix methods.

We begin with the observation that Boolean matrix multiplication suffices to solve (a)
through (c) because in these instances we are only interested in the existence of a vi, vj-walk
and not in the number of such walks. Only in Chapter 20 will we also be interested in the
number of triangles that contain a given edge.

Usual matrix multiplication of two n × n matrices requires n3 multiplications, but it
is well-known that this can be improved considerably. The smallest real number ω such
that two n× n matrices can be multiplied in O(nω) steps is called the exponent of matrix
multiplication. Currently, 2.376 . . . is the best bound for ω; see Coppersmith and Winograd
(1990).

By Theorem 17.8 this implies that we can determine the number of triangles in a graph
in time complexity O(nω). Surprisingly even (b) and (c) can be solved within this time
complexity. See Romani (1980) for (b) and Munro (1971) as well as Fischer and Meyer
(1971) for (c). As fast matrix multiplication will only be used in Section 21.3, we can rest
content with these references.

Although matrix operations provide an easily understood tool to solve a multitude of
important problems, they suffer from the drawback of the large amount of memory required
for the adjacency matrix, the high complexity of matrix multiplication, and the requirement
of random access. Because arithmetic is often unnecessary for graph algorithms and because
random access is not really required for the adjacency list representation (if one replaces
the vector containing the addresses of the first elements of the adjacency lists by a list), the
purest graph algorithms use adjacency lists and only manipulate pointers. Only a rather
weak model of computation is required for such algorithms. As the reader notices, we did
not go to such extremes in our treatment of adjacency lists. In particular, we use random
access when working with the distance matrix, although we may construct it by the methods
of Corollary 17.3.
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In this chapter we show that hypercubes can be recognized in linear time. Deciding whether
a given graph is an isometric subgraph of a hypercube is more difficult. We present three
algorithms for the solution of this problem: a straightforward one of complexity O(m2),
which relies on Theorem 11.8 (iii); a more refined one of complexity O(mn); and one of
complexity O(n2), which uses a different computational paradigm.

The second algorithm owes its efficiency to an algorithm of Feder (1995), that computes
Θ∗ in O(mn) time.

The third algorithm is due to Eppstein (2008) and makes use of bitvectors of length logn,
where n is the order of the investigated graphs. It is based on the observation that our model
of computation allows direct addressing of n addresses and thus supports arithmetic and
bitwise Boolean operations on integers of at least log2 n bits, as well as indexing operations
in constant time.

The algorithm also makes use of the fact that the isometry of proper embeddings of a
graph G into the hypercube can be checked in O(n2) time, where n is the number of vertices
of G. The validity of this fact is shown, without the use of bitvectors, at the end of the
chapter. Interestingly, it also leads to an algorithm that computes the distance matrix of a
partial cube on n vertices in O(n2) time.

18.1 Hypercubes

As hypercubes are special partial cubes, we can use ideas from Chapter 11 to design a simple
hypercube recognition algorithm, Algorithm 18.1. Its complexity is linear, hence optimal.

Later we will encounter two other algorithms that also recognize hypercubes in linear
time. One is Algorithm 22.1 for the recognition of Hamming graphs, and the other is Al-
gorithm 23.1, which computes the prime factors of connected graphs with respect to the
Cartesian product. Both algorithms are linear, rely on different concepts, and are more
elaborate than the one presented now.

Still another algorithm is the one of Bhat (1980). To our knowledge it was the first linear
algorithm for the recognition of hypercubes.

We first recall a few basic facts about hypercubes. Let uv be an arbitrary edge of the
r-cube Qr. To fix ideas, let u = 00 . . . 0 and v = 10 . . . 0. Then the vertices of Wuv, namely
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the vertices closer to u than to v, are the vertices with first coordinate 0. Clearly, the
subgraph 〈Wuv〉 they induce in Qr is an (r − 1)-cube. Analogously, the vertices with first
coordinate 1 induce the (r − 1)-cube 〈Wvu〉.

The edges of Fuv are the edges between Wuv and Wvu. They are of the form

(0x2x3 . . . xr)(1x2x3 . . . xr).

Clearly, they are a matching of Qr, and this matching defines an isomorphism

α : 0x2x3 . . . xr 7→ 1x2x3 . . . xr

of 〈Wuv〉 onto 〈Wvu〉.
This information already suffices for an O(n log n) recognition algorithm. To see this,

let G be a nontrivial connected graph on n vertices and m edges, given by its adjacency
list. If it is a hypercube, its number m of edges must be n

2 log2 n = O(n logn). We can
check in that many steps whether G is bipartite. Then, choosing uv ∈ E(G) arbitrarily, we
can obtain the distances dG(u, x) and dG(v, x) for all x ∈ V (G) in 2m steps. Thus 〈Wuv〉
and 〈Wvu〉 can be determined in O(m) time and space. (By “determined” we mean that
adjacency list representations of both of them are created.)

Within the same time and space complexity, we compute Fuv and thus a mapping from
〈Wuv〉 to 〈Wvu〉. Invoking Theorem 17.1, we can check in linear time and space whether it
is an isomorphism. If not, we reject G.

If it is an isomorphism and if n = 2, then G is a hypercube. Otherwise, we repeat the
procedure for 〈Wuv〉. Clearly, this process ends after at most log2 n steps. To determine
its complexity, let c be the constant of the procedure that determines 〈Wuv〉, 〈Wvu〉, and
checks them for isomorphism. Then the total complexity is at most

cm+ c
m

2
+ c

m

4
+ · · · + c < 2cm .

This is best possible, because all edges must be checked. The following algorithm and
theorem summarize it:

Algorithm 18.1 Hypercubes

Input: The adjacency list of a connected graph G.
Output: true if G is a hypercube, false otherwise.

1: if G is not bipartite or m 6= n
2 log2 n, then return false and stop.

2: For an arbitrary edge uv compute Wuv and Wvu.
3: if the edges between 〈Wuv〉 and 〈Wvu〉 do not define a complete matching and an

isomorphism between 〈Wuv〉 and 〈Wvu〉, then return false and stop.
4: if 〈Wuv〉 = K2, then return true and stop, else go to Step 2 with 〈Wuv〉 as input

graph.

Theorem 18.1 Hypercubes can be recognized in linear time and space.
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18.2 Partial Cubes

Theorem 11.8 (iii) asserts that a bipartite graph is a partial cube if and only if Θ is transitive.
This elegant characterization of partial cubes is also practical from an algorithmic point
of view. Suppose that we are given a graph G on n vertices with m edges and wish to
check whether it is a partial cube. We first preprocess it by checking connectedness and
bipartiteness. By Corollary 17.3 (i) and Proposition 17.4 this can be done in O(m) time.

To determine Θ, it helps to have the distance matrix of G available, and this can be
computed in O(mn) time by Corollary 17.3 (ii). Then Θ can be determined by the brute-
force method of checking all pairs of edges of G. There are O(m2) such pairs, and for every
comparison we have to determine four distances, perform two additions, and one arithmetic
comparison. With the distance matrix at hand, this can be done in O(1) time. Hence Θ can
be determined in O(m2) time.

To check Θ for transitivity, we invoke the following proposition:

Proposition 18.2 If R is a symmetric and reflexive relation on a set X, then the equiva-
lence classes of R∗ can be determined in O(|R|) time and space.

Proof Let H be defined by V (H) = X and E(H) = {xy |x, y ∈ X , where xRy}, so H is
an undirected graph with loops at every vertex, and the equivalence classes of R∗ are its
connected components. By Corollary 17.3 (i) they can be computed in O(|E(H)|+ |V (H)|)
time and space. 2

In other words, given the set of pairs of elements in R, we can compute the equivalence
classes E1, E2, . . . , Ek of R∗ in linear time. If we label every element of X with the index
of the equivalence class in which it is contained, then we can determine in constant time
whether a pair x, y of vertices is in R∗. From this point of view we have computed R∗,
although we describe it as a list E1, E2, . . . , Ek, whose total size is |X |, whereas the number
of the pairs of elements in R∗ is

∑ |Ei|2, which may be close to |X |2.

Proposition 18.2 thus asserts that the complexity of the computation of Θ∗ from Θ is
bounded by the number of elements of Θ. Comparing the size of Θ with that of Θ∗, we check
whether Θ is transitive. Altogether, we arrive at an algorithm of time and space complexity
O(m2) for the recognition of partial cubes.

This approach depends on the knowledge of Θ, which we determined within O(m2) time.
Interestingly, no faster algorithms are known for Θ. However, we will see in Section 13.1
that Θ∗ can be computed within time and space complexity O(mn).

We continue with an algorithm for the recognition of partial cubes that only requires
the knowledge of Θ∗, and not of Θ. It makes use of the canonical isometric embedding α
from Section 13.1, as well as Theorem 11.9, which asserts that a connected bipartite graph
is a partial cube if and only if each G − Ei has exactly two components, where Ei is an
equivalence class of Θ∗.

In reading the algorithm it is helpful to recall the notation of Section 13.1, namely that
G∗

i is the graph whose vertices are the components of G−Ei, and for which CC′ is an edge
of G∗

i precisely if some edge in Ei connects C to C′. Thus Theorem 11.9 can be interpreted
as stating that G is a partial cube if and only if G∗

i
∼= K2 for each i. Compare Figure 18.1,

which shows a partial cube G, together with the graphs Gi and G∗
i for each equivalence

class Ei.

© 2011 by Taylor & Francis Group, LLC



220 Recognizing Hypercubes and Partial Cubes

Algorithm 18.2 Partial cubes

Input: The adjacency list of a connected graph G.
Output: true and a Hamming labeling if G is a partial cube; false otherwise.

1: if G is not bipartite, then return false and stop.
2: Compute Θ∗; denote the number of Θ-classes by k.
3: for i = 1 to k do
4: Compute Gi and G∗

i .
5: If G∗

i is not a K2, then return false and stop.
6: end for
7: Select a BFS-tree T in G with root v0.
8: for all v ∈ V (G) and i = 1 to k do
9: if the path in T from v to v0 contains an edge of Ei, then

10: Set the ith coordinate of α(v) equal to 1.
11: else
12: Set the ith coordinate of α(v) equal to 0.
13: end if
14: end for
15: Return true and the labeling of G obtained in Steps 10 and 12.

G∗

1 G∗

2

G∗

3

G∗

4

G1 G2 G3 G4

G

FIGURE 18.1 A graph G with Gi and G∗
i for each Θ∗-class.

Lemma 18.3 Algorithm 18.2 correctly recognizes partial cubes and returns a Hamming
labeling. If Θ∗ can be computed in O(mn) time and O(m) space, then it runs in O(mn)
time, requiring O(n2) space.
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Proof Every graph G accepted by the algorithm is bipartite and every Gi has exactly two
components. By Theorem 11.9 such graphs are partial cubes.

To see that α is a Hamming labeling, we first note that the algorithm sets all coordinates
of α(v0) equal to 0. Let P be the v, v0-path in T . By Lemma 11.1, no two edges of P are in
relation Θ. Because G is a partial cube, Θ∗ = Θ and all edges of P belong to different Θ∗-
classes. By the definition of α, traversing an edge of Ei means a change in the ith coordinate,
while all other coordinates remain unaltered. Thus the algorithm correctly determines α.

Now consider the complexity.

Step 1 can be implemented to run in O(m) time and space.

The complexity O(mn) for Step 2 holds by assumption. (Theorem 18.6 will show us that
this is justified.)

For Step 3, note that Gi is constructed from G by removing the edges Ei. Assume
that G is represented by an extended adjacency list. Then the removal of an edge vivj has
complexity O(d(vi)). Because d(vi) is bounded by n, the graph Gi can be determined in
O(n|Ei|) time and its components in O(|Ei|) time; the space complexity is O(m).

Thus the Gi and their components can be determined in altogether O(n
∑ |Ei|) =

O(nm) time. If we do not keep the information about the Gi, then the overall space com-
plexity is still O(m).

For Step 4, observe that every α(v) can be computed in O(n) time and space, because
the length of the paths from v to v0 in T is bounded by n − 1. Thus the overall time and
space complexity of finding and storing the α(v), v ∈ V (G), is O(n2). 2

18.3 Efficient Computation of Θ∗

We have just seen that the complexity of Algorithm 18.2 for the recognition of partial
cubes is determined by the complexity of computing Θ∗. Moreover, Θ∗ is also essential
in computing the canonical embedding and, by Theorem 23.6, for a direct computational
approach to the prime factorization of connected graphs with respect to the Cartesian
product. Thus, the computational complexity of Θ∗ plays an important role. The direct
approach from Section 18.2 led to an O(m2) algorithm for Θ∗. We now present an idea of
Feder (1992) that gives Θ∗ in O(mn) time.

Let T be a spanning tree of a graph G. Say two edges e, e′ ∈ E(G) are in relation Θ1 if
eΘe′ and at least one them belongs to T . Notice that Θ1 ⊆ Θ, which implies Θ∗

1 ⊆ Θ∗, and
that the number of pairs of edges in Θ1 is bounded by mn.

We show now that Lemma 13.1, an important structural result for Θ, also holds for Θ1:

Lemma 18.4 Let P be a shortest u, v-path in G and Q be a u, v-path. Then

|P ∩ Ei| ≤ |Q ∩ Ei|

for any Θ∗
1-class Ei.

Proof Let p be the pair (u, v) and PT the path connecting u with v in T . Consistently
direct P , Q and PT from u to v, and assume that, in expressions such as P ∩Ei, the edges
from Ei that are intersected by P are assigned the same orientation as P . (Conflicting
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orientations can only occur if an edge is in P and Q, but those we need not count.) Then

µ(p,Q ∩ Ei) = µ(PT , Q ∩Ei)

= µ(PT ∩ Ei, Q ∩ Ei)

= µ(PT ∩ Ei, Q)

= µ(PT ∩ Ei, p) .

The first and the last equality hold by the same argument as in Lemma 13.1. The others
follow because, if two edges e and f belong to different equivalence classes of Θ∗

1 and at
least one of them belongs to T , then µ(e, f) = 0.

Furthermore, as in Lemma 13.1, we see that µ(p, P ∩Ei) = 2|P ∩Ei| and µ(Q∩Ei, p) ≤
2|Q ∩Ei|. Altogether we obtain

2|P ∩Ei| = µ(p, P ∩ Ei)

= µ(PT ∩ Ei, p)

= µ(p,Q ∩ Ei)

≤ 2|Q ∩Ei|,

which proves the lemma. 2

As a consequence, we secure the key to fast computation of Θ∗:

Theorem 18.5 Let G be a connected graph. Then Θ∗ = Θ∗
1.

Proof Notice that the proof of Theorem 13.2, which asserts that the canonical embedding
is an isometry, depends only on Lemma 13.1. As we have just shown, this lemma also holds
for Θ1. Thus an isometric embedding can also be obtained from Θ1.

Recall that Θ∗
1 ⊆ Θ∗ and notice that the equivalence classes of Θ∗ are unions of equiv-

alence classes of Θ∗
1. By Theorem 13.3 (ii) and (iv), the canonical embedding α is the only

embedding into the largest possible number of factors. So Θ∗ = Θ∗
1. 2

Theorem 18.5 yields the following algorithm:

Algorithm 18.3 The relation Θ∗

Input: The adjacency list of a connected graph G.
Output: The relation Θ∗.

1: Compute a spanning tree T of G.
2: for all edges e = uv of T do
3: Compute the distances from u and v to all other vertices.
4: end for
5: Compute Θ∗

1 with respect to T .

Theorem 18.6 For a given graph G on n vertices and m edges, Algorithm 18.3 computes
the equivalence classes of Θ∗ of G. It can be implemented to run in O(mn) time using O(m)
space.

Proof The correctness of the algorithm follows by Theorem 18.5. Step 1 of the algorithm
can be executed in linear time and Step 2 in O(mn) time. Clearly, we can verify whether
a given edge of T is in relation Θ1 with any other edge in O(m) time. For all edges of T ,
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this takes O(mn) time. Whenever we find two edges e and f that are in relation Θ1, we
merge the sets of edges that are already known to be in relation Θ1 to e, respectively f . By
Proposition 17.7, applied to Θ1, this takes at most O(m logm) time. 2

It is not hard to see that Algorithm 18.2 can easily be modified to compute the canonical
isometric embedding and that the complexity is still determined by that of the computation
of Θ1. We thus have the following important consequence of Theorem 18.6:

Corollary 18.7 The canonical isometric embedding of a graph on n vertices and m edges
can be computed in O(nm) time using O(m) space.

In Lemma 18.3 we assumed that Θ∗ can be computed in O(mn) time and O(m) space
for a graph on n vertices and m edges. Because this is indeed the case by the above, we
have the following theorem:

Theorem 18.8 Let G be a connected graph on n vertices and m edges. Algorithm 18.2
correctly recognizes whether G is a partial cube and can be implemented to run in O(mn)
time and O(n2) space. If G is a partial cube, then the algorithm returns a Hamming labeling.

This reduces the time complexity of recognizing partial cubes from O(m2) to O(mn),
which does not look bad at a first glance. However, recall that partial cubes are sparse
by the Density Lemma 3.2, that is, m ≤ 1

2n log2 n. Hence, for partial cubes, O(m2) =
O(n2(logn)2), and O(mn) reduces to O(n2 logn).

From a computational point of view, this is not much. But, as we will see, the same ideas
are also applicable to the recognition of partial Hamming graphs, which are not sparse. There
we have a substantial improvement.

Now to the space complexity. Consider Pn. The smallest hypercube into which Pn can
be embedded isometrically is Qn−1. In this case, every label has length n− 1, and the total
length of the labels for the vertices of Pn is n(n− 1). Hence, the space complexity really is
O(n2) if we store all labels in full length.

One of the reasons for the introduction of Hamming labelings is that distances d(u, v)
can be determined by comparing α(u) with α(v). This takes k comparisons, where k is the
number of Θ∗-classes.

Notice that the computation of the labels of u and v from the BFS-tree T and their
comparison takes O(k) time and space. This is of the same complexity as label comparison.
Thus we might be content to prove that G is a partial cube and compute labels from a BFS-
tree when needed. This can be done by deleting Step 4 of Algorithm 18.2. The modified
algorithm still determines whether a graph is a partial cube in O(mn) = O(n2 log n) time,
but its space complexity reduces from O(n2) to O(m), that is, to O(n log n). We formulate
this as a corollary:

Corollary 18.9 Partial cubes can be recognized in O(n2 logn) time using O(n logn) space.

We close the section by remarking that the first algorithm of complexity O(mn) for the
recognition of partial cubes is due to Aurenhammer and Hagauer (1995), although the one
of Imrich and Klavžar (1993), which is presented here, appeared earlier in print.

18.4 Recognizing Partial Cubes in Quadratic Time

This section presents an algorithm that recognizes partial cubes in O(n2) time and space. It
is due to Eppstein (2008) and based on the assumption that arithmetic and bitwise Boolean
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operations on integers of at least log2 n bits, as well as indexing operations, are possible
in O(1) time. This is reasonable, because our algorithms depend on the RAM model of
computation, and in this model any machine that is capable of storing addresses large
enough to address the input to our problem has machine words with at least log2 n bits.

It also means that we can determine in constant time whether a bitvector has exactly
one nonzero bit and which one it is. This can be done by looking up that word in a table
of size n that stores either the index of the nonzero bit if there is only one, or a flag value
that indicates that there is more than one nonzero bit.

Because the length of our bitvectors may be close to n, we need some further considera-
tions about the complexity of working with them. Following Eppstein (2008) we invoke the
following lemma about operations with bitvectors of length k.

Lemma 18.10 Let k be a natural number and K = d1 + k/ log2 ne. Then bitvectors of
length k can be stored in O(K) space per bitvector, and disjunction and symmetric differ-
ence1 operations can be done in O(K) time per operation. Moreover, one can determine in
O(K) time whether a bitvector contains nonzero bits. One can also determine in O(K) time
whether it has exactly one such bit, and find the index of that bit.

Proof We store every bitvector in K words of log2 n bits each. Disjunction and symmetric
difference can be performed independently on each of the words.

To test for nonzero bits we test every one of the K words. To test whether a bitvector has
exactly one nonzero bit, we again test every word. If there is just one that has nonzero bits,
we use the precomputed table mentioned above to see whether there is only one nonzero
bit and which one it is. 2

Outline of the algorithm

Preprocessing The algorithm accepts connected, bipartite input graphs G on n vertices
with m edges, where m ≤ n

2 · log2 n .

Bitvector assignment The main part of the algorithm is Procedure 18.4. It begins with
a vertex v0 of maximum degree d and its neighbors v1, . . . , vd. Then it computes bitvectors
w(v) of length d for every v ∈ V (G), where the ith bit of w(v) is 0 if v ∈ Wv0,vi , and 1
otherwise.

Classes and consistency The edges between Wv0,vi and Wvi,v0 are the sets Fv0,vi . If G
is a partial cube, then the Fv0,vi are the Θ-classes of the edges incident with v0. Because
Θ-classes are disjoint matchings in a partial cube, we discard all graphs that do not satisfy
this consistency condition. Procedure 18.5 computes the Fv0,vi , checks for consistency and
assigns labels to the edges of Fv0,vi .

Contraction Contraction of the edges in a Θ-class of a partial cube G (and replacement
of double edges that may result as a consequence of the contraction) yields a partial cube
again. By Exercise 11.7, the preimages (with respect to the contraction) of the Θ-classes of
this partial cube are Θ-classes in G.

Hence, if G contains unlabeled edges, then we contract the labeled edges to single ver-
tices, replace multiple edges by single ones, call the new graph G′, and restart the algorithm
with input G′.

This is repeated until we reach a graph with no unlabeled edges or until the total number
of F -classes (we do not know whether they are Θ-classes) exceeds n− 1. In the latter case
we discard G because it is not a partial cube.

1In this chapter and in Chapter 33, we use the notation ∆ for symmetric difference, but in Chapter 29
the notation + is more convenient; see pages 367 and 433.
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Reexpansion In the first case, when all edges are labeled, we reexpand. That is, for every
vertex v′ ∈ V (G′), we concatenate the bitvectors w′(v′) with the bitvectors w(v) of all
vertices v ∈ V (G) that are preimages of v′ with respect to the contraction. This is repeated
until the first input graph is reached.

Isometry Clearly, the assignment of bitvectors is a mapping of G into a hypercube whose
dimension is the number of F -classes of G. If the mapping is isometric, then G is a partial
cube. We will show that this can be done in O(n2) time.

Details, correctness, and complexity

Preprocessing needs no further explanations. Bitvector assignment is described in
Procedure 18.4.

Procedure 18.4 Bitvector assignment

Input: A connected, bipartite graph G and a vertex v0 of maximum degree d.
Output: Bitvectors w(v) of length d for every v ∈ V (G), where the ith bit of w(v) is 0 if

v ∈ Wv0,vi , and 1 otherwise.

1: Compute a BFS order of G with root v0.
2: Reserve bitvectors w(v) of length d for every v ∈ V (G) and set w(v) = (0, 0, . . . , 0) for

all v ∈ V (G).
3: For the elements in L1, that is, the neighbors of v0, set wi(vi) = 1.
4: Scan the vertices v of G in BFS order, beginning with the vertices in L2. Set w(v) equal

to the disjunction of the bitvectors of all down-neighbors of v.

Correctness We have to show that the ith bit, say wi(v), of w(v) is 0 if v ∈ Wv0,vi , and 1
otherwise. Clearly, this is the case for v0 and the vertices in L1.

Suppose that the bitvectors w(v) have already been correctly assigned to the elements in
Lk and that we wish to compute w(u) for u ∈ Lk+1. If there is a shortest path from u to v0
that passes through vi, then u ∈Wvi,v0 and wi(u) = 1, otherwise u ∈Wv0,vi and wi(u) = 0.
Because all shortest paths from u to v0 start with an edge from u to a down-neighbor of u,
the bitvector w(u) clearly is the disjunction of the bitvectors of the down-neighbors of u.

Complexity The identification of a vertex v0 of maximum degree d = d(v0) and the
execution of Step 1 take at most O(m) time. Notice that d ≥ 2m/n.

Step 2 takes at most O(n(1 + d/ log2 n)) time and Step 3 takes O(d).

In Step 4 we compute the disjunction of bitvectors of length d, one bitvector for every
down-edge. This is at most m bitvectors altogether. Thus the time complexity of this step
(and of the procedure as a whole) is O(m(1+d/ log2 n)) = O(d(m/d+m/ log2 n)) = O(dn).

Remark If G is a partial cube, then all Fv0,vi for vi ∈ NG(v0) are correctly determined
now. In particular, if G is a hypercube Qr, then the bitvectors w(v) computed in this first
stage already define a coordinatization of G as a Cartesian product of r K2’s.

The graph of Figure 18.2 indicates how the procedure works. Clearly, the vertex v0 is a
vertex of maximal degree.

By Step 1 a BFS ordering with base v0 is computed. The BFS-levels are L0 = {v0},
L1 = {v1, v2, v3}, L2 = {v4, v5}, and L3 = {v6}. Every edge has been directed toward v0.

By Steps 2 and 3, v0 is assigned the bitvector (0, 0, 0), and v1, v2, v3 are assigned the
vectors (1, 0, 0), (0, 1, 0), (0, 0, 1). The other assignments are made in Step 4.
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v2 v5 v6

v1 v0 v3 v4

010 011 011

100 000 001 001

L0 L1 L2

L3

FIGURE 18.2 BFS-levels and bitvector assignment in a graph.

Classes and consistency are handled by Procedure 18.5.

Procedure 18.5 Classes and consistency

Input: A connected, bipartite graph G that passed the bitvector assignment Proce-
dure 18.4.

Output: An edge-coloring that assigns color i to the edges of Fv0,vi if the Fv0,vi are disjoint
matchings. If the Fv0,vi do not satisfy the condition, then G is discarded.

1: ∆(uv) = w(u) ∆w(v) for all edges uv in G.
2: If there is ∆(uv) with more than one nonzero bit, discard G.
3: If the ith bit is the only nonzero bit of ∆(uv), assign color i to uv.
4: If ∆(uv) is zero, leave uv uncolored.
5: If there is an Fv0,vi that is not a matching, discard G.

Correctness If G is bipartite, then the set Wv0,vi consists exactly of the vertices u with
wi(u) = 0. Hence, Fv0,vi is the set of all edges uv, where w(u) and w(v) differ in the ith bit.
By Proposition 11.7, Fv0,vi consists of all edges that are in the relation Θ to v0vi. Because
Θ is transitive for partial cubes by Theorem 11.8, the set Fv0,vi is a Θ-class if G is a partial
cube. Hence, if w(u) and w(v) differ in the ith bit, they must coincide in all the others,
because Θ-classes are disjoint in partial cubes.

We thus consider the symmetric difference ∆(uv) = w(u) ∆w(v) for all edges uv in G.
If ∆(uv) has more than one nonzero bit, then G cannot be a partial cube. If just one bit,
say the ith, is nonzero, then uv ∈ Fv0,vi and we assign color i to uv. If ∆(uv) is zero, then
uv is not in relation Θ to any of the edges v0vi and it is left uncolored.

Recall next that Fv0,vi is a matching if G is a partial cube. Thus, if a vertex of G is
incident with more than one edge in one and the same Fv0,vi , then G is not a partial cube.

Complexity As in the case of Procedure 18.4, one shows that the complexity of Steps 1
through 4 is O(dn). We leave it to the reader to spell out Step 5 in more detail and to show
that the time complexity is O(m). Hence the total time complexity is O(dn).

Suppose the input to this procedure is the graph of Figure 18.2 with its bitvector as-
signment. Steps 1 and 2 go through without any problems, and Steps 3 and 4 color some
edges and leave others uncolored; see Figure 18.3(a). Clearly, all Fv0,vi are matchings.
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FIGURE 18.3 Assignment of edge-colors and contraction.

Contraction and reexpansion is treated more informally.

Correctness Given a partial cube G and a Θ-class Fab, it is easily seen by Proposition 11.7
that contraction of every edge in Fab to a single vertex and the replacement of double edges
with single edges produces a partial cube again (Exercise 11.5). We do this for the d classes
Fab we have found so far, denoting the new graph by G′. If G′ has a loop, then G cannot
have been a partial cube and we terminate the algorithm.

We apply the algorithm again, obtaining some new Θ-classes if G′ is a partial cube. If
there are still uncolored edges, we iterate the procedure until there are no uncolored edges
left or if more than n − 1 classes are found. In the second case, G was not a partial cube,
because no graph on n vertices can have more than n− 1 Θ-classes.

At the end of the last contraction step, all edges of the resulting graph Gν are colored
and all vertices labeled; if G is a partial cube, then Gν is a partial cube too and it is correctly
colored and labeled. We reexpand. This is done iteratively as follows. Let G′ be obtained
from G as described above and suppose all edges of G′ are colored and all vertices labeled.
To form the color classes of G, we concatenate the color classes of G′ (replacing edges by
edges they correspond to on G) with the originally obtained color classes of G.

To form the vertex label of every v of G, consider the bitvector of the vertex v′ corre-
sponding to v in G′ and concatenate it with the bitvector w(v) already computed.

By Exercise 11.6, the coloring and labeling is correct.

Complexity By Exercise 18.7, the total complexity of the edge contractions necessary to
construct G′ from G is O(m), and by Exercise 18.8 loops and multiple edges can be removed
within the same time complexity. Altogether this is at most O(dn) and can be subsumed
with the complexity of coloring the edges of G by the bitvector assignment (Procedure 18.4)
that prepares G for contraction.

In reexpansion, the color classes can clearly be computed in O(m) time and the con-
catenation of the vertex labels going from G′ to G can be effected in O(dn) time.

For illustration we turn to Figure 18.3. Contraction of the colored edges in Figure 18.3(a)
yields the graph of Figure 18.3(b). This figure also indicates the preimages of its vertices
and of its edge. Clearly, the bitvector assigment for v3 is (0) and (1) for v4 if we choose
v3 as the root of the BFS ordering of this graph. The edge has color 4, because we add a
fourth coordinate, in which the endpoints differ.

Reexpansion yields the graph of Figure 18.4 and assigns color 4 to edges v3v4 and v5v6.

© 2011 by Taylor & Francis Group, LLC



228 Recognizing Hypercubes and Partial Cubes

2 2 2

3

3

4

4

1

0100 0110 0111

1000 0000 0010 0011

FIGURE 18.4 Reexpansion.

Isometry The graphs G that survive up to this stage include all partial cubes and are
labeled by 0-1 vectors of length r ≤ n−1. This labeling is an embedding into the hypercube
Qr, because the endpoints of every edge differ in exactly one coordinate.

The question is whether this embedding is an isometry. The graphG in Figure 18.5 shows
that this need not be the case. With the depicted choice of base point v0, all parts of the
algorithm go through and produce the displayed embedding. However,G is not isometrically
embedded in Q3, because dG(v4, v7) = 3, but dQ3

(v4, v7) = 1.

1

1

1

1
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3
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2 2

2 2
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011

v4

110
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111
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000
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001

v1

110

v6
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FIGURE 18.5 A nonisometrically embedded graph.

This is easily seen by inspection, but in general we will have to test for all n(n−1) pairs
of vertices u, v whether or not dG(u, v) > dQr (u, v). In order to to this we will check for
every u whether or not there exists a BFS-tree Tu of G with base u and the property that
dG(u, v) = dQr (u, v) for all v ∈ V (G). If this is the case, then G is a partial cube, but not
otherwise.

Such a tree Tu can be constructed in O(n) time from a BFS-ordering with base u by
arbitrarily choosing a single down-edge for every vertex v ∈ V (G), u 6= v. Suppose the
down-edge vz of Tu has color i and wi(v) = wi(u). Then wi(z) 6= wi(u) and z differs in one
extra coordinate from u than v, has larger distance from u than v and thus cannot be on
a shortest v, u-path in Qr. Hence the v, u-path in Tu, which is a shortest G-path, is not a
shortest Qr-path, and G is not isometric in Qr.

Choosing the notation c(e) for the color of the edge e, we can thus say that G is not
isometric if, for a given vertex v, wc(vz)(v) = wc(vz)(u) for all edges vz ∈ E(G). We will also
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say that the edge vz is oriented away from u if wi(v) = wi(u) and wi(z) 6= wi(u), otherwise
we say that it is oriented toward u.

We now describe the algorithm that checks isometry. We begin with an arbitrary vertex
u and compute the BFS-order of G. We also orient every edge vz of G. Because we already
know the color of every edge vz, we only have to compare wc(vz)(v) with wc(vz)(u). For every
vertex v we then create two lists of edges, the list Au(v) that contains the edges oriented
toward u and the list Bu(v) that contains the edges oriented away. This can be done in
O(m) time. We can also sort the lists by color within the same time complexity. Clearly, all
edges incident with u are in Bu(u), and Au(u) = ∅.

If one of the Au(v) is empty for v 6= u, then G is not a partial cube and we are done.
We thus assume that the Au(v) are not empty and choose the first edge of every Au(v)
to obtain a BFS-tree that we call T0 and rename u into u0. The edges xy of T0 are thus
ordered pairs, where y is closer to v0 than x.

Now we draw T0 in the plane: It has one face and we follow the boundary of that
face in counterclockwise direction. That way we reach every vertex twice, introducing the
notation uj for the vertex that we reach in j steps. We wish to construct a BFS-tree Tuj

for every j. Before that, we sort the edges in the A- and B-sets again, this time in the order
just described. As our edges are ordered pairs, every ordered pair occurs exactly once in
that order.

Let j = 1 and i be the color of the edge v0v1. We show how to construct Tu1
. The new

root is v1. We begin wih some preprocessing. All edges of color different from i keep their
orientation; only the orientation of the edges in Fv0v1 is reversed. Consider v0v1. We set
Av1(v1) = Av0(v1) \ v1v0 and Bv1(v1) = Bv0(v1) ∪ v1v0, adding the edge v1v0 to the front
of the list. Likewise we set Av1(v0) = Av0(v0) ∪ v0v1, again adding v0v1 to the front of the
list, and Bv1(v0) = Bv0(v0) \ v0v1. Similarly we proceed for all other edges ab ∈ Fv0v1 .

To construct T1, we now remove all edges of color c(v0v1) from T0 as they point away
from v1, but keep all the other edges, as they point toward v1. If xy from T0 was removed,
then x has no outgoing edge in T1 and we add the first edge of Av1(x) to T1. If Av1(x) 6= ∅
for all removed edges xy, then we obtain the desired BFS-tree Tv1 . Otherwise, that is if
Av1(x) is empty, G is not a partial cube.

Thus, to go from Tv0 to Tv1 , we have to consider the n− 1 edges xy of Tv0 , remove them
if they have color C(v0v1), and, for x and y, delete a first element from a list, respectively
add a first element to a list. Then first elements of such lists are used again to complete T1.
The complexity is O(n). Because we do this at most 2(n− 1) times, the overall complexity
is O(n2) for the isometry check. This leads to the following result of Eppstein (2008):

Theorem 18.11 Partial cubes on n vertices can be recognized in O(n2) time.

Proof All that remains to show is the time complexity. Notice that we begin the algorithm
with a vertex of maximal degree d and that the complexity of bitvector assignment, classes
and consistency, and contraction and reexpansion is O(dn). At the end of contraction, we
continue with a graph G′ that has exactly d color classes less than G. If G is a hypercube,
then it has at most n− 1 color classes. Hence, we stop whenever we reach more than n− 1
color classes. Thus the total complexity for this part is O(n2).

This proves the theorem, because the isometry test also requires at most O(n2) time. 2
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Exercises

18.1. Given a graph G, show that every edge of G must be considered by any algorithm
that checks whether G is a partial cube.

18.2. Write a pseudocode for the computation of the transitive closure of a relation R.

18.3. Given the distance matrix of a graph G and its adjacency list, write a pseudocode
for the direct computation of Θ (complexity O(m2)).

18.4. Using the results of Exercises 18.2 and 18.3, write a pseudocode for the recognition
of partial cubes.

18.5. Given a BFS-tree of a partial cube G and its Θ-classes, write a pseudocode that
computes the Hamming distance between any two vertices u, v of G in O(k) time,
where k is the number of Θ-classes of G.

18.6. Consider Algorithm 18.2. How can one check after Step 6 in O(1) time whether the
input graph G is a hypercube?

18.7. Let F be an arbitrary set of edges in a graph G given by its extended adjacency
list. Show that one can contract every edge uv of F in O(m) time.

18.8. Let G be a graph with multiple edges and loops. Show that all multiple edges can
be replaced by single ones and all loops removed in O(m) time.

18.9. Given the adjacency list of a connected graph G, write a pseudocode for the com-
putation of the canonical isometric embedding α of G in O(mn) time.

18.10. Consider the graph of Figure 18.5 and apply Procedures 18.4 and 18.5 with an
arbitrary starting vertex different from v0 and v3. Verify that not all computed
color classes are matchings.

18.11. (Foldes, 1977) Show that a connected bipartite graph G is a hypercube if and only
if the number of shortest u, v-paths is d(u, v)! for any two vertices u and v of G.
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Graphs arising in chemistry are a primary source of examples for graph theory; chemical
trees, benzenoid graphs, and fullerenes1 are just a few of the prominent examples. After
a molecule is represented as a graph, the primary goal of chemical graph theory is to
investigate the graph and to predict the molecule’s properties. This is frequently achieved
by computing carefully selected graph invariants. The Wiener index, introduced by Wiener
(1947), is the oldest such invariant.2 It has been widely investigated; see for instance the
extensive surveys on the Wiener index of trees (Dobrynin, Entringer, and Gutman, 2001)
and of benzenoid graphs (Dobrynin, Gutman, Klavžar, and Žigert, 2002).

In this chapter we show how isometric embeddings into Cartesian products lead to a
better understanding of the Wiener index. We first observe that benzenoid graphs are partial
cubes and then use their isometric embeddings into hypercubes to obtain closed expressions
for the Wiener index. We show that benzenoid graphs are also isometrically embeddable
into the Cartesian product of three related trees, a result that leads to a linear algorithm
for computing the Wiener index of benzenoid graphs. In the final section we show that the
computation of the Wiener index of an arbitrary graph can be reduced to the computation
of the weighted Wiener index of the quotients in the graph’s canonical isometric embedding.

19.1 Benzenoid Graphs as Partial Cubes

Benzenoid graphs represent benzenoid hydrocarbons, a class of substances of great impor-
tance in chemistry. The number of known benzenoid hydrocarbons is about one thousand,
and some of them play a major role in the chemical industry. For more information on these
compounds as well as their graphs, we refer to the book by Gutman and Cyvin (1989).

Let Z be a circuit of the hexagonal lattice in the plane. A benzenoid graph or a hexagonal
system is formed by the vertices and edges of the hexagonal lattice lying on and in the
interior of Z. Figure 19.1 shows an example. Note that a benzenoid graph is bipartite, as it
is a subgraph of a bipartite hexagonal lattice.

Contrary to the general practice in this book, the next definition is formulated in the
language of Euclidean geometry. We thereby take advantage of the fact that benzenoid
graphs are planar.

Let G be a benzenoid graph. A straight line segment S = pq is called a cut segment

1Fullerenes are carbon molecules whose graphs are cubic, plane graphs with faces of size 5 and 6.
2In chemical literature, invariants used for predicting properties of molecules are commonly referred to

as topological indices of graphs.
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p

q

FIGURE 19.1 A benzenoid graph and one of its cut segments.

if it is a perpendicular bisector of two edges of the bounding cycle Z, and no point of S
lies in the exterior region. The set of edges that S meets is called the cut corresponding
to S. Note that the graph obtained from G by removing all such edges has exactly two
connected components. Figure 19.1 shows a cut segment whose corresponding cut consists
of four edges.

Let e = uv be an arbitrary edge of a benzenoid graph G. If we remove the edges of the
cut containing e, we obtain two connected components that are induced by the vertex sets
Wuv and Wvu. (Recall that Wuv is the set of vertices closer to u than to v.) Moreover, it is
clear that a shortest path between two vertices of Wuv cannot contain two edges of the cut
containing e. It follows that Wuv induces a convex subgraph of G. By Theorem 11.8 (ii),
we thus infer the following proposition due to Klavžar, Gutman, and Mohar (1995):

Proposition 19.1 A benzenoid graph is a partial cube. Its Θ-classes coincide with its cuts.

Proposition 19.1 can be applied to the computation of distance-related invariants of
benzenoid graphs. We demonstrate it for the Wiener index; for a survey on corresponding
results on related invariants, see Klavžar (2008).

The Wiener index W (G) of a (molecular) graph G is defined as the sum of the distances
between all pairs of vertices of G, that is,

W (G) =
1

2

∑

u∈V (G)

∑

v∈V (G)

d(u, v) .

Proposition 19.2 Let G be a benzenoid graph on n vertices and E1, . . . , Ek be its Θ-
classes. For i = 1, . . . , k, let uivi ∈ Ei and ni = |Wuivi |. Then

W (G) =
k∑

i=1

ni(n− ni) .

Proof Let α be the isometric embedding of G into Qk as in the proof of Theorem 11.8.
Then

W (G) =
1

2

∑

u∈V (G)

∑

v∈V (G)

k∑

i=1

δi(u, v) ,
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where δi(u, v) is equal to 0 if the ith coordinates of α(u) and α(v) coincide; otherwise,
δi(u, v) is equal to 1. Therefore

W (G) =
k∑

i=1

(
1

2

∑

u∈V (G)

∑

v∈V (G)

δi(u, v)

)
.

Because δi(u, v) = 1 if and only if one of u and v is in Wuivi and the other is in V (G)\Wuivi ,
the inner sums equal 2ni(n− ni), and the proposition follows. 2

Proposition 19.2 is particularly useful for deriving closed formulas for the Wiener index
of benzenoid graph families. For instance, let Hk be the kth benzenoid graph from the so-
called coronene/circumcoronene series. Figure 19.2 illustrates the first three such graphs.
Historically the problem of finding a closed expression for W (Hk) was considered challeng-
ing. Following Gutman and Klavžar (1996), we next show that Proposition 19.2 makes this
routine.

H1 H2 H3

FIGURE 19.2 First elements of the coronene/circumcoronene series.

The relation Θ = Θ∗ partitions E(Hk) into 3(2k − 1) equivalence classes. Let
F1, F2, . . . , F2k−1 be the classes corresponding to the horizontal cut segments. It is not
difficult to verify that Hk has 6k2 vertices and that for i = 1, 2, . . . , k, the two components
of G−Fi contain i(2k+i) and 6k2−i(2k+i) vertices, respectively (Exercise 19.1). Therefore,
by Proposition 19.2,

W (Hk) = 3
(

(3k2)2 + 2

k−1∑

i=1

i(2k + i)
[
6k2 − i(2k + i)

])
,

which reduces to

W (Hk) =
1

5

(
164k5 − 30k3 + k

)
.

To close this section, we add that Proposition 19.2 extends naturally to all partial cubes.
In addition, Chepoi, Deza, and Grishukhin (1997) extended it to all `1-graphs.
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19.2 The Wiener Index of Benzenoid Graphs in Linear Time

We now turn our attention to isometric embeddings of benzenoid graphs into Cartesian
products of trees, as introduced by Chepoi (1996), and show how to compute the Wiener
index of benzenoid graphs in linear time.

LetG be a benzenoid graph and E1, E2, and E3 the partition of E(G) into sets of edges of
the same direction. In other words, Ei is the union of Θ∗ equivalence classes corresponding
to cut segments of a given direction. For i = 1, 2, 3, set Gi = G − Ei. The connected
components of the Gi are paths. Define a quotient graph Ti as usual, that is, as the graphs
G∗

i in Section 11.1. The vertices of Ti are the connected components of Gi, and two such
components P ′ and P ′′ are adjacent in Ti if some edge in Ei joins a vertex of P ′ to a vertex
of P ′′. We then define a mapping

γ : V (G) → V (T1 2T22T3)

by γ(v) = (v1, v2, v3), where vi is the vertex of Ti corresponding to the connected component
of Gi containing v.

Note that every Ti is a tree, because a cycle in Ti would imply that G has a nonhexagonal
interior face. (See Figure 19.3.) We call γ the 3-tree embedding of G.

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

FIGURE 19.3 A cycle in Ti would yield a nonhexagonal interior face.

Theorem 19.3 Let G be a benzenoid graph on n vertices. Then the 3-tree embedding γ is
isometric and can be computed in O(n) time.

Proof Let γ : V (G) → V (T1 2T2 2T3) be the 3-tree embedding and u, v be any two
vertices of G. Furthermore, let γ(u) = (u1, u2, u3) and γ(v) = (v1, v2, v3). Select a shortest
path P from u to v in G; and for i = 1, 2, 3, set Fi = E(P )∩Ei. Observe that no two edges
of Fi belong to the same cut, for otherwise P would not be a shortest path. It follows that
|Fi| = dTi(ui, vi). As dG(u, v) = |F1| + |F2| + |F3|, we infer by Lemma 5.2 that γ is indeed
isometric.

As G is planar, Corollary 1.12 implies that it has O(n) edges. It is thus straightforward
to compute the trees T1, T2, and T3 and the corresponding labels of the vertices of G in
O(n) time. 2

Next we extend the definition of the Wiener index to weighted graphs. A (vertex)-
weighted graph (G,w) is a graph G together with a function w from V (G) into the set
of positive integers. (In general, w can be a real valued function, but for our purposes
integer-valued functions suffice.)
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The Wiener index W (G,w) of a weighted graph (G,w) is then defined as

W (G,w) =
1

2

∑

u∈V (G)

∑

v∈V (G)

w(u)w(v) d(u, v) .

Let G be a benzenoid graph and T1, T2, T3 be the trees of its 3-tree embedding. We extend
them to weighted trees (Ti, wi) as follows: For x ∈ V (Ti), we set wi(x) equal to the number
of vertices in the connected component of Gi corresponding to x.

Proposition 19.4 For a benzenoid graph G,

W (G) = W (T1, w1) +W (T2, w2) +W (T3, w3) .

Proof The proof follows the proof of Proposition 19.2. Let H = T12T2 2T3 and let γ be
the 3-tree embedding of G. Furthermore, for u ∈ V (G), let γ(u) = (u1, u2, u3). Then

W (G) =
1

2

∑

u∈V (G)

∑

v∈V (G)

dH(γ(u), γ(v))

=
1

2

∑

u∈V (G)

∑

v∈V (G)

3∑

i=1

dTi(ui, vi)

=

3∑

i=1

(
1

2

∑

u∈V (G)

∑

v∈V (G)

dTi(ui, vi)

)

=
3∑

i=1

(
1

2

∑

ui∈V (Ti)

∑

vi∈V (Ti)

wi(u)wi(v)dTi (ui, vi)

)

=

3∑

i=1

W (Ti, wi).

2

By Proposition 19.4, any linear algorithm that computes the Wiener index of a weighted
tree provides a linear algorithm for W (G). To show that such an algorithm exists, we invoke
the following lemma. Its proof is similar to the proof of Proposition 19.2 and is left to the
reader.

Lemma 19.5 Let (T,w) be a weighted tree. For an edge e of T , let T1 and T2 be the
connected components of T − e and, for i = 1, 2,

ni(e) =
∑

u∈V (Ti)

w(u) .

Then

W (T,w) =
∑

e∈E(T )

n1(e)n2(e) .

Lemma 19.5 can be extended to arbitrary partial cubes; see Klavžar and Gutman (1997).
Interestingly, Wiener (1947) attained Lemma 19.5 for unweighted trees.

We are now ready for the main result of this section. It is by Chepoi and Klavžar (1997).
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Theorem 19.6 The Wiener index of a benzenoid graph on n vertices can be computed in
O(n) time.

Proof By Theorem 19.3, we can compute the trees T1, T2, and T3 of the 3-tree embedding
in O(n) time. Therefore we can also obtain the weighted trees (Ti, wi) within the same time
complexity. By Proposition 19.4, it remains to show that we can compute the Wiener index
of a weighted tree in linear time. Using Lemma 19.5 we proceed as follows:

Order the vertices of a given weighted tree (T,w) so that every vertex v is a pendant
vertex in the subtree induced by the vertices with a larger index. Let u be the neighbor of
v in this subtree. Then add the factor w(v)(n−w(v)) to the current sum and update w(u)
by setting w(u) = w(u) + w(v). 2

The above argument that the Wiener index of a weighted tree can be computed in linear
time extends the linear algorithm of Mohar and Pisanski (1988) for the Wiener index of
(unweighted) trees.

19.3 The Wiener Index via the Canonical Isometric Embedding

In this section we show that the Wiener index of an arbitrary connected graph can be
expressed with the weighted Wiener index of (weighted) quotient graphs of the canoni-
cal isometric embedding of G. The reader should compare this approach to the one from
Section 19.1 to realize that the present generalizes the former.

Recall from Chapter 13 that the canonical embedding α maps a connected graph G
isometrically into G/Π1 2G/Π2 2 · · · 2G/Πk, where G/Πi is the quotient graph of G−Ei

(and Ei is a Θ-class of G). We now assign weights to the vertices of G/Πi in the natural
way: For x ∈ V (G/Πi), let wi(x) be the number of vertices in the connected component of
G− Ei corresponding to x. The following result is from Klavžar (2005):

Theorem 19.7 Let G be a connected graph and let α : G → G/Π1 2G/Π2 2 · · · 2G/Πk

be the canonical embedding. Then

W (G) =

k∑

i=1

W (G/Πi, wi) .

Proof Set H = G/Π1 2 G/Π2 2 · · · 2G/Πk. By Theorem 13.2,

W (G) =
1

2

∑

u∈V (G)

∑

v∈V (G)

dG(u, v) =
1

2

∑

u∈V (G)

∑

v∈V (G)

dH(α(u), α(v)) .

Then the Distance Formula (Corollary 5.2), in turn, implies that

W (G) =
1

2

∑

u∈V (G)

∑

v∈V (G)

k∑

i=1

dG/Πi
(αi(u), αi(v))

=

k∑

i=1

(1

2

∑

u∈V (G)

∑

v∈V (G)

dG/Πi
(αi(u), αi(v))

)
. (19.1)

Observe next that, by the definition of the weighted Wiener index,

W (G/Πi, wi) =
1

2

∑

u∈V (G)

∑

v∈V (G)

dG/Πi
(αi(u), αi(v)) . (19.2)
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Inserting (19.2) into (19.1) yields the result. 2

G

E1

G − E1

15

5

(G/Π1, w1)

G

E6

G − E6

4

4

4

4 4

(G/Π6, w6)

FIGURE 19.4 Computing the Wiener index of C20(2).

As an example, consider the chemical graph G = C20(2) of Figure 19.4. This graph
has six Θ∗-classes E1, . . . , E6. Five of them, say E1, . . . , E5, consist of three edges, and the
remaining class E6 has five edges. The figure shows E1 and E6, as well as G−E1, G− F6,
(G/Π1, w1), and (G/Π6, w6). Note that W (G/Πi, wi) = 5 · 15 = 75 for 1 ≤ i ≤ 5, and
W (G/Π6, w6) = 5 · 4 · 4 + 5 · 2 · 4 · 4 = 240. Therefore W (C20(2)) = 5 · 75 + 240 = 615.

Exercises

19.1. Verify that the graph Hk defined on p. 233 has 6k2 vertices and that for i =
1, 2, . . . , k, the two components of G − Fi contain i(2k + i) and 6k2 − i(2k + i)
vertices, respectively. (Fi is also defined on p. 233.)

19.2. (Graovac and Pisanski, 1991; Yeh and Gutman, 1994) Show that for any connected
graphs G and H , W (G2H) = |V (G)|2 ·W (H) + |V (H)|2 ·W (G).

19.3. Obtain closed formulas for W (Qd) and W (Pn 2Pm), where d, n,m ≥ 1.

19.4. Show that, among all trees with n edges, the Wiener index is minimized on the star
K1,n and maximized on Pn+1.

19.5. The linear chain Lh is the benzenoid graph consisting of h hexagons arranged in a
straight line. (For instance, the “middle horizontal level” of the graph Hk from p.
233 is isomorphic to L2k−1.) Express W (Lh) as a function of h.

19.6. Using Theorem 19.7, compute W (G), where G is the graph from Figure 13.1.
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We now review the concept of the arboricity of a graph. This invariant plays a significant
role in bounding the complexity of certain algorithms. For example, we will soon have need
to find all squares or triangles of a graph G. These tasks can be accomplished with relatively
simple algorithms whose running time is bounded by O

(
|V (G)| · a(G)

)
, where a(G) is the

arboricity of G. As a(G) is quite small for many of the graphs we consider (such as subgraphs
of hypercubes), these methods lead to significant improvements in running time.

The first section of the chapter presents a fundamental formula for the arboricity of a
graph and proves several upper bounds on arboricity. This leads to the so-called Arboricity
Lemma, a useful tool for bounding the complexity of certain edge-scanning algorithms.

The second section applies these results to algorithms that list the squares or triangles
of graphs. We also show how these algorithms help to efficiently compute several relations
defined on the edge set of a graph.

20.1 Arboricity

The arboricity a(G) of a graph G is the minimum number of edge-disjoint spanning forests
into which G can be decomposed. For example, a(G) = 1 if and only if G is acyclic.

We will shortly produce a formula for the arboricity of an arbitrary graph. In order to
accomplish this, we first consider the problem of decomposing graphs into disjoint trees.
For this purpose it will be helpful to admit graphs with multiple edges, that is, graphs for
which distinct edges may have the same endpoints. Such graphs are called multigraphs.

Consider a multigraph G with a partition P of V (G) into p disjoint nonempty sets
V1, V2, . . . , Vp. Let G/P denote the multigraph (without loops) whose vertices are the sets
V1, V2, . . . , Vp and for which the number of edges joining Vi to Vj is the number of edges in
G having one endpoint in Vi and the other in Vj . Note that G/P is defined like the quotient
graphs in Chapter 11 (p. 159), with the exception that we admit multiple edges. If G has
k edge-disjoint spanning trees, then |E(G/P )| ≥ k(p − 1). Indeed, if T is a spanning tree
of G, then T/P ⊆ G/P is connected and thus has at least p − 1 edges. Tutte (1961) and
Nash-Williams (1961) independently proved that this necessary condition is also sufficient
for the existence of k edge-disjoint spanning trees. The original proofs are rather long, and
we only need the result for the special case in which |E(G)| = k (|V (G)| − 1). So for this
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case, where every edge of G is an edge of one of the k spanning trees, we follow an approach
of Bollobás (1978).

Lemma 20.1 Let G be a multigraph with k(|V (G)| − 1) edges, such that

|E(G/P )| ≥ k (p− 1)

for every partition P = {V1, V2, . . . , Vp} of V (G). Then G has k edge-disjoint spanning trees.

Proof Assume that the hypotheses of the theorem hold. We consider systems F =
{F1, F2, . . . , Fk} of edge-disjoint spanning forests in G. Such systems always exist: take
k copies of the totally disconnected graph on V (G). We call such a system maximal if∑k

i=1 |E(Fi)| attains the maximum value over all F . We have to show that such a maximal
system consists of trees.

Suppose that this is not the case. Then, if F is maximal, there is an edge e of G that does
not belong to any of the forests Fi. We call R = {e,F} a maximal pair. Because Fi ∪ e is
not a forest, any Fi has a unique path v1v2 . . . vh joining the endpoints of e. Set e′ = vjvj+1

for some 1 ≤ j < h. Consider the forest F ′
i = (Fi ∪ e) − e′ and the system

F ′ = {F1, F2, . . . , Fi−1, F
′
i , Fi+1, . . . , Fk}.

Clearly, R′ = {e′,F ′} is also a maximal pair. We say it is a simple shift of R and call a
maximal pair R∗ = {e∗,F∗} a shift of R if it is obtainable from R by sequence of simple
shifts.

From now on we fix a maximal pair R0 = {e0,F0}, where F0 = {F1, F2, . . . , Fk}, and
call an edge a shift edge if it is the element e of a shift {e,F} of R0. Let S be the set of all
shift edges, and let V0 be the set of their endpoints. Consider the subgraph G0 = (V0, S).
Now, G0 is connected, as follows: The subgraph X formed by the shift edges resulting from
simple shifts of R0 is the union of the paths Pi ⊆ Fi that join the endpoints of e0. Clearly,
X is connected. In turn, the shift edges resulting from simple shifts of any e ∈ X are edges
of paths joining the endpoints of e, and enlarging X to include them results in a connected
subgraph. Continuing this process, we eventually arrive at the (connected) subgraph G0.

We now show that the subgraph 〈V0〉Fi induced by V0 on Fi is connected for each index i.
To the contrary, suppose some 〈V0〉Fi is disconnected. Let U0 be a component of 〈V0〉Fi and
put W0 = V0 \V (U0). Because R0 is maximal, the edge e0 does not join U0 to W0. Because
G0 is connected, there must be a shift R′ = {e′0,F ′

0} where e′0 joins U0 with W0. Then the
unique path in Fi connecting the endpoints of e′0 has an edge joining U0 to W0. But this
path consists of shift edges, so 〈V0〉Fi has an edge joining U0 to W0, a contradiction. Thus
each 〈V0〉Fi is connected.

Because each 〈V0〉Fi is connected, we infer that V0 6= V (G), otherwise each Fi is a tree,
contrary to assumption. But each 〈V0〉Fi is a tree and has |V0|−1 edges. Thus the subgraph
F1 ∪ F2 ∪ · · · ∪ Fk ∪ {e0} of 〈V0〉G has at least k (|V0| − 1) + 1 edges. But this leaves at
most k (|V (G)| − 1) − k (|V0| − 1) − 1 = k ((|V (G)| − |V0| + 1) − 1) − 1 edges between the
|V (G)|−|V0|+1 sets of the partition of V (G) consisting of V0 and the elements of V (G)\V0,
contrary to the assumptions of the theorem. 2

The more general problem of determining the arboricity of a graph was solved by Nash-
Williams (1964). Here we follow the approach of Behzad and Chartrand (1971).

Theorem 20.2 For any graph G with at least one edge,

a(G) = max
H⊆G

⌈
|E(H)|

|V (H)| − 1

⌉
, (20.1)

where the maximum is taken over all nontrivial subgraphs H ⊆ G.
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Proof Let G be a graph with at least one edge. Because every forest of G intersects any
H ⊆ G at no more than |V (H)| − 1 edges, we have a(G)

(
|V (H)| − 1

)
≥ |E(H)|. Thus

a(G) ≥ max
H⊆G

⌈
|E(H)|

|V (H)| − 1

⌉
.

Let k = maxH⊆Gd|E(H)|/(|V (H)| − 1)e. It remains to show that E(G) can indeed be
decomposed into k subsets, each inducing a forest. The idea of the proof is to add edges to
G until a new graph J is formed that is a union of edge-disjoint trees. Then deletion of the
added edges yields the desired decomposition of G into spanning forests.

To this end we introduce some relevant notation and definitions. For any induced sub-
multigraph M1 of a multigraph M , we define the number

ψ(M1) = k
(
|V (M1)| − 1

)
− |E(M1)|.

Also, we call a multigraph M dense if ψ(M1) ≥ 0 for every induced sub-multigraph M1 of
M . If ψ(M1) = 0, then M1 is called a root of ψ.

Note that G is dense because ψ(H) ≥ 0 for all induced subgraphs H of G.

Next we show the existence of a dense multigraph J that is a root of ψ and for which G
is a spanning subgraph of J . To begin, set J = G. If J already is a root of ψ, we are done.
Otherwise, ψ(J) > 0, and we enlarge J as follows:

Let u ∈ V (J). Note that the trivial subgraph 〈{u}〉 of J is a root of ψ. Suppose that the
subgraphs G1 and G2 of J are both roots of ψ containing u. Consider G3 = 〈V (G1)∪V (G2)〉
and G4 = 〈V (G1) ∩ V (G2)〉. We show that G3 and G4 are also roots of ψ. From

|E(G3)| + |E(G4)| ≥ |E(G1)| + |E(G2)|

and the definition of ψ, we infer that ψ(G3)+ψ(G4) ≤ ψ(G1)+ψ(G2) = 0, and so ψ(G3) =
0 = ψ(G4). But then the subgraph J ′ induced by the union of the vertex sets of the roots
of ψ containing u also is a root of ψ containing u.

Because J is not a root of ψ, we have V (J) 6= V (J ′). Hence there is a v ∈ V (J) \ V (J ′)
such that no root of ψ contains both u and v. Therefore the addition of an edge with the
endpoints u and v to J yields a graph or multigraph J1 with the property that ψ(J1) =
ψ(J) − 1 ≥ 0. Note that J1 is dense. To see this, let H1 be an induced sub-multigraph of
J1 not containing both u and v; then H1 is also an induced subgraph of J , and therefore
ψ(H1) ≥ 0. On the other hand, if H1 contains both u and v, then H1 − uv is an induced
subgraph of J that is not a root of ψ, and thus ψ(H1 − e) ≥ 1, so ψ(H1) ≥ 0.

Note that ψ(J ′) = ψ(J)−1. Set J = J1. If J is not a root, then repeat the above process
until J is a dense multigraph that is a root of ψ.

Let P = V1, V2, . . . , Vp be a partition of V (J) = V (G). Then

|E(J/P )| = |E(J)| −
p∑

i=1

|E(〈Vi〉)|. (20.2)

Because J is a root of ψ, we have

|E(J)| = k(|V (J)| − 1). (20.3)

Because J is dense,

k(|Vi| − 1) ≥ |E(〈Vi〉)| (20.4)
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for 1 ≤ i ≤ p. Inserting the value for |E(J)| from Equation (20.3) into Equation (20.2) and
taking into account Inequality (20.4), we obtain

|E(J/P )| ≥ k (|V (J)| − 1) − k

p∑

i=1

(|Vi| − 1)

= k(n− 1) − k(n− p) = k(p− 1).

This means that J satisfies the assumptions of Lemma 20.1. It is thus the union of k
pairwise edge-disjoint trees. Intersecting these trees with G, we obtain k mutually edge-
disjoint spanning forests of G. 2

Bounds on arboricity

It is not hard to derive general lower and upper bounds for arboricity. In particular,

δ

2
< a(G) ≤ ∆ , (20.5)

where δ and ∆ are the minimum and maximum degrees of G; see Exercises 20.1 and 20.2.
Because many of the graphs treated here are sparse (in particular, hypercubes, their

subgraphs and planar graphs), we are interested in bounds for them. Theorem 20.2 yields
upper bounds on the arboricity of these classes of graphs. These bounds, together with a
general estimate from Chiba and Nishizeki (1985), are the contents of the next theorem.

Theorem 20.3 Let G be a graph on n vertices with m edges. Then

(i) a(G) ≤
⌈
1
2

√
2m+ n

⌉
in general,

(ii) a(G) ≤
⌈

n
2(n−1) log2 n

⌉
if G is a subgraph of a hypercube, and

(iii) a(G) ≤ 3 if G is planar.

Proof We begin with the last assertion. Recall that a planar graph on n vertices has at
most 3n− 6 edges, by Corollary 1.12. Thus |E(H)| < 3 (|V (H)| − 1) for all such graphs. As
each subgraph H of a planar graph G is planar, Theorem 20.2 gives a(G) ≤ 3.

The second assertion is a consequence of the Density Lemma 3.2 that bounds the number
of edges of any subgraph H of a hypercube by 1

2 |H | · log2 |H |.
For (i), consider a subgraph H ⊆ G for which the maximum in Equation (20.1) is

attained. Put p = |V (H)| and q = |E(H)|, so p ≤ n and q ≤ m. Also, q ≤ p(p − 1)/2,
because H cannot have more edges than Kp. Set k = p(p− 1)/2 and consider two cases:

Suppose that k ≤ m. Then

a(G) =

⌈
q

p− 1

⌉
≤
⌈

k

p− 1

⌉
=

⌈
p

2

⌉
=

⌈√
2k + p

2

⌉
≤
⌈√

2m+ n

2

⌉
.

On the other hand, if k ≥ m, then

a(G) =

⌈
q

p− 1

⌉
≤
⌈

m

p− 1

⌉
≤
⌈√

mk

(p− 1)2

⌉
=

⌈√
m(p− 1) +m

2(p− 1)

⌉
≤

⌈√
m

2
+

k

2(p− 1)

⌉
=

⌈√
2m+ p

2

⌉
≤
⌈√

2m+ n

2

⌉
.

This completes the proof. 2
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Note that the proof gives a(G) =
⌈
1
2

√
2m+ n

⌉
if G is complete.

Theorem 20.3 yields good estimates for the complexity of algorithms that scan each edge
uv of a graph G at a cost proportional to min(d(u), d(v)). The next lemma, due to Chiba
and Nishizeki (1985), places the running time of such algorithms at O(a(G)m).

Lemma 20.4 (Arboricity lemma) If G is a graph on n vertices and m edges, then

∑

uv∈E(G)

min( d(u), d(v) ) ≤ 2 a(G)m.

Proof Let F1, F2, . . . , Fa(G) be edge-disjoint spanning forests of G whose union covers G.
Each edge e ∈ E(G) belongs to a component T of some Fi. (Clearly, T is a tree.) For each
such T , choose a root rT ∈ V (T ). Now for each edge e, let h(e) be the endpoint of e that
is further from rT in T . Because each e is contained in exactly one Fi, we have

∑

uv∈E(G)

min( d(u), d(v) ) ≤
a(G)∑

i=1

∑

e∈E(Fi)

d
(
h(e)

)

≤
a(G)∑

i=1

∑

v∈V (G)

d(v)

= 2 a(G)m.

2

20.2 Listing Squares and Triangles

From the definition of the Cartesian product, it is quite obvious that squares play a special
role in all recognition and decomposition algorithms of graphs with respect to the Cartesian
product. Consequently, the same holds for recognition and embedding algorithms of partial
cubes, median graphs, and related classes of graphs.

It is not difficult to find all squares of a graph. One might consider all pairs v, w of vertices
and all common neighbors u1, u2, . . . , uk. Then any choice ui, uj for 1 ≤ i < j ≤ k yields a
square vuiwuj . We might even find it economical not to list all these squares individually
but to store the triple (v, w, {u1, u2, . . . , uk}). As an example, consider K5. The following
triples describe its fifteen squares:

(v1, v2, {v3, v4, v5}), (v1, v3, {v2, v4, v5}),
(v1, v4, {v2, v3, v5}), (v1, v5, {v2, v3, v4}),
(v2, v3, {v4, v5}), (v2, v4, {v3, v5}), (v2, v5, {v3, v4}).

The first triple represents the squares v1v3v2v4, v1v3v2v5, and v1v4v2v5, while the last triple
stands for the square v2v3v5v4.

Suppose that we are given a pair v, w of vertices in a graph G on n vertices. To find all
common neighbors of v, w, it suffices to scan the vertices of G and to check whether they are
adjacent to both v and w. Depending on the data structure, each one of these checks can be
performed in constant time or in O(log n) time. Because G has O(n2) pairs of vertices, the
overall complexity of this approach is O(n3) or O(n3 logn). As the complete graph Kn has
O(n4) squares, this may appear to be quite good already and supports the idea of storing
the triples (v, w, {u1, u2, . . . , uk}).
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A variant is to scan all neighbors of a vertex v, namely all vertices u ∈ N(v), and to assign
the label u to every neighbor w of u with w 6= v. Suppose, after completion of this procedure,
that w has been assigned the labels Xw = {u1, u2, . . . , uk}. Then (v, w, {u1, u2, . . . , uk}) is
the aforementioned triple. Next observe that we can remove v from G and continue with
G− v, because all squares containing v have been found. Thus, in order to find an efficient
algorithm, we should look for a good strategy to choose v. A natural approach is to order
the vertices according to their degrees and to process them in this order. This leads to the
following algorithm of Chiba and Nishizeki (1985):

Algorithm 20.1 Squares

Input: A connected graph G.
Output: A set of triples (v, w, {u1, u2, . . . , uk}) such that every square of G is of the form

vuiwuj , where 1 ≤ i < j ≤ k.

1: Sort the vertices of G such that d(v1) ≥ d(v2) ≥ · · · ≥ d(vn)
2: for all w ∈ V (G), initialize a set Xw := ∅.
3: for i = 1 to n− 3 do
4: for all u ∈ NG(vi) do
5: for all w ∈ NG(u) with w 6= vi do
6: Xw := Xw ∪ {u}.
7: end for
8: end for (At this point Xw = NG(vi) ∩NG(w) for each w.)
9: for all u ∈ NG(vi) do

10: for all w ∈ NG(u) with w 6= vi do
11: if |Xw| ≥ 2, then store (vi, w,Xw).
12: Xw := ∅.
13: end for
14: end for
15: Replace G by G− vi.
16: end for

As an example of this algorithm’s execution, consider the graph in Figure 20.1 with five
squares. Its vertices are already indexed so that d(v1) ≥ d(v2) ≥ · · · ≥ d(v7). The algorithm
produces the triples (v1, v2, {v3, v5}), (v1, v3, {v2, v7}), and (v1, v4, {v2, v5, v6}).

v6 v1 v7

v4 v2 v3

v5

FIGURE 20.1 Graph with five squares.

Theorem 20.5 If G is a connected graph with m edges, then Algorithm 20.1 correctly codes
all squares of G, and can be implemented to run in O

(
ma(G)

)
time. The triples that code

the squares contain at most 2ma(G) entries.
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Proof As noted above, the algorithm codes all squares of G. We need only compute its
time complexity.

Clearly, the degrees can be computed in O(m) time. Because the degree of every vertex
is at most n−1, we can use bucket sort1 to obtain the sequence d(v1) ≥ d(v2) ≥ · · · ≥ d(vn).
Thus Line 1 of the algorithm needs O(m+ n) ≤ O(m) time. Line 2 is O(n) ≤ O(m).

Next we move on to the outer for-loop in Lines 3 through16. In its ith iteration, our
original graph G has been updated to H = G− {v1, v2, . . . , vi−1 }. Consider the nested for-
loop in Lines 4 through 7. These lines scan the neighbors w of neighbors u of vi. Although
vi need not be of maximum degree in H , we still have

dH(u) ≤ dG(u) ≤ dG(vi)

for any u ∈ NG(vi). Thus the number of times (for a given i) that Line 6 is executed is

∑

u∈NH(vi)

dH(u) ≤
∑

u∈NH(vi)

min{dG(u), dG(vi)}.

Consequently, over the entire runtime of the algorithm, Line 6 is executed no more than

∑

vi∈V (G)

∑

u∈NH(vi)

min{dG(u), dG(vi)}

times. Because every edge of G is involved exactly once in the above double summation, we
can rewrite it as ∑

uv∈E(G)

min{d(u), d(v)},

whose value is at most 2ma(G) by Lemma 20.4. Thus the overall contribution of Lines 4–8
is O

(
ma(G)

)
.

By the same reasoning, the overall contribution of Lines 9 through 14 is O
(
ma(G)

)
. In

addition, the total number of triples (vi, w,X) is no more than 2ma(G).
Finally, consider Line 15. Here vi is removed from G, and this can be done in O(d(vi))

time. (To do so, one has to represent the graph as a doubly linked list as described in
Chapter 17.) As Line 15 executes once for each vertex of G, its contribution to the total
complexity is O(m).

In summary, the overall complexity of the algorithm is O
(
ma(G)

)
. 2

Relations associated with the squares of a graph

Here we are concerned with efficient computation of several relations on the edge set of a
graph G. We begin with the definition of a binary relation δ. Two edges e, f are said to
be in relation δ if they are identical or opposite edges of a square without diagonals. This
relation and its transitive closure δ∗ are important for the characterization and embedding
of median and semi-median graphs (see p. 252). In view of Theorem 20.5, we should like
to compute δ in O

(
ma(G)

)
time, but the complete bipartite graph K2,n shows that this is

not always possible. It has
(
n
2

)
squares without diagonals and thus n(n− 1) pairs of edges

that are in relation δ. However, its arboricity is 2, so m · a(K2,n) ≤ 4n, which is an order of
magnitude smaller than |δ| = n(n− 1).

But a closer scrutiny of Algorithm 20.1 and Theorem 20.5 yields some improvements.
The next proposition lists several.

1For the description of bucket sort and other sorting algorithms, see Aho et al. (1987).
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Proposition 20.6 Let G be a connected graph on n vertices with m edges.

(i) If G has no K2,3 subgraph, then δ and δ∗ can be computed in O
(
ma(G)

)
time.

(ii) If G is triangle-free, then δ∗ can be computed in O
(
ma(G)

)
time.

(iii) If G is triangle-free and K2,3-free, then it has at most ma(G)/2 squares.

Proof (i) If G has no subgraph isomorphic to K2,3, then Algorithm 20.1 produces only
triples of the form (v, w, {u1, u2}). This means that δ can be computed for such graphs
in O

(
ma(G)

)
time. Moreover, by Proposition 18.2, the transitive closure δ∗ can also be

determined in O
(
ma(G)

)
time.

(ii) Let G be triangle-free, and assume that it has a triple (v, w, {u1, u2, . . . , uk}), where
k ≥ 3. Then all squares vuiwuj with 1 ≤ i < j ≤ k are induced subgraphs without diagonals,
so the vertices of the triple induce a K2,k. Any two edges of this K2,k are in relation δ∗.
Hence δ∗(G) can be computed in O(ma(G)) time.

(iii) Let G be triangle-free and K2,3-free. By Theorem 20.5, Algorithm 20.1 produces at
most 2ma(G) triples. Because each triple encodes exactly one square, G cannot have more
than ma(G)/2 squares. 2

As subgraphs of hypercubes are of special interest, we record the following special case:

Corollary 20.7 If G is a connected subgraph of a hypercube and has n vertices and m
edges, then δ and δ∗ can be computed in O

(
m log2 n

)
time. Moreover, G has at most

⌈
mn

4(n− 1)
log2 n

⌉

squares.

Proof Because subgraphs of hypercubes contain no K2,3, the first statement follows from
Proposition 20.6 (i) and Theorem 20.3. For the second assertion, recall from Theorem 20.3
that the arboricity of subgraphs of hypercubes is bounded by

⌈
n

2(n−1) log2 n
⌉
. Now apply

Proposition 20.6 (iii). 2

Chapter 23 will introduce a relation τ that plays an important role in the prime fac-
torization of graphs over the Cartesian product. Two edges vu, uw of a graph are in rela-
tion τ if u is the only common neighbor of v and w. Clearly, τ corresponds to all those
triples (vi, w,NG(vi) ∩ NG(w)) computed (and discarded) by Algorithm 20.1 for which
|NG(vi) ∩NG(w)| = 1 and vw 6∈ E(G). Therefore, both τ and τ∗ can be computed for any
connected graph G by a slight modification of Algorithm 20.1 in O

(
ma(G)

)
time:

Proposition 20.8 For any connected graph G, the relations τ and τ∗ can be computed in
O
(
ma(G)

)
time.

Listing triangles in a graph

Finally we turn our attention to triangles in graphs. This topic is important because of
a close connection between median graphs and triangle-free graphs that we will use in a
recognition algorithm.

The following algorithm, Algorithm 20.2, which is also from Chiba and Nishizeki (1985),
computes all triangles of a connected graph. Despite its similarity to Algorithm 20.1 for
squares, it clearly finds all triangles of G. Its time complexity is O

(
ma(G)

)
, as can be

shown by the same arguments as were used for the proof of Theorem 20.5. We formulate
this as a theorem.
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Theorem 20.9 If G is a connected graph with m edges, then Algorithm 20.2 finds and lists
all triangles of G. It can be implemented to run in O

(
ma(G)

)
time.

Algorithm 20.2 Triangles

Input: A connected graph G.
Output: The set of triangles of G.

1: Sort the vertices of G such that d(v1) ≥ d(v2) ≥ · · · ≥ d(vn).
2: for i = 1 to n− 2 do
3: for all pairs of adjacent neighbors u and w of vi do
4: Store the triangle viuw.
5: end for
6: Replace G by G− vi.
7: end for

Exercises

20.1. Show that a(G) ≤ ∆(G) for any graph G, where ∆(G) denotes the maximum degree
of G. Give examples where the bound is sharp.

20.2. Show that δ(G) < 2a(G) for any graph G, where δ(G) is the minimum degree of G.

20.3. Show that a(Kn) =
⌈
n
2

⌉
and a(Km,n) = d mn

m+n−1e.

20.4. Find a graph G for which a(G) > d |E(G)|
|V (G)|−1e.

20.5. Prove that any graphG with δ∗ = Θ is an isometric subgraph of a Cartesian product
of triangles.

20.6. Show that any graph G with δ∗ = Θ is bipartite. (Such graphs are known as semi-
median graphs; see p. 252.)

© 2011 by Taylor & Francis Group, LLC





Chapter 21

Recognizing Median Graphs

21.1 A Simple Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249
21.2 A Fast Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251

Recognition versus embedding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 252
Embedding versus coordinatization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253
Preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253
Convexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 255

21.3 Triangle-Free Graphs and Median Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 259
Recognizing triangle-free graphs via median graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 259
Recognizing median graphs via triangle-free graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 261
Fast recognition of median graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 263

Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 264

Median graphs have been introduced as generalizations of trees and are used, for example,
as median networks in genetics. (See Chapter 12.5.) As they are partial cubes and include
all trees and hypercubes, which can be recognized in linear time, one might expect their
recognition complexity to be somewhere between that of trees and partial cubes. This is
indeed the case.

The first section of this chapter presents a simple recognition algorithm based on a
corollary of the Convex Expansion Theorem 12.8 and the Convexity Lemma 11.6. It is
simple to implement, but its complexity is not exciting; it recognizes whether a graph on n
vertices and m edges is a median graph in O(mn) time.

In the second section we observe that one can embed a median graph on n vertices
isometrically into a hypercube if one knows that it is a median graph, apply the method to
bipartite graphs, and then eliminate those graphs that violate important convexity prop-
erties. The complexity of the resulting recognition algorithm is O(m

√
n). This section is

rather long and harder to read than the first section.

The last section is concerned with an intrinsic relationship between median graphs and
triangle-free graphs. We show that the recognition complexities of these two classes are
closely linked. This relationship is then used in the design of yet another, faster, recognition
algorithm for median graphs. This algorithm also makes use of a method due to Alon,
Yuster, and Zwick (1997) that is interesting in itself and can be read independently of the
rest of this section.

21.1 A Simple Algorithm

Theorem 12.7, which is of a recursive nature, states that a bipartite graph G is a median
graph if certain subgraphs are median graphs and convex in G. Interestingly, we can use the
following nonrecursive corollary, due to Bandelt (1982), in designing a recognition algorithm
for median graphs.

249
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250 Recognizing Median Graphs

Corollary 21.1 A connected bipartite graph G is a median graph if and only if 〈Uab〉 and
〈Uba〉 are convex for every edge ab of G.

Proof Suppose G is a (connected) median graph. Theorem 12.4 says G is also a partial
cube, so Theorem 11.8 implies that 〈Wab〉 and 〈Wba〉 are convex in G. Now, 〈Uab〉 is convex
in 〈Wab〉 by Lemma 12.6, and as 〈Wab〉 is convex in G, it readily follows that 〈Uab〉 is convex
in G also. By the same argument, 〈Uba〉 is convex in G.

Conversely, suppose 〈Uab〉 and 〈Uba〉 are convex in G. We will use Theorem 12.7 to show
that G is a median graph. Condition (ii) of the theorem is satisfied by our hypothesis, and
(i) follows from (ii) and the fact that G is bipartite. Note that (i) also implies that 〈Wab〉
and 〈Wba〉 are convex.

For (iii), we show 〈Wab〉 is a median graph by induction on |V (G)|. As 〈Wab〉 is convex
in G, the relation ΘG restricted to 〈Wab〉 is Θ〈Wab〉. Let H = 〈WG

ab〉 and uv be an edge of
H . Then 〈WH

uv〉 = 〈WG
uv〉 ∩ H and 〈UH

uv〉 = 〈UG
uv〉 ∩ H . Because the intersection of convex

subgraphs is convex, 〈WG
ab〉 satisfies the assumptions of the corollary. By induction, 〈Wab〉

is a median graph. 2

For our algorithm we also need the following technical corollary to Theorem 11.8.

Corollary 21.2 Let G be a partial cube, and ab and uv be a pair of edges in relation Θ.
Then Uab = Uuv.

Proof Because Θ is transitive (by Theorem 11.8), we have Fab = Fuv . Proposition 11.7
then implies that Wab = Wuv and Wba = Wvu. Then Uab = Uuv by definition of Uxy. 2

We are now ready for the recognition algorithm. The idea is to test whether a given graph
is a partial cube and to check the conditions of Corollary 21.1 by invoking the Convexity
Lemma 11.6.

Algorithm 21.1 Median graphs – simple

Input: The adjacency list of a connected graph G.
Output: true if G is a median graph, false otherwise.

1: If Algorithm 18.2 determines that G is not a partial cube, then return false and stop.
2: for all Θ∗-classes Fab do
3: Determine the induced subgraphs 〈Uab〉, 〈Uba〉. If any one of them is disconnected

return false and stop.
4: for all edges uv of ∂〈Uab〉 and ∂〈Uba〉 do
5: Check whether uv is in relation Θ with an edge of 〈Uab〉 or 〈Uba〉.
6: If this is the case, then return false and stop.
7: end for
8: end for
9: Return true.

Theorem 21.3 Algorithm 21.1 correctly recognizes median graphs. It can be implemented
to run in O(mn) = O(n2 logn) time and O(n2) space.

Proof Median graphs are partial cubes by Proposition 12.4. By Corollary 21.1, it suffices
to check for every edge ab of the graph G being investigated that the subgraphs 〈Uab〉 and
〈Uba〉 are convex in G. By Corollary 21.2, it suffices to perform this check for only one edge
of each Θ∗-class. Finally, Steps 4 through 7 are a reformulation of Lemma 11.6 for median
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graphs: The subgraph 〈Uab〉 is convex if and only if no edge of 〈Uab〉 is in relation Θ to an
edge of ∂〈Uab〉. We conclude that Algorithm 21.1 correctly recognizes median graphs.

By Theorem 18.8, Step 1 runs in O(mn) time and O(n2) space. Here Algorithm 18.2
determines all Θ∗-classes. We can implement it so that it also determines the distance matrix
of G and store the Θ∗-classes as described in Chapter 17. We can then check in constant
time in which class an edge is contained.

For Step 3 we first observe that the total number of vertices in all the sets Uab (which
we need to check) is 2m, as in Exercise 21.1. We determine the complexity of finding the
Uab as follows. Consider the equivalence classes E1, E2, . . . , Ek of Θ∗ one by one. At class
Ei we begin by selecting an edge, say, ab. Then we initialize characteristic vectors of length
n (with a place for every one of the n vertices of G) for the sets Uab and Uba by setting all
entries equal to zero. For every edge uv ∈ Ei, we then check whether u or v is closer to a;
that is, we determine to which set u and v belong and change the corresponding entry in
the respective vector to 1. This takes O(m) time and O(n2) space.

To find the edges in 〈Uab〉 for a given Uab, scan all edges of G and check whether both
of their endpoints belong to Uab. There are k pairs Uab, Uab, and hence the time complexity
to determine all 〈Uab〉s is O(mk) = O(mn). Furthermore, since the total number of edges in
the 〈Uab〉s is O(m log n), the 〈Uab〉 can be checked for connectedness within the same time
complexity.

For Step 5 it is convenient to have a characteristic vector to every Uab and Uba that tells
us which of the Θ∗-classes have nonempty intersection with 〈Uab〉 and 〈Uba〉. This can be
achieved by scanning the edges of every Ei, determining whether both of their endpoints be-
long to Uab, respectively, Uba, and effecting appropriate entries in the characteristic vectors.
The complexity is O(mk) = O(mn).

For any vertex of a Uab, we check for all incident edges e whether they are in Uab or in
the equivalence class of ab. If not, the edge e is in ∂〈Uba〉, and we have to check whether its
equivalence class has nonempty intersection with 〈Uba〉. With the above data structure we
can perform every individual check in constant time. Thus the overall time complexity of
the algorithm is O(mn) = O(n2 logn). 2

This median recognition algorithm is due to Imrich and Klavžar (1998). Jha and Slutzki
(1989, 1992) presented two different approaches for recognizing median graphs, each yielding
an O(mn) algorithm. In the first paper they adapted Theorem 12.18, and in the second
they used Theorem 12.7 in combination with Proposition 21.10. A third algorithm can be
deduced from the work of Feder (1992), who presented an algorithm that finds the so-called
canonical 2-isometric representation of a graph in O(mn) time and O(m) space.

21.2 A Fast Algorithm

We just showed how to recognize median graphs by a simple algorithm of complexity
O(mn) = O(n2 logn). In search of a faster algorithm we next show that median graphs
can be embedded into hypercubes in O(m log n) steps. In other words, once it is known that
a graph is a median graph, it can be embedded into a hypercube in O(m logn) time.

We mention in passing that the first subquadratic recognition algorithm for median
graphs is due to Hagauer, Imrich, and Klavžar (1999). It has complexity O(m

√
n) but is

quite different from the algorithm presented here. Nonetheless, the Embedding Lemma 21.4,
which is one of the motivations for the algorithm outlined below, was also obtained there.
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We now prepare for our O(m
√
n) recognition algorithm by exploring additional charac-

teristic properties of median graphs.

Recognition versus embedding

Recall that two edges e, f of G are in relation δ if e = f or e and f are opposite edges of a
square in G. Clearly, δ is reflexive and symmetric. It is also contained in Θ, which implies
that δ∗ ⊆ Θ∗. For partial cubes we thus have δ∗ ⊆ Θ by Theorem 11.8.

We now show that any median graph G can be isometrically embedded into an r-cube
in O(m log n) steps and that embedding is equivalent to finding the transitive closure of δ.

Suppose that every 〈Uab〉 in a partial cube G is connected. Then any two edges e, f that
are in relation Θ to the edge ab must be contained in Fab and are therefore in relation δ∗.
In this case we have δ∗ = Θ. In particular, this is true for median graphs.

We must note, however, that the validity of

δ∗ = Θ

in a bipartite graph G does not imply that G is median, as the example of Q−
3 shows. It

is also easy to see that δ∗ 6= Θ in a hexagon, although a hexagon is a partial cube. Hence
the class of bipartite graphs for which δ∗ = Θ constitutes a proper subclass of the class
of partial cubes and properly contains the class of all median graphs. These graphs are
interesting in their own right. We call them semi-median graphs. They were introduced by
Imrich and Klavžar (1998).

Semi-median graphs and median graphs are partial cubes; therefore both δ and δ∗ can be
computed for them in O(m log n) time. Because knowing Θ∗ for a partial cube is equivalent
to embedding it into the hypercube, we have the following sequel to Corollary 20.7:

Lemma 21.4 (Embedding Lemma) Let G be a semi-median graph or a median graph
on n vertices with m edges. Then G can be embedded isometrically into a hypercube in
O(m log n) time.

Semi-median graphs can be embedded into hypercubes in O(m log n) time once they are
recognized as semi-median graphs, but the present recognition complexity still is O(mn),
as they can be recognized by checking whether they are partial cubes for which δ∗ = Θ.

For partial cubes we know of no shortcut for the embedding procedure, even if we already
know that a graph is a partial cube. For median graphs the situation is similar to that of
semi-median graphs: They can be recognized by checking whether they are partial cubes
and subsequent verification whether the 〈Uab〉 are convex; see Theorem 21.3.

But we reiterate that median graphs can be embedded in O(m logn) time by the Em-
bedding Lemma 21.4. We use this embedding to derive an algorithm that recognizes median
graphs in O(m

√
n) time, which is the main result of this section.

We often envisage the embedding process as a coloring procedure, and regard F = Fab

as edges of a single and distinct color. If G is a partial cube, then we get an edge-coloring
in the sense that every edge is assigned a color, and incident edges have different colors.1

By the same arguments, the equivalence classes of δ∗ are a coloring if no two edges of the
same color have a common endpoint. We will always ensure that this holds by eliminating
graphs that violate this condition in the preprocessing parts of our algorithms.

By Corollary 21.1, a partial cube G is a median graph if and only if, for any edge ab,

1Similar to the chromatic number, one defines the chromatic index. It is the smallest number of colors
needed to color the edges of a graph such that incident edges have different colors. Notice that the chromatic
index in a partial cube can be much smaller than the number of Θ-classes.
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the subgraphs 〈Uab〉 and 〈Uba〉 are convex. To check whether a given graph is a median
graph G, we will therefore initially color it by the equivalence classes of δ∗ and then test
for selected properties of median graphs until we are sure that δ∗ = Θ and that all 〈Uab〉
are convex.

Embedding versus coordinatization

We always claim that the embedding of a partial cube is complete when we have determined
the Θ-classes, that is, colored all edges. Some authors speak of an embedding only after a
coordinatization has been computed. This can make a big difference. Take a tree T on n
vertices. It (and its Θ∗-classes) can be recognized in O(n) steps, but its coordinatization
takesO(n2) time and space. As such, that is, without the aid of bitvectors, it takes n−1 steps
to look up the entries of a single coordinate vector of a given vertex once the coordinatization
is completed. But we can find this vector with the same effort just from the Θ∗-classes.

To see this, suppose Θ of a partial cube G on n vertices has been determined. Compute
a BFS-tree with respect to a root vertex v0 and label the edges with the number of their
Θ∗-class. Given a vertex v, one can then find its coordinate vector by following any shortest
path from v to v0, using the labels of the edges on that path for coordinatization. Notice
that no two edges on a shortest path are in relation Θ, which is the same as Θ in partial
cubes. Thus, the number of steps for the coordinatization of v is not larger than the number
of Θ-classes, which is bounded by n− 1.

Therefore one does not improve the complexity of operations by the coordinatization,
unless bitvectors are used as in Section 18.4. Moreover, the Θ-classes depend only on the
graph, but the coordinatization depends on the basepoint and the order of the Θ-classes.

Hence, from our point of view the embedding complexity of a tree on n vertices and m
edges is O(m), whereas the complexity of coordinatizing its vertices is O(n2).

Compare this with a result of Cheng (2011), which we already mentioned on p. 191.
Cheng computes the number of Θ-classes of median graphs inO(n+m), without determining
the classes themselves.

Preprocessing

As median graphs are connected, bipartite, and sparse, we have to screen our input graphs
G for these properties. Moreover, we arrange the vertices of G in BFS-order with respect
to a root v0.

By Algorithm 17.2, a BFS-ordering of the vertices of a graph G given by its adjacency
list can be computed in O(m) time. Within the same time complexity we can then determine
whether G is connected (Corollary 17.3) and bipartite (Proposition 17.4).

Sparseness requires a little more thought. Considering the edges of G as directed pairs
of vertices, we recall that ab is an up-edge if d(v0, a) < d(v0, b) and a down-edge if d(v0, a) >
d(v0, b). (Because G is bipartite, d(v0, a) 6= d(v0, b).) Also the set

Li = {v | d(v0, v) = i}

is the ith distance level of G with respect to the root v0. We set l(v) = i if v ∈ Li.
Recall that the down-degree of a vertex v in G is the number of neighbors of v in Ll(v)−1.

By Lemma 22.6, the down-degree k of a vertex v in a median graph is at most log2 |G|, and
v is contained in a k-cube that meets the levels Ll(v), Ll(v)−1, Ll(v)−2, . . . , Ll(v)−k.

We will mostly use this result for k = 2. Thus, to any two down-edges ab, ac of a median
graph, there exists a vertex d in level Ll(a)−2 that is adjacent to both b and c. Moreover
there exists exactly one such vertex d, for if a second one d′ existed, then a, d, d′ would
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have the two medians b and c. We call the property that exactly one such vertex exists
down-closure.

Keeping in mind down-closure and the above degree limitations of a median graph, we
eliminate all graphs that do not satisfy these properties, and compute δ and δ∗.

Algorithm 21.2 Preprocessing for median graph recognition

Input: The adjacency list of a graph G on n vertices and m edges.
Output: δ and δ∗ for all admitted graphs G.

1: If m > n log2 n, reject.
2: Arrange the vertices in BFS-order with respect to an arbitrarily chosen root v0.
3: If G is disconnected, nonbipartite, or has vertices of down-degree larger than log2 n,

reject.
4: Find all squares.
5: If a K2,3 is detected, reject.
6: Compute δ and δ∗.
7: If two distinct edges incident with the same vertex are in the same δ∗-class, reject.
8: If there is a square that meets only two BFS-levels, reject.
9: If there is a square that violates down-closure, reject.

10: Admit G and return δ and δ∗.

Lemma 21.5 Algorithm 21.2 admits all median graphs and correctly determines δ and δ∗.
All admitted graphs have at most n log2 n edges, are connected and bipartite. Each square
meets three levels with respect to a fixed, but arbitrarily chosen, BFS-order, and G satisfies
down-closure with respect to this order.

The time complexity of the algorithm is O(m logn).

Proof We first show that Algorithm 21.2 admits all median graphs. Then we consider its
time complexity.

Correctness All steps except Steps 7 and 8 have already been motivated. For Step 7 notice
that no two distinct edges of a hypercube that share one endpoint are in relation Θ and
that we are looking for graphs with δ∗ = Θ.

For Step 8 observe that every square of a median graph must meet three levels. To see
this, suppose that the square abcd just meets levels Lk and Lk−1, where a, c ∈ Lk and
b, d ∈ Lk−1. By down-closure we infer the existence of a vertex v ∈ Lk−2 that is adjacent
to b and d. But then both b and d are medians of a, c, and v, which is not possible.

Hence, all median graphs are accepted and have the asserted properties.

Complexity With the exception of Steps 4 and 9, all steps of the algorithm are straight-
forward and have complexity O(m logn).

For Step 4 notice that no subgraph H of G has more than |V (H)| log2 n edges. This is
clearly so because the number of edges of H is the number of down-edges of G in H and
thus bounded by |V (H)| log2 n. By Theorem 20.2, the arboricity of G is at most 2 log2 n.

By Theorem 20.5 all squares of G can therefore be determined in O(m logn) time. The
algorithm codes these squares as triples (v, w, {u1, u2, . . . , ui}), with no more than 2ma(G)
entries. If i > 2, then G contains a K2,3. Because K2,3 is not a subgraph of a hypercube, we
reject all graphs containing such triples. Clearly, this can be achieved in O(m log n) time.

Because all squares are then coded in the form (v, w, {u1, u2}), G has at most 2ma(G) ≤
2m log2 n squares. We reject G if it has more than (mn/(4(n− 1)) log2 n squares, because
in this case it cannot be a subgraph of a hypercube by Corollary 20.7.
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Notice that the squares contain no diagonal, because G is bipartite, and that the knowl-
edge of all squares is equivalent to the knowledge of δ. Now an application of Proposition
18.2 shows that δ∗ can also be computed in O(m log n) time.

For Step 9, note that Step 7 already eliminates all graphs in which three down-edges of
a vertex have a common neighbor and those in which two down-edges have two common
neighbors. Thus, to check down-closure, it suffices to count whether there are as many
squares with top vertex v as there are distinct pairs of down-edges from v. 2

Convexity

At a first glance it appears that we have almost completed our task after preprocessing,
and that convexity of the Uab (see Corollary 21.1) is the only problem left to deal with.
However, we still do not know whether Θ = δ∗. It is not even clear whether the coloring we
have obtained is an embedding into the hypercube and, if it is an embedding, whether it is
an isometric embedding.

Although we conjecture that all graphs admitted by Algorithm 21.2 are properly em-
bedded, it seems to be rather tedious to prove. Nonetheless, even if this conjecture is true,
the admitted graphs need not be isometrically embedded. To see this, take Q3, remove the
edge (011)(111), and choose v0 = (000), as shown on left of Figure 21.1. Also note that this
graph would not have been admitted if we had chosen (011) as a base, for then a square
would be contained in two BFS-levels. One problem with this graph is that edges of the
same color as an edge ab do not necessarily induce an isomorphism 〈Uab〉 → 〈Uba〉. (Take
ab = (000)(001).) To eliminate the problem, we might as well check directly whether the
edges of each color induce such an isomorphism.

100

110

v0 = 000

010

101

111

001

011 100

110

000

010

101

111

001

011

FIGURE 21.1 Two nonisometric embeddings.

To do this, we define F ∗
ab as the set of edges in relation δ∗ to ab. Suppose that ab is an

up-edge. Then we set

U∗
ab = {x | xy ∈ F ∗

ab and xy is an up-edge}

and define U∗
ba analogously (with down-edges). Because every vertex x is in d(x) sets F ∗

ab,
the total number of vertices in the U∗

ab’s and U∗
ba’s is 2m. Also, because every edge is a

down-edge with respect to one endpoint and an up-edge with respect to the other, the
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total number of edges in the subgraphs 〈U∗
ab〉 and 〈U∗

ba〉 is bounded by the total number of
vertices times the bound log2 n for the down-degree; in other words, these graphs contain
at most m log2 n edges. By Theorem 17.1, we can thus check within complexity O(m log n)
whether the sets F ∗

ab induce isomorphisms between 〈U∗
ab〉 and 〈U∗

ba〉.
We have thus shown:

Lemma 21.6 Without altering the time complexity, Algorithm 21.2 can be modified such
that it also checks whether the F ∗

ab induce isomorphisms between the 〈U∗
ab〉 and 〈U∗

ba〉.

Note that any two edges uv and xy of F ∗
ab with u, x ∈ U∗

ab are either both up-edges
or both down-edges. If this were not so, we would have two adjacent vertices u, x of this
type and then the square uvyx would either meet four or just two levels with respect to v0,
neither of which is possible.

Unfortunately, even then the graphs admitted need not be partial cubes. To illustrate
this we alter our previous example as illustrated on the right of Figure 21.1.

To eliminate such graphs, we define down-convexity. We call a subgraph H of a graph G
down-convex with respect to a root v0 if it is connected and if no down-edge of ∂H has the
same δ∗-color as an edge of H . (Note that 〈U∗

(000)(001)〉 is not down-convex in the second

graph of Figure 21.1.)

Because all graphs properly embedded into a hypercube satisfy the property that removal
of any Fab disconnects them, we check whether removal of any single F ∗

ab disconnects G.

Lemma 21.7 For any graph G admitted by Algorithm 21.2, down-convexity can be checked
in time and space complexity O(m logn). Moreover, removal of any δ∗-class disconnects G.

Proof By Lemma 21.6, we can assume that we have already determined the 〈U∗
ab〉. For

every vertex in 〈U∗
ab〉 we consider all of its down-edges. If a down-edge is not in 〈U∗

ab〉, we
check whether the color of the down-edge is a color occurring in 〈U∗

ab〉. If this is so, we reject
the graph G. We note that 2m =

∑ |〈U∗
ab〉| and that every vertex has at most log2 n down-

edges. Thus, at most 2m log2 n checks must be performed. Proceeding as in Algorithm 21.1
(Median Graphs – simple), we see that this can be done in constant time for every check
and that we can stay within the limit of O(m) space.

We show now that removal of any δ∗-class disconnects G. Suppose that this is not so
and that there is a down-edge ab such that removal of F ∗

ab does not disconnect G. Then
there must be a shortest path P in G−F ∗

ab from a vertex u in U∗
ab to v0. Let uv be the first

edge of P . If it is a down-edge, then there also must be a down-edge uw ∈ F ∗
ab in G and,

by down-closure, a vertex x ∈ V (G) that is adjacent to both v and w. But then vx and uw
have the same color, vx ∈ F ∗

ab, and v is in U∗
ab.

If uv is an up-edge, we continue from v along P until we meet the first down-edge of P .
Such an edge must exist because v0 is in the lowest level. Let P [u,wk] = uvw1w2 . . . wk−1wk

be the subpath of P consisting only of up-edges of P to the first down-edge wkw
′
k. By down-

closure there are vertices u′, v′, w′
1, . . . , w

′
k−1 such that wk−1w

′
k−1, wk−2w

′
k−2, . . . , w1w

′
1,

vv′, uu′ all have the same color and that v′w′
1 . . . w

′
k is a path P ′ from v′ to w′

k. Note that
none of the w′

j can be equal to wj−2 or v because of the minimality of P . By the above,
v′ ∈ U∗

ab. Let i be the largest index such that w′
i is in U∗

ab. But then P ′[w′
i, w

′
k] ∪ P [w′

k, v0]
is a path from U∗

ab to v0, which is shorter than P . Because all colors of P ′ also occur in P ,
this new path does not meet F ∗

ab and contradicts the minimality of P . 2

Lemma 21.8 Let G be a graph admitted by Algorithm 21.2. Suppose that in G all pairs
〈U∗

ab〉 and 〈U∗
ba〉 are isomorphic and down-convex. Then G is a partial cube.
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Proof Let u, v be two arbitrary vertices in an admitted graph G. Then there is a shortest
path P from u to v that consists of two parts P [u,w] and P [w, v], of which the first one
contains only down-edges (in the direction to v) and the other one only up-edges. One of
these parts can be empty.

To see this, suppose that Q is a shortest path from u to v that does not have the stated
property. Then Q contains two down-edges yx and yz, and by down-closure there is a vertex
y′ adjacent to both x and z such that xy′ and zy′ are down-edges. Replacing the sequence
xyz of Q by xy′z, we obtain a new shortest path Q′ from u to v, and the sum of the levels
of its vertices is lower than that of Q. Clearly, any path P for which the sum of the levels
of its vertices is minimal satisfies the partition property claimed above, so the continuation
of this process with Q eventually terminates with the required path P .

Next, consider two down-edges uv, xy in F ∗
ab, where ab is a down-edge. We wish to show

that uvΘ xy.
If there is a shortest path P from u to x that contains no element of F ∗

ab, we partition
it into a down-path P [u,w] and an up-path P [w, x]. (It is possible that w is equal to u or
to x.) By down-closure, there are two neighbors v′ and y′ of w, such that uv and wv′ are
in relation Θ and δ∗ and also the pair of edges xy and wy′. But then we must have v′ = y′

and uvΘ xy.
We claim that a shortest u, x-path contains neither v nor y.
Let uv, xy be a pair of edges for which a shortest path P from u to x contains both v

and y. Let P be minimal with respect to this property. If P [v, y] is completely contained in
〈U∗

ba〉, then 〈U∗
ba〉 and 〈U∗

ab〉 cannot be isomorphic. But then there is a shortest subpath Q
of P [v, y] that is not in 〈U∗

ba〉 but connects two vertices r, s of it. Let rr′ be the first edge
of Q and ss′ the last. Because at most one vertex of P has no neighbors in lower levels, we
can assume that rr′ is a down-edge. By down-convexity, it cannot have a color that is the
color of an edge in 〈U∗

ba〉. Hence there must be another edge tt′ of the same color as rr′ in
Q. Let t′ be closer to r′ than t. Because there are no edges of the same color as that of rr′

between r′ and t′, tt′ is a down-edge. But this contradicts the minimality of the distance
between uv and xy.

Suppose that P contains only v. Again we assume that uv and xy are of minimal distance
with respect to this property. Partition P as before into a down-path P [u,w] and an up-path
P [w, x]. Neither P [u,w] nor P [w, x] contains an edge of the same color as uv. In the first
case it would contradict the minimality of the distance of uv and xy, and in the second
P would not be a shortest path. Hence there is a down-edge ww′ in F ∗

ab. But this is not
possible because v and w must be either both in 〈U∗

ab〉 or both in 〈U∗
ab〉.

Thus δ∗ ⊆ Θ.
Now suppose that uv and xy are in relation Θ but not δ∗. We can choose the notation

such that there are shortest paths P from u to x and Q from v to y such that uv∪Q∪yx∪P
is a cycle. No edge of P or Q can be in relation Θ to uv; otherwise, uv ∪Q or vu∪P could
not be a shortest path. But then they can also not be in relation δ∗, because δ∗ is contained
in Θ. It follows that F ∗

uv does not separate G unless uv and xy are in relation Θ.
Hence, F ∗

uv = Fuv, 〈U∗
ab〉 = 〈Uab〉, and G is a partial cube. 2

We sum up our findings in the following lemma:

Lemma 21.9 Algorithm 21.2 can be modified so that all accepted graphs are semi-median
graphs in which the 〈Uab〉 are down-convex with respect to the chosen BFS-ordering. The
complexity of the algorithm remains O(m logn).

It remains to check the 〈Uab〉 for convexity. We already know from Algorithm 21.1
(Median graphs – simple) that a direct approach leads to time complexity O(mn). We
prefer to check for 2-convexity instead in some cases.
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We call a subgraph H of a graph G 2-convex if all shortest G-paths of length at most
2 between vertices of H are already in H . For bipartite graphs this is equivalent to the
statement that the common neighbors of two vertices u, v in H are also in H .

This concept is equivalent to convexity for median graphs as the following proposition
shows. It was observed by Bandelt, who communicated it to Jha and Slutzky; see Jha and
Slutzki (1992).

Proposition 21.10 Let G be a bipartite graph in which every triple of vertices has a me-
dian. Then a connected subgraph of G is convex if and only if it is 2-convex.

Proof Because 2-convexity is weaker than convexity, we only have to show that every 2-
convex connected subgraph H of a bipartite graph G is convex if every triple of vertices of
G has a median. Suppose that this is not the case. Then there exists a 2-convex subgraph
H of G with two vertices u, v ∈ V (H) for which there exists a shortest path P from u to v
that is not completely in H . Suppose that the graph H and the vertices u and v have been
chosen such that t = dH(u, v) is smallest possible and that dG(u, v) is minimal with respect
to this distance t.

Note that by 2-convexity, the length of P is at least 3 and can thus be written in the
form 3k + e with k ≥ 1 and e ∈ {0, 1, 2}.

Suppose first that there is a path Q from u to v in H that has the same length as P .
Select vertices x and y on P and Q, respectively, with dG(u, x) = 2k+ e and dG(u, y) = 2k.
Let w be a median of u, x, y. Clearly, there is a shortest path R of length 2k from u to y
containing w and a shortest path of the same length from u to y that is completely in H .
Because 2k < 3k+ e, the path R must also be completely contained in H . Thus w ∈ V (H).

It is easy to see that the distance from w to x is at most k+e. Because x is on a shortest
u, v-path and w on a shortest u, x-path, we note that dH(w, v) ≤ 2k+e < 3k+e = dH(u, v).
Because both w and v are in H , the entire path must be in H by the minimality of dH(u, v).
But then x ∈ V (H), dH(u,w)+dH(w, x) = 2k+e, and dG(u, x) = 2k+e. By the minimality
of t, the part of P from u to x must be in H , just as the part from x to u. But then P is
already in H .

We can therefore continue under the assumption that every path Q in H from u to v
is longer than dG(u, v). Let z be a vertex on Q with r = dG(u, z) = dG(v, z) + e, where
e ∈ {0, 1}. If 2r + e = dG(u, v), then any shortest u, z-path and from v to z must be
completely in H by the minimality of dH(u, v). Thus 2r + e > dG(u, v).

Let w be a median of u, v, z. If w is not in H , we consider the path of length r from u via
w to z. It is a shortest path not completely in H connecting two vertices of H of distance
less than t in H , in contradiction to the minimality of dH(u, v). If it is in H , we note that
then the v, z-path via w must also be in H . But this means that there is a path in H from
u to v via w which has length dG(u, v), bringing us back to the first case; this is the case in
which dG(u, v) = dH(u, v). 2

Unfortunately, we cannot apply this proposition in our situation because we do not know
yet whether our graphs have medians; in fact, this is just what we wish to show. We use
the following lemma instead:

Lemma 21.11 For all partial cubes G with δ∗ = Θ, an isometric subgraph is convex if and
only if is 2-convex and down-convex.

Proof It suffices to show that every 2-convex, down-convex, and down-closed subgraph H
of G is convex. Let u, v be two vertices of minimum distance in G that are connected by a
shortest path P that meets H only in its endpoints, and let Q be a shortest u, v-path in H .
By isometry, every color of an edge of P is a color of an edge of Q and thus of H . If one
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of the edges of P incident with u or v is a down-edge, it must be in H by down-convexity,
and P is completely in H by the minimality of the distance of u and v. If this is not the
case, we transform it by the methods of the proof of Lemma 21.8 to a path P ′ satisfying
this property. But then P ′ is in H . Now we recall that the transformation process used
in the proof of the existence of such a path in Lemma 21.8 always changes only a pair of
adjacent vertices. Reversing this process and going from P ′ to P , we see by 2-convexity that
we proceed from one path in H to another one in H . Thus P is also in H . 2

To check whether a graph G that has passed all previous tests is a median graph, we
use Corollary 21.1. Thus we only have to check whether every 〈Uuv〉 is convex. Depending
on the size of Uuv, we will either use the Convexity Lemma or check for 2-convexity.

To check for convexity by the Convexity Lemma, we scan the vertices x of Uuv one after
the other and check for every color occurring in 〈Uab〉 whether an edge xy in the boundary of
Uuv has this color. As we have seen before, each of these tests can be performed in constant
time with the proper data structure. Because 〈Uuv〉 cannot have more than |Uuv| colors,
the total time is bounded by O(|Uuv |)2.

For a check using 2-convexity, we again scan all vertices x of Uuv and mark all neighbors
of x not in Uuv. Then 〈Uuv〉 is 2-convex if and only if no vertex is marked twice. Because
G has m edges, the total time is at most O(m).

Consider the set S of all Uuv’s with |Uuv| ≤
√
n. Then the total time needed to check

these graphs for convexity with the Convexity Lemma is

∑

Uuv∈S

|Uuv|2 ≤ √
n
∑

Uuv

|Uuv| ≤ n0.5m,

as
∑

Uuv
|Uuv| = m.

This inequality also shows that there are at most m/
√
n sets Uuv containing more than√

n elements. Thus the total time for these checks is O
(
n(m/

√
n)
)

= O(m
√
n), and we have

derived the main result of this section:

Theorem 21.12 For a graph G on n vertices and m edges, one can decide in O(m
√
n)

time whether it is a median graph.

21.3 Triangle-Free Graphs and Median Graphs

In this section we investigate the relationship between median graphs and triangle-free
graphs. This relationship is the basis of an O((m log n)1.41) algorithm for the recognition
of median graphs. (More precisely, the time complexity is O((m log n)2ω/(ω+1)), where ω is
the exponent of matrix multiplication; see p. 216.)

Recognizing triangle-free graphs via median graphs

For a graph G, let G4 be the 2-simplex graph of G. It is obtained from G by adding a new
vertex z that joins all the vertices of G, and by replacing every edge e = uv of G by a path
of length 2. In other words,

V (G4) = V (G) ∪E(G) ∪ {z} ,
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and the edge set E(G4) of G4 is

{zu | u ∈ V (G)} ∪ {ue | u ∈ V (G) and is incident with e ∈ E(G)} .

This construction is illustrated by Figure 21.2, which shows that C4
3 is the vertex-deleted

3-cube Q−
3 and that C4

4 = P3 2P3.

u ve u v

e

u e v u
e

v

z

z

FIGURE 21.2 C4
3 = Q−

3 and C4
4 = P3 2P3.

Note that C4
3 is not a median graph, but C4

3 is. This is not a coincidence:

Theorem 21.13 A graph G is triangle-free if and only if G4 is a median graph.

Proof Suppose G is triangle-free. Now, G4 is connected and bipartite. By Corollary 21.1,
it suffices to show that the subgraphs 〈Uab〉 of G4 are convex.

To prove that each 〈Uab〉 is convex, we need to consider two types of edges. First consider
an edge of type uz, where u is a vertex of G (and thus also of G4). Our construction of
G4 ensures that 〈Uuz〉 is the star consisting of all edges (other than uz) of G4 that are
incident with u, and this is convex. Similarly, 〈Uzu〉 is a star with a central vertex z joining
all v 6= z for which uv ∈ E(G); and the fact that G is triangle-free makes this star convex.

The other type of edge is ue, where u is a vertex of G incident with the edge e. Because
the degree of e in G4 is 2, we infer that 〈Uue〉 is again a star, with the center z. Similarly,
〈Ueu〉 is a star whose center is the neighbor of e different from u. As in the first case, 〈Uue〉
and 〈Ueu〉 are convex. By Theorem 21.1, we conclude that G4 is a median graph.

For the converse, assume that G contains a triangle with edges e1, e2, and e3. In G4,
the vertices e1, e2, and e3 are pairwise of distance 2, and because they have no common
neighbor, this triple has no median. (See Figure 21.2.) Thus G4 is not a median graph. 2

Corollary 21.14 Let M(m,n) be the complexity of recognizing median graphs with m
edges and n vertices. Then the complexity of checking whether G is triangle-free is at most
O(M(m,m)).

Proof By Theorem 21.13, we can decide whether G is triangle-free by first constructing
G4 and then checking whether G4 is median. Now, G4 has 2m+ n edges and n+ m+ 1
vertices, and we can construct it in linear time. To check whether it is a median graph, we
need (recall that G4 is connected) O(M(2m+ n, n+m+ 1)) = O(M(m,m)) time. 2

By Corollary 21.14, the algorithm from Section 21.2 yields an O(m3/2) algorithm for
the recognition of triangle-free graphs.
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We next take a closer look at the median graphs arising in Theorem 21.13. Clearly,
not all median graphs appear. In order to describe the ones that do appear, the following
definitions are helpful: Recall that the eccentricity e(x) of a vertex x in a connected graph
G is the maximum distance of x to any other vertex in G. The radius r(G) of G is the
minimum eccentricity in G, and a vertex x is a central vertex of G if e(x) = r(G).

Let M2
n,m be the class of median graphs with

1. Minimum degree 2
2. Radius 2
3. A single vertex, say w, of maximum degree n
4. Unique central vertex w
5. m vertices at distance 2 from w

In addition, let T f
n,m stand for triangle-free graphs with n vertices, m edges, and without

vertices of degree 1 and n− 1. With these notions we can state the following result, which
intuitively asserts that there are as many median graphs as there are triangle-free graphs:

Corollary 21.15 For each n and m, the mapping f : G 7→ G4 is a bijection between the
graph classes T f

n,m and M2
n,m.

Proof We first note that f maps T f
n,m into M2

n,m. Indeed, G4 is a median graph by
Theorem 21.13, and it has minimum degree 2, because G has no vertex of degree 1. Also
G4 has radius 2 because the vertex z is adjacent to all original vertices. In addition, z is
the unique vertex of maximum degree n because G has no vertex of degree n − 1. By the
same reasoning, it is also the unique central vertex. Finally, there are m vertices at distance
2 from z, because G has m edges.

Let G1 and G2 be nonisomorphic graphs from T f
n,m. If G4

1 were isomorphic to G4
2 , then

any isomorphism would map the unique central vertex of maximum degree of G4
1 to the

corresponding vertex of G4
2 . But then G1 and G2 would be isomorphic as well.

To complete the proof, we need to show that f is surjective. So let H be a median graph
from M2

n,m, and z be the unique central vertex that is also the unique vertex of maximum
degree n. Let w be any vertex of H with d(w, z) = 2. Because H is bipartite, all neighbors
of w must be adjacent to z. The degree of w is at least 2, because H is in M2

n,m. In fact,
the degree of w is exactly 2 because H is a median graph, and therefore K2,3-free. Because
H has m vertices of distance 2 from z, and z has n neighbors, H has 1 + n + m vertices
and n + 2m edges. Now we construct the graph G on the set of all neighbors of z in H .
We join two vertices of G by an edge if and only if they have a common neighbor in H
that is different from z. Clearly, G has n vertices and m edges. Moreover, H = G4. Finally,
because H is Q−

3 -free, G is triangle-free. 2

Recognizing median graphs via triangle-free graphs

We now ask whether algorithms for recognizing triangle-free graphs can help in the recog-
nition of median graphs.

The starting point is the situation after Lemmas 21.9 and 21.11. We can assume that G
is a semi-median graph whose vertices have been arranged in BFS-order such that all 〈Uab〉
are down-convex, and that we only have to check for 2-convexity.

Suppose that there is a vertex x in Wab \ Uab that has two neighbors in Uab, say u
and v. Because Uab is isometric, there is a vertex w ∈ Uab that is adjacent to both u and
v. Moreover, there are vertices u′, v′, and w′ in Uba that are adjacent to u, v, and w,
respectively, such that these six vertices together with x induce a Q−

3 .
Let L0, L1, . . . be the distance levels of G with respect to the BFS-ordering, and assume
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that x ∈ Li+1. The vertices u, v cannot be in the same level as x, as there are no cross-edges.
Moreover, by down-convexity, the edges ux, vx cannot be down-edges. Thus u and v both
belong to Li.

The vertex w cannot be in Li+1; otherwise, we would have a square that meets only two
levels. Hence w ∈ Li−1.

Because squares can meet at most three levels, all three edges uu′, vv′, ww′ from u, v, w
to Uba must be up-edges, as in Figure 21.3, or all three must be down-edges. If all three are
down-edges, we have a situation that contradicts the down-convexity of 〈Uvx〉.

x

u

z

u′

v

w

v′

w′

Li+2

Li+1

Li

Li−1

FIGURE 21.3 Testing 2-convexity.

We have thus shown that the violation of 2-convexity for a 〈Uab〉 leads to the situation of
Figure 21.3. If there exists a vertex z ∈ Li+2 that is adjacent to x, u′, and v′, then x ∈ Uab

and 2-convexity is not violated. If this is not the case, then x, u′, and v′ have no median.
We summarize our conclusions by the following lemma:

Lemma 21.16 Algorithm 21.2 can be modified, without changing its complexity, such that
only semi-median graphs are accepted and such that every accepted nonmedian graph has a
Q−

3 that is embedded in the BFS-levels as in Figure 21.3.

Recalling that C4
3 = Q−

3 , we define graphs Hi on the vertex set Li by letting two
vertices of Hi be adjacent if they have a common neighbor in Li+1. Clearly, Hi has at
most |Li+1|(log2 n)2 edges. Thus all the graphs Hi have a total of at most n(log2 n)2 edges.
Moreover, if G is a median graph, there are not more than n(log2 n)3 triangles in the Hi,
because every triangle corresponds to a Q3 embedded in G.

Suppose that we found all triangles in the Hi. For each such triangle of Hi, we only
have to check whether the corresponding three vertices in Li+1 have a common neighbor
z in Li+2. This is easy, because G has already been embedded into a hypercube by the
preprocessing. In other words, we know precisely the colors of the possible edges between z
and the three vertices of Li+1, and we can check this in constant time.

Suppose that we are given an algorithm of complexity T (m,n) that finds all triangles in a
given graph with n vertices and m edges. In our case m = O(n log n). Preprocessing requires
O(m log n) time. Every triangle comes from a Q−

3 . To test whether these Q−
3 subgraphs are

convex, we follow the approach above and take a total of T (n(log2 n)2, n) time. We have
therefore proved the following theorem:

Theorem 21.17 Let T (m,n) be the complexity of finding all triangles of a given graph on
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n vertices and m edges. Then the complexity of checking whether a graph G on n vertices
and m edges is a median graph is at most O(m log n) + T (m logn, n).

The best general algorithm known for listing all triangles of a graph has complex-
ity O(m3/2). By Theorem 21.17, we conclude that median graphs can be recognized in
O(m log n + (m log n)3/2) time. Because m = O(n log n), this reduces to O(n3/2 log3 n),
which only differs by factor log2 n from the complexity of Theorem 21.12.

This is not what we had in mind, as we wish to reduce the complexity. We can use this
theorem though to show that planar median graphs can be recognized in linear time.

The arguments leading to this result rely on the observation that the factor logn in the
complexity of the preprocessing comes from the bound on the down-degree of the vertices
in G. Because every vertex x of down-degree k in a median graph G is contained in a
hypercube Qk and because Qk is nonplanar for k > 3, this implies that the down-degrees
of planar median graphs are bounded by 3. Thus, preprocessing is linear in this case.

Corollary 21.18 Planar median graphs can be recognized in linear time.

Proof Let G be planar graph on n vertices with m edges. Because it is well known that
planar graphs can be embedded into the plane in linear time, we assume that G is given
together with such an embedding.

Let Xi be the subgraph spanned by Li+1 and Li. In Li+1 there may be vertices of degree
1, 2, or 3 in Xi, but none of higher degree. Let w be a vertex in Li+1 of degree 3 and a, b, c
be its neighbors in Li. We split w into three vertices x, y, z and replace the edges aw, bw, cw
by ax, ay, by, bz, cz, cx. We do this for every vertex of degree 3. Clearly, the new graph X ′

i

constructed this way is still planar. Moreover, every vertex of Xi not in Li has degree 1 or
2. We now delete the vertices of degree 1 and replace every path x1x2x3, where x1, x3 ∈ Li

and x2 ∈ Li+1, by a single edge x1x3. Thus Hi is obtained by the same construction as the
one used in the proof of Theorem 21.17.

Proceeding as in the proof of Theorem 21.17, we have to find all triangles in the Hi and
perform certain checks. The complexity of these operations is determined by the complexity
of finding all triangles. But the number of triangles in planar graphs can be found in linear
time because planar graphs have arboricity 3.

The proof is completed by noting that Hi has at most 3n edges. 2

The connections between triangle-free graphs and median graphs, in particular those
stated in Theorem 21.13 and corollaries, are all from Imrich, Klavžar, and Mulder (1999),
as is the linear recognition algorithm for planar median graphs.

Fast recognition of median graphs

One of the obstacles to improving the complexity of recognizing median graphs in the
preceding considerations is the fact that we cannot determine all triangles of a given graph
quickly enough. As we will see below, it is enough to be able to find for every edge the
number of triangles that contain it.

As a corollary to a result of Alon, Yuster, and Zwick (1997), we show that we can do this
slightly faster than listing all triangles. First the result of Alon, Yuster, and Zwick (1997).

Theorem 21.19 It is possible to decide whether a directed or undirected graph G with n
vertices and m edges contains a triangle, and to find one if it does, in O(m2ω/(ω+1)) =
O(m1.41) time, where ω is the exponent of matrix multiplication.

Proof Let ∆ = m(ω−1)/(ω+1). We say a vertex has high degree if its degree is larger than
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∆ and low degree otherwise. Then the number of paths uvw, where v is of low degree, is
at most m∆, and they can be found in O(m∆) time. For each such path we check whether
uw ∈ E(G). This way we find all triangles containing a vertex of low degree.

If no triangles are found, all triangles are composed of vertices of high degree. Because
there are at most 2m/∆ vertices of high degree, we can use matrix multiplication to check
for triangles in O((m/∆)ω) time. Thus the total complexity is

O(m∆) +O(m/∆)ω) = O(m2ω/(ω+1)).

2

Corollary 21.20 Let G be an undirected graph with m edges. Then the complexity of de-
termining in how many triangles every edge of G is contained is O(m2ω/(ω+1)).

Proof For vertices of low degree, all triangles containing them are actually constructed by
the procedure above. We can thus determine within the given complexity in how many such
triangles every edge is contained.

For vertices of high degree, we observe that matrix multiplication gives us to all pairs
of vertices of high degree the number of common neighbors of high degree. If such a pair
of vertices consists of the endpoints of an edge, this number is the number of triangles
consisting only of vertices of high degree containing this edge.

Summing up the numbers of these different types of triangles that contain a given edge,
we obtain the total number of triangles that contain this edge. 2

With Lemma 21.16 we now prove a theorem of Imrich from the first edition of this book.

Theorem 21.21 Let G be a graph with n vertices and m edges. Then one can decide in
O
(
(m logn)2ω/(ω+1)

)
= O

(
(m logn)1.41

)
time whether G is a median graph.

Proof We begin with the situation described in Lemma 21.16 and define the graphs Hi as
in the proof of Theorem 21.17. By the above we can determine the number of triangles in
which every edge of Hi is contained.

On the other hand, if G is a median graph, every such triangle corresponds to a Q3 in
G. Let u be a given vertex. Consider all subcubes Q3 of G that contain u and for which u
is in the highest BFS-level of all vertices of Q3. Because the down-degree of every vertex is
bounded by log2 n, the number of such cubes is at most (log2 n)3. Also one easily sees that
the total number of cubes is at most m(log2 n)2. Thus, under the assumption that G is a
median graph, the complexity of finding for every edge the number of Q3’s that contain it
is O(m(log n)2).

If there is an edge e for which this number is different from the previously determined
number of triangles which contain e, then G is not a median graph. 2

Exercises

21.1. Given a partial cube on n vertices and m edges, show that the total number of
vertices in all the sets Uab is 2m.

21.2. (Mulder, 1980a) Show that a connected graph G is a median graph if and only if it
is triangle-free and any triple u, v, w of G with d(u, v) = 2 has a unique median.
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21.3. (Imrich, Klavžar, and Mulder, 1999) Show that Aut(G4) = Aut(G) if G is not a
star.

21.4. (Imrich et al., 1999) Show that G4 is a Cartesian product if G is a star and
determine the automorphism group of G4.

21.5. (Imrich, Klavžar, and Mulder, 1999) Let G be a triangle-free graph. Show that
there is a Qr and a mapping j : V (G) → V (Qr) such that d(j(u), j(v)) = 2 for
every edge uv of G.
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Hamming graphs are Cartesian products of complete graphs and thus generalize the concept
of hypercubes. In Chapter 14 we introduced partial Hamming graphs as isometric subgraphs
of Hamming graphs, in analogy to partial cubes as isometric subgraphs of hypercubes, and
quasi-median graphs as generalizations of median graphs.

This chapter is concerned with recognition algorithms for these classes of graphs. We
begin with a simple, linear recognition algorithm for Hamming graphs and continue with
an O(mn) algorithm for partial Hamming graphs.

It turns out that quasi-median graphs have the same recognition complexity as median
graphs, which is a highly nontrivial result of Hagauer (1995). We present the algorithm and
the main part of the arguments for its validity.

Finally we provide an algorithm that determines the windex of a graph efficiently, which
is important for the dynamic location problem of Chapter 14.

22.1 Hamming Graphs and Partial Hamming Graphs

The general question whether a graph is a Cartesian product of other graphs will be treated
in Chapter 23. Here we provide a simple linear factorization algorithm for Hamming graphs.

Let G be a Hamming graph. Its vertices can be labeled with r-tuples a1a2 . . . ar, where
the alphabets from which the ai are taken may depend on i. To simplify matters, we will
always assume that ai ∈ {0, 1, . . . , ni − 1}, where r ≥ 1 and ni ≥ 2. Two vertices of G
are adjacent if the corresponding tuples differ in precisely one position. We called such a
labeling of vertices a Hamming labeling. For example, the Hamming graph on the left side of
Figure 22.2 (on p. 270) is labeled with pairs a1a2, where a1 ∈ {0, 1, 2} and a2 ∈ {0, 1, 2, 3}.

Suppose that we are given a Hamming graph G without its labeling and wish to find it.
We choose a vertex v0 and consider the distance levels

Lk = {u ∈ V (G) | d(v0, u) = k}

of a BFS-ordering of G. Label the components of 〈L1〉 as C1, C2, . . . Cr. Notice that each
〈V (Ci) ∪ {v0}〉 is a layer Gv0

i of G (as a Cartesian product of r complete graphs), so the
Hamming labels of G are r-tuples. We label v0 with the r-tuple 000 . . .0, and label the
vertices of Ci with r-tuples 0 . . . 0ai0 . . . 0, where ai assumes all values between 1 and ni−1.

We label the remaining vertices in accordance with the following lemma. The labeling

267
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268 Recognizing Partial Hamming Graphs and Quasi-Median Graphs

method is similar to that for partial cubes in Procedure 18.4, where the label w(v) of v was
computed as the disjunction of the labels of its down-neighbors.

Lemma 22.1 Let G be a Hamming graph. Suppose that the vertices of the distance levels
L0 and L1 of G with respect to a BFS-ordering of G have been labeled as described above.
Then the vertices in the distance levels Lk, k ≥ 2, can be labeled as follows: Suppose that we
already know the labels of the vertices in Lk−1. Let u ∈ Lk. Then u has at least two neighbors
v, w in Lk−1, and any two such neighbors differ in exactly two coordinates. If v = b1b2 . . . br
and w = c1c2 . . . cr, then u = a1a2 . . . ar, where ai = max{bi, ci} for i = 1, . . . , r.

110

100

111

101

010

000

011

001

FIGURE 22.1 Graph with a labeling that is not a Hamming labeling.

If we do not know whether G is a Hamming graph but wish to check it, we also follow
the above procedure. If it fails, then G is not a Hamming graph. On the other hand, G may
not be a Hamming graph, even if the labeling procedure is successful; Figure 22.1 shows a
non-Hamming graph with a labeling obtained by this method. (Note that it has the same
number of vertices and edges as Q3.) Thus we must check that the Hamming graph H
associated with the labeling is indeed isomorphic to G. This yields the following algorithm.

Algorithm 22.1 Hamming graphs

Input: The adjacency list of a connected graph G.
Output: true if G is a Hamming graph, false otherwise.

1: Choose a vertex v0 and find the connected components of 〈N(v0)〉.
2: Let the components be C1, . . . , Cr, and suppose they have n1 − 1, . . . , nr − 1 vertices,

respectively.
3: Construct the Hamming graph H with vertices a1 . . . ar where ai ∈ {0, . . . , ni − 1}.
4: Label v0 with r zeros and the vertices of Ci with 0 . . . 0ai0 . . . 0, ai ∈ {1, . . . , ni − 1}.
5: Label all other vertices of G according to Lemma 22.1. If this is not possible, then return

false and stop.
6: Check whether the bijection between H and G given by the labelings is an isomorphism.

If so, then return true; otherwise return false.

Algorithm 22.1 is an improved version of an algorithm of Imrich and Klavžar (1997). It
labels a graph G according to Lemma 22.1 and checks whether it is a Hamming labeling.
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Theorem 22.2 Algorithm 22.1 correctly recognizes Hamming graphs. For a connected input
graph with m edges, it can be implemented to run in O(m) time and O(m) space.

Proof Concerning correctness, we observe that Steps 1, 2, 4, and 5 determine a Hamming
labeling if G is a Hamming graph. This Hamming graph must be the Cartesian product
of the 〈Ci ∪ v0〉. This product is determined in Step 3 and denoted H . If G is a Hamming
graph, then it must be isomorphic to H via the mapping identifying vertices with the same
labels. This is checked in Step 6.

Now to the complexity of the algorithm. Because every vertex of G has at least r neigh-
bors, we infer that nr ≤ 2m. Hence the total length of the labels is O(nr) = O(m). Clearly,
Steps 1 to 4 of the algorithm can be executed within the claimed time. In Step 5 we select
two neighbors v, w ∈ Lk−1 of an unlabeled vertex u ∈ Lk and form the new label of u. This
can be done in O(r) time. Thus the complexity of this step is O(nr) = O(m). For Step 6
we invoke Theorem 17.1.

For none of the steps we needed more than O(m) space. 2

Partial Hamming graphs

Partial Hamming graphs are isometric subgraphs of Hamming graphs. Let us assume that
their embedding is irredundant, in other words, they have the minimal number of factors.
By Corollary 13.7, the embedding is canonical, hence we can determine it efficiently by
Corollary 18.7.

We thus arrive at the following algorithm for the recognition of partial Hamming graphs.

Algorithm 22.2 Partial Hamming graphs

Input: The adjacency list of a connected graph G.
Output: true, and a labeling, if G is a partial Hamming graph; false otherwise.

1: Compute Θ∗
1. {Recall that Θ∗ = Θ∗

1.}
2: Denote the number of Θ∗-classes by k.
3: Compute Gi, i = 1, 2, . . . , k, and α(v), v ∈ V (G).
4: If for some i, 1 ≤ i ≤ k, G/Πi is not a complete graph, then return false and stop.
5: Return true and the labeling of G obtained in Step 3.

Theorem 22.3 Algorithm 22.2 correctly recognizes partial Hamming graphs. It can be im-
plemented to run in O(mn) time with O(m) space.

Proof Steps 1 through 3 can be implemented by the method suggested in Exercise 18.9
for the design of a pseudocode for the computation of the canonical isometric embedding of
a graph. By Corollary 18.7 this can be done in O(mn) time and O(m) space. It therefore
remains to show that Step 4 can be implemented within this time and space complexity.

To see this, we note that every edge of a quotient graph G/Πi corresponds to an edge

of G and that this correspondence is injective. Hence
∑k

i=1 |E(G/Πi)| ≤ m. To implement
Step 4 within the desired time and space, it therefore suffices to count the number of edges
in the quotient graphs G/Πi. 2

Algorithm 22.2 is from Imrich and Klavžar (1993). Its complexity is the same as the
complexity of the algorithm of Aurenhammer, Formann, Idury, Schäffer, and Wagner (1994).
This algorithm was obtained before the one of Imrich and Klavžar (1993), although it
appeared later; it is direct but difficult. Algorithm 22.2 was further simplified in Klavžar
(2006), but the complexity remains the same.
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22.2 Quasi-Median Graphs

The following algorithm reduces the recognition problem for quasi-median graphs to that
of median graphs. For a graph G and a vertex s ∈ V (G), the skeleton Gs of G (relative to
s) is the graph obtained from G by removing all cross-edges uv of G, that is, all uv with
d(s, u) = d(s, v). Note that Gs is connected whenever G is connected. The next result is the
key to our fast algorithm for the recognition of quasi-median graphs.

Theorem 22.4 The skeletons of quasi-median graphs are median graphs.

Proof Let G be a quasi-median graph that is isometrically embedded into a Hamming
graph. We may assume that s = 00 . . . 0. We now define a binary labeling of vertices of Gs.
Let u = u1 . . . ut be a vertex of G. Then let the label u′ = u′1 . . . u

′
t be defined as follows:

Let the image of the ith positions of vertices in G be the set {0, . . . , ji}. Then u′i is a string
of length ji. In such a string the jth bit is set to 1 if ui = j. All the other bits are equal to
0. Figure 22.2 shows an example of such a labeling.

00 03 23 00 000 00 001 01 001

01

02

00 100

00 010

13 10 001

FIGURE 22.2 Quasi-median graph and its skeleton.

By Corollary 14.9, it suffices to prove that Gs is a median-closed induced subgraph of a
hypercube.

We show first that the binary labeling we have defined embeds Gs as an induced subgraph
into the hypercube. To distinguish between G and Gs, we represent vertices of Gs by their
labels. Let u′v′ be an edge of Gs. Then uv is an edge of G, and thus u and v differ in exactly
one position, say ui 6= vi. Because dG(s, u) 6= dG(s, v), exactly one of ui and vi must be 0.
Therefore u′ and v′ differ in one position. Because H(u′, v′) ≥ H(u, v), we have thus shown
that Gs is an induced subgraph of a hypercube.

It remains to prove that Gs is median-closed. Let u′, v′, and w′ be an arbitrary triple
of vertices of Gs corresponding to the triple u, v, and w of G. Set

x = imp
(
imp(u, v;w), imp(u,w; v); s

)
.

As G is a quasi-median graph, x ∈ V (G). A straightforward check shows that if two values
among ui, vi, and wi are equal, then xi also equals this value. Otherwise, xi = 0. But this
implies that x′ = imp(u′, v′;w′), in other words, that Gs is median-closed. 2

The necessary condition of Theorem 22.4 is not sufficient to recognize quasi-median
graphs. We must also verify whether the edges of G not in the skeleton fit into it. This is
done via the following two relations.

Let s be a fixed vertex of a graph G. Then a subgraph H of G is called s-gated if there
exists a vertex x of H such that d(s, y) = d(s, x) + 1 for any vertex y 6= x of H . Then edges
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e and f of G are in relation Σ if they belong to the same s-gated triangle. Let Σ∗ denote
the reflexive and transitive closure of Σ.

Assume that Gs is a median graph. Then we say that edges e and f of Gs are in relation
T if there is an edge g of Gs such that eΣ∗g and gΘf .

Theorem 22.5 Let G be a connected graph and s ∈ V (G). Then G is a quasi-median graph
if and only if the following conditions hold:

(i) Gs is a median graph.
(ii) Each equivalence class of Σ∗ on E(G) induces an s-gated clique.

(iii) T is an equivalence relation on E(Gs).

We will only prove that the three conditions of Theorem 22.5 are necessary. The proof
that they are also sufficient is rather lengthy and technical (Hagauer, 1995).1

Let G be a quasi-median graph. Because, by Lemma 14.19, every clique of G is gated
and, by Theorem 14.13 (iv), G induces no K4−e as a subgraph, condition (ii) holds. To show
that T is an equivalence relation, recall that a quasi-median graph is a partial Hamming
graph. Thus let G be equipped with a Hamming labeling in which the vertex s is labeled
with a sequence of zeros. Then one can show that edges e and f of Gs are in relation T if
and only if the Hamming labels of the endpoints of e and the endvertices of f differ in the
same position. This immediately implies that T is an equivalence relation.

As an immediate consequence of Theorem 22.5, we infer that Algorithm 22.3 correctly
recognizes quasi-median graphs.

Algorithm 22.3 Quasi-median graphs

Input: The adjacency list of a connected graph G.
Output: true if G is a quasi-median graph, false otherwise.

1: Compute Gs, where s is an arbitrary vertex of G.
2: If Gs is not a median graph, then return false and stop. Otherwise, compute a (binary)

Hamming labeling.
3: If the equivalence classes of Σ∗ on E(G) do not induce s-gated cliques, then return false

and stop.
4: If T is not an equivalence relation on E(Gs), then return false and stop.
5: Return true.

Showing the time complexity requires some preparation. Recall that the down-degree of
a vertex v in G is the number of neighbors of v in Ll(v)−1, and that the down-degree of a
vertex v in a subgraph G of an r-cube is bounded by its level l(v) by Proposition 17.5. For
median graphs, this statement can be improved as follows:

Lemma 22.6 Let G be a median graph and v a vertex of down-degree k with respect to
a vertex v0. Then k ≤ log2 |V (G)|, and v is contained in a k-cube that meets the levels
Ll(v), Ll(v)−1, Ll(v)−2, . . . , Ll(v)−k.

Proof Because Qk has 2k elements, k cannot be larger than log2 |V (G)| if Qk ⊆ G. It
therefore suffices to prove the second assertion.

We show that any k down-neighbors of v are contained in such a cube, even if the down-
degree of v is higher. Let v1, v2, . . . , vk be down-neighbors of v. We suppose that the edge

1This means that Algorithm 22.3, Theorem 22.7, and Theorem 22.9 are also only proved up to this
sufficiency argument. These results are not invoked later.
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vvi is colored with color i.2 By Exercise 22.11 it suffices to show that there is a vertex x in
level Ll(v)−k that is connected with v by k! shortest paths containing v1, v2, . . . , vk.

For k = 2, consider the median x of v1, v2 and v0. Because x is on a shortest v0, v1-path
and d(v1, v2) = 2, we have x ∈ Ll(v)−2, and x has distance 1 from both v1 and v2. Thus it is
a common down-neighbor of v1 and v2 and the assertion about the paths is true for k = 2.

Suppose now that k > 2 and that the assertion of the lemma is true for k − 1. We
first note that any pair of vertices vi, vj , 1 ≤ i, j ≤ k, has a common down-neighbor, say
vij . Then the edge vivij has the same color as the edge vvj ; that is, every vi has k − 1
down-neighbors, all of which have colors different from that of vvi. Let xi be the vertex in
level Ll(v)−k that is connected with vi by 2k−1 distinct shortest paths. Then v is connected
with xi by that many shortest paths whose first edge is vvi. All these paths contain the
colors 1, 2, . . . , k. Because this is true for all i, all vertices xi must be identical, and we have
found the k! paths. 2

Let M(m,n) denote the complexity of recognizing median graphs on n vertices and m
edges. We can now state:

Theorem 22.7 For a graph G on n vertices and m edges, Algorithm 22.3 correctly recog-
nizes quasi-median graphs. It can be implemented to run in O(M(m,n) +m logn) time.

Proof The correctness of the algorithm has already been observed.

Clearly, Steps 1 and 2 can be implemented to run in the desired time and space. More-
over, in O(m) time and space we can compute d(s, u) for each u ∈ V (G).

In Step 3 we have to compute the relation Σ∗. We begin by sorting the down-edges of
each vertex. Altogether we sort at most m edges. Thus this can be done in O(m logm) =
O(m log n) time. Then, for each cross-edge uv of G, we do the following: We simultaneously
scan the sorted lists of down-edges of u and v and determine the number of their common
neighbors. If there is no such vertex or more than one, we reject the graph. (In both cases
a clique containing uv is not s-gated.) If w is the only common neighbor of u and v, then
we put the edges uv, uw, and vw into the same class using the simple merging operation
of Proposition 17.7. By Lemma 22.6, we need to check at most O(log n) neighbors for each
cross-edge; thus the overall complexity of computing Σ∗ is O(m logn).

Now we must test whether the Σ∗-classes are s-gated cliques. Because we know all the
distances d(s, u), this can be done easily by checking these distances and counting the
number of edges and vertices in each class.

Finally, we implement Step 4. Let uv be an edge of Gs. In Step 3 the edge uv is labeled
by a unique clique to which it belongs (with respect to Σ∗). We may assume that in Step
2 the coordinate in which u and v differ with respect to the (binary) Hamming labeling is
also computed. In other words, uv is also labeled by a color. We first sort the color list for
each clique. This can be done in O(m log n) time.

By definition, two edges e and f are in relation T if there is an edge g from the same
Σ∗-clique as e with the same color as f . Suppose that we have k colors. We form k boxes as
follows: If a clique Q contains an edge (from Gs) of color i, then we put Q in the ith box.
Now T is an equivalence relation if all the cliques of a box have the same color list. If Q
and Q′ are two cliques from the ith box, then we simultaneously scan the sorted color lists
of the cliques to check whether they are the same. Any additional clique from the ith box
must be compared only to the clique Q. Moreover, if j is a color of the clique Q, then the
test of the ith box gives a test for the jth box as well. After the color lists of the cliques
are sorted, the remaining test is linear in m. 2

2In other words, we assume that vvi is contained in the Θ∗-class Ei.
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The presented recognition algorithm for quasi-median graphs is due to Hagauer (1995).
Mulder (1980a); Chung, Graham, and Saks (1989); as well as Wilkeit (1992) observed earlier
that quasi-median graphs can be recognized in polynomial time. For instance, one can first
check whether a given graph is a partial Hamming graph, and then verify whether it is
imprint-closed. Feder (1992) presented a method that yielded an O(mn) algorithm.

Wilkeit (1986), see also Wilkeit (1992, p.218), proved that retracts of Hamming graphs
are Cartesian products of median graphs and Hamming graphs. This yields a fast recog-
nition algorithm for retracts of Hamming graphs: Given a connected graph, extract all
complete factors and test whether the remainder is a median graph. By Section 23.4 and
Theorem 21.12 this can be done in O(m

√
n) time.

Notice that quasi-median graphs are weak retracts and cannot be recognized by this
algorithm.

22.3 Computing the Windex

The motivation to study quasi-median graphs was the dynamic location problem. It turned
out that graphs of finite windex are quasi-median graphs. To compute the windex of a graph
efficiently, we will apply the following result:

Proposition 22.8 If WX(G) <∞, then WX(G) = ω(G).

Proof Let Q be a largest clique of G, meaning that |V (Q)| = ω(G). Then Q is a weak
retract of G. (This is true for any clique of G.) Thus, by Lemmas 14.3 and 14.4, we have
ω(G) = |V (Q)| = WX(Q) ≤WX(G).

For the converse, consider G as a connected, imprint-closed, irredundant subgraph of
a Hamming graph G1 2G2 2 · · · 2Gn. Let i be an arbitrary index, 1 ≤ i ≤ n, and let
u and v be adjacent vertices that differ in the ith coordinate. Such vertices exist because
the embedding is irredundant and because G is connected. Because G is imprint-closed,
the set of vertices {imp(u, v;w); w ∈ V (G)} forms a clique of size |V (Gi)|. It follows that
WX(G) ≥ ω(G). 2

Algorithm 22.4 Windex

Input: The adjacency list of a connected graph G.
Output: WX(G).

1: If G is not a quasi-median graph, then WX(G) = ∞.
2: Compute the quotient graphs G/Πi of the canonical isometric embedding of G.
3: WX(G) = max

i
{|V (G/Πi)|}.

Theorem 22.9 If G is a connected graph on n vertices and m edges, then Algorithm 22.4
correctly computes WX(G) and can be implemented to run in O(mn) time.

Proof Correctness follows from Theorem 14.13 and Proposition 22.8, and the complexity
from Theorems 22.7 and 22.3. 2

In addition to the canonical isometric representation described in Chapter 13, Feder
(1992, 1995) considers canonical 2-isometric representations and canonical retract represen-
tations. In the case of Hamming graphs, the connected 2-isometric subgraphs coincide with
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the retracts. Because the canonical 2-isometric representation of a graph can be found in
O(mn) time, this yields alternative O(mn) recognition algorithms for median graphs and
quasi-median graphs as well as an algorithm for computing the windex of a graph within
the same time complexity. On the other hand, the problem of finding the canonical retract
representation of a graph is NP-hard. Along these lines, Feder also proved the following re-
sult: Let V (K2) = {1, 2}, a be a vertex of a graph G, and H a subgraph of G2K2 induced
by the vertices {(u, 1) | u ∈ V (G)} ∪ (a, 2). Then the problem whether H is a retract of
G2K2 is NP-complete.
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The Sabidussi-Vizing Theorem 6.6 states that connected graphs factor uniquely into primes
with respect to the Cartesian product. The proof is surprisingly short. The first aim of this
chapter is to provide an almost equally short argument that the prime factors of a connected
graph on n vertices and m edges can be computed in O(mn) time.

The preparations for the algorithm also lead to a new proof of the uniqueness of the
prime factorization that also holds, with slight modifications, for infinite graphs.

The second goal is a fast algorithm for prime factorization. The main idea is to define
a simple relation on the edge set of the graph to be factored that is finer than the product
coloring (see p. 162). This relation is then made coarser in at most log2 n steps until it equals
the product coloring. The method—though conceptually simple—is technically tricky. We
thus only present a relatively straightforward version of complexity O(m log n), but explain
in the final section subtle changes that lead to a linear recognition algorithm.

23.1 Product Relation

Let G = G1 2 · · · 2Gk be a connected Cartesian product. Recall that the product color
c(uv) of an edge uv ∈ E(G) is i if u and v differ in coordinate i. We then say that two
edges e and f of G are in relation c(G1 2 · · · 2Gk) if c(e) = c(f). We call the relation
c(G1 2 · · · 2Gk) a product relation.

Clearly, c(G1 2 · · · 2Gk) is transitive, reflexive, and symmetric. By Lemma 13.5 (ii),

ΘG ⊆ c(G1 2 · · · 2Gk) .

Our goal is the computation of the product coloring of the prime factorization of G. In
order to do this, we introduce a new relation τ on E(G).

We say that edges e = uv and f = uw of G are in relation τ , in symbols eτf , if e = f ,
or vw /∈ E(G) and u is the only common neighbor of v and w. See Figure 23.1.

v u w

fe

FIGURE 23.1 Edges e and f in relation τ .
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276 Factoring the Cartesian Product

Clearly, τ is symmetric. Furthermore, if e = uv and f = uw are in relation τ , e and f
cannot both be edges of one and the same chordless square. In other words, eτf implies
that e and f have the same color with respect to any product coloring of G. Thus

τ(G) ⊆ c(G1 2 · · · 2Gk) .

Because c(G1 2 · · · 2Gk) is transitive, we infer that

(ΘG ∪ τG)∗ ⊆ c(G1 2 · · · 2Gk). (23.1)

It turns out that (Θ ∪ τ)∗ is the product relation of the prime factorization of G. To show
this, we show first that it is a product relation. To this end we extend the concept of the
square property as defined on p. 66 to equivalence relations on E(G) and prove a lemma.

We say an equivalence relation ρ on the edges of a graph G has the square property if
for any two edges e = uv and f = uw that belong to different equivalence classes of ρ, there
is a unique x ∈ V (G) such that uvxw is a diagonal-free square. (See Figure 23.2.)

u

w x

v

f

e

FIGURE 23.2 Square property.

Lemma 23.1 The relation σ = (Θ ∪ τ)∗ has the square property.

Proof Suppose that e = uv and f = uw belong to different equivalence classes of σ. Then
v and w are not adjacent; otherwise, e and f would be in relation Θ. Also e and f cannot be
in relation τ . Thus there must exist another common neighbor, say x, of v and w. Clearly,
x is not adjacent to u, for otherwise eΘf .

Suppose x is not unique and that there is another vertex, say x′, that is adjacent to v
and w. By the definition of Θ, we infer that

uvΘwxΘx′vΘuw.

But then eΘ∗f , which is not possible. 2

Theorem 23.2 If G is connected, then σ = (Θ ∪ τ)∗ is a product relation.

As we shall see, this result immediately implies the unique prime factorization of con-
nected graphs with respect to the Cartesian product, that is, Theorem 6.6 of Sabidussi-
Vizing, and yields the O(mn) Algorithm 23.1 for the computation of the prime factors.
Moreover, it holds for infinite graphs. We present two proofs.

First proof Let E1, E2, . . . , Ek be the σ-equivalence classes of E(G). For each index i, let
Gi be the subgraph induced by E(G) \ Ei. Becaue every σ-class is a union of Θ∗-classes,
Lemma 11.5 implies that the components of Gi are convex.

We claim that if C and C′ are two adjacent components of Gi, then the set of edges in
G joining C to C′ is a matching that induces an isomorphism C → C′. First note that each
vertex of C is adjacent to at most one vertex of C′. Indeed, if x ∈ V (C) were adjacent to
y, z ∈ V (C′), then yz ∈ E(C′), by convexity of C′. But then xyΘ yz, which is impossible.
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Hence any vertex of C is adjacent to at most one vertex of C′. Now, if xx′ joins C to C′

and xy ∈ E(C), then Lemma 23.1 guarantees a chordless square xx′y′y. By connectedness
of C, we infer that the edges from C to C′ induce an injective homomorphism C → C′.
Reversing the roles of C and C′, we see that this homomorphism is an isomorphism.

Next observe that if Ci is a component of Gi for each index i, then
⋂k

i=1 Ci consists of
at most one vertex. Indeed, this intersection has no edges because every edge is in some Ei

but no edge of Ci belongs to Ei. As an intersection of convex subgraphs, it is connected,
and thus a single vertex, provided that it is nonempty.

Actually, connectedness of G implies that it is nonempty: First take an x ∈ V (G) and

for each i let Ci be the component of Gi containing x, so x ∈ ⋂k
i=1 Ci. Now, if for some i

the component Ci is adjacent to a component C′
i, then the previous paragraph guarantees

that G has an edge xy with y ∈ C′
i. As the edge xy belongs to each Cj with j 6= i, we have

y ∈ C1∩· · ·∩C′
i∩· · ·∩Ck. We infer that—by connectedness of G—any intersection

⋂k
i=1 Ci

is nonempty. In summary, any
⋂k

i=1 Ci consists of exactly one vertex.
Now for each index i, let G∗

i be the graph whose vertices are the components of Gi and
for which CC′ is an edge precisely if G has an edge joining the components C and C′. For
each vertex x of G, let Gi(x) be the component of Gi that contains x. We define a map
α : G→ G∗

1 2G
∗
2 · · · 2G∗

k as

α(x) =
(
G1(x), G2(x), . . . , Gk(x)

)
.

If α is an isomorphism, then the corresponding product relation on E(G) equals σ, for
then xy ∈ Ei precisely if α(x) and α(y) differ in coordinate i.

Thus to finish the proof, we just need to show that α is an isomorphism. Clearly, it is a
homomorphism: Given an edge xy of G, we have xy ∈ Ei for some i. The definitions imply
Gi(x)Gi(y) ∈ E(G∗

i ), and Gj(x) = Gj(y) for j 6= i, so α(x)α(y) is an edge.
The map is injective, for α(x) = α(y) means that x and y are in the same component

Ci of Gi for each i, so x, y ∈ ⋂k
i=1 Ci. As the intersection is a single vertex, x = y. To see

that it is surjective, note that any vertex (C1, . . . , Ck) equals α(x), where x =
⋂k

i=1 Ci.
Finally suppose α(x)α(y) = (C1, . . . , Ci, . . . , Ck)(C1, . . . , C

′
i, . . . , Ck) is an edge. Note

that y = C1 ∩ · · · ∩ C′
i ∩ · · · ∩Ck. Also x ∈ Ci and y ∈ C′

i, where Ci is adjacent to C′
i. Our

isomorphism Ci → C′
i guarantees an edge xz with z ∈ C′

i. Then z ∈ C1 ∩ · · · ∩C′
i ∩ · · · ∩Ck,

so z = y and xy ∈ E(G). 2

Second proof Let E1, E2, . . . , Ek be the equivalence classes of E(G) with respect to σ, and
define the map α as in the first proof. Define the graphs Gi, G/Πi, the mapping α of G into
the Cartesian product of the G/Πi as in Section 13.1. Notice that the sets E1, E2, . . . , Ek

were equivalence classes with respect to Θ∗ in Section 13.1, whereas they are equivalence
classes with respect to σ now. To emphasize the difference, we set G∗

i = G/Πi and G∗ for
the Cartesian product of the G∗

i .
We wish to show that α is surjective. To this end, consider a vertex u ∈ V (G) and an

arbitrary edge e ∈ E(2G∗
i ) incident with α(u). If we can show that e is in α(G), then

G∗ = α(G) by induction, and we are done.
Let the other endpoint of e be y, and suppose that y differs from α(u) in the jth

coordinate. Let C, respectively and C′, be the components of G − Ej corresponding to
αj(u), respectively to the jth coordinate yj of y.

Because αj(u) and yj are adjacent in G∗
j , there is an edge bb′ from C to C′ in G.

Consider a shortest path P from u to b in G, say uu1u2 . . . urb. Because C is convex, P is
in C. Let a be the vertex of P closest to u that has a neighbor a′ in C′. If a = u, then
e ∈ E(α(G)). Otherwise, let us be the predecessor of a on P . Clearly, usa and aa′ are not in
relation σ. Thus there is a unique vertex x that is adjacent to us and a′ but not to a. Then
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[us, a]σ [x, a′]. This means that x is in C′ and us is adjacent to a vertex in C′, contrary to
the choice of a. 2

With slight adjustments, the above proofs also hold for infinite graphs. We will see that
G∗ is not connected if σ has infinitely many equivalence classes. In this case the map α is
not surjective. But, another look at the above proof shows that the words “If we can show
that e is in α(G), then G∗ = α(G) by induction, and we are done” actually mean that α
is surjective on every component in its range. Notice that it can meet just one component
because G is connected. The other parts of the proof remain valid, and show that α is an
isomorphism of G onto a component of G∗. We formulate this as a corollary.

Corollary 23.3 Let G be a connected, infinite graph. If α and G∗ are defined as in the
second proof of Theorem 23.2, then α is an isomorphism of G onto a connected component
of G∗.

Now we are ready for the main result of this section. The first part is a restatement
of Theorem 6.6 of Sabidussi-Vizing, which we hereby reprove, and the second part, that
(Θ ∪ τ)∗ is the product relation of the unique prime factorization, is due to Feder (1992).

Theorem 23.4 (Sabidussi-Vizing and Feder) Every connected graph has a unique
prime factor decomposition over the Cartesian product and (Θ ∪ τ)∗ is its product relation.

Proof By Theorem 23.2, σ = (Θ ∪ τ)∗ is a product relation. Moreover, Equation (23.1)
implies that σ is contained in every other product relation; hence it is the finest product
relation on G. It follows that it induces a decomposition into prime factors.

For uniqueness, let G = A2B, where A is prime. Let F1, F2 be the color classes of
c(A2B). Every class Ej , 1 ≤ j ≤ k, of σ must be contained in F1 or F2, hence F1

is the union of one or more Ej , say F1 = E1 ∪ E2 ∪ · · · ∪ Es. Clearly, the connected
components of Hi = (V (G), Ei) are layers of G = G∗

1 2G
∗
2 2 · · · 2G∗

k with respect to G∗
i ,

so the connected components of the graph induced by F1 are isomorphic to the Cartesian
product G∗

1 2G
∗
2 2 · · · 2G∗

s, but then A1 is not prime. Hence F1 = Ei, for some i, 1 ≤ i ≤ s.
2

In his seminal paper on graph multiplication, Sabidussi (1960) used a so-called tower of
equivalence relations on the edge set of a connected graph to decompose it into a Cartesian
product of prime graphs. His aim was nonalgorithmic. Nonetheless, by following Sabidussi’s
approach, Feigenbaum, Hershberger, and Schäffer (1985) derived a polynomial algorithm
that computes the prime factors of a connected graph; that is, they computed σ from the
relation δ (as defined on p. 245).

Graham and Winkler’s canonical isometric embedding opened the possibility of com-
puting σ from Θ. Winkler (1987) and Feder (1992) followed this path, as have we here.

One can simplify Sabidussi’s approach by invoking convexity properties of σ. That is
to say, the relation σ can be obtained as the convex hull of δ ∪ τ ; see Imrich and Žerovnik
(1994). (An equivalence relation γ with equivalence classes Eι, ι ∈ I is called convex if for
any K ⊆ I, every connected component of the graph induced on

⋃
ι∈K Eι is convex.)

23.2 A Simple Algorithm

By the above, factoring a connected graph is equivalent to computing σ = (Θ ∪ τ)∗. Notice
that

σ = (Θ ∪ τ)∗ = (Θ∗ ∪ τ)∗ = (Θ∗
1 ∪ τ)∗ = (Θ1 ∪ τ)∗.
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Theorem 18.6 tells us that Θ∗
1 is computable in O(mn) time and O(m) space, so it remains

to compute τ efficiently.

Proposition 23.5 Given a graph with n vertices and m edges, τ can be computed in O(mn)
time, O(m) space, and consists of at most mn pairs of edges.

Proof Let v be a vertex of G. To find all edge pairs vu, uw that are in the relation τ , it
suffices to scan all vertices w of G and to check how many neighbors of w are adjacent to v.
If there is exactly one such neighbor, then the pair vu, uw is in τ . If there are no common
neighbors, or more than one common neighbor, then there is no u such that vu, uw is in τ .

We thus scan all neighbors of w. When we find the first common neighbor, say u, we
mark it. If no other neighbor is found, we add the pair vu,uw to τ .

For every w, the number of checks is d(w), and every check can be executed in constant
time with the aid of the adjacency matrix. Hence the cost for each vertex w is O(d(w)).
Because n vertices must be scanned, the total cost for the vertex v is O

(∑
w∈V (G) d(w)

)
=

O(m). As this must be repeated for every vertex v of G, the total cost is O(mn).

Clearly, the number of pairs vu, uw in τ is at most

∑

u∈V (G)

d(u)
(
d(u) − 1

)

2
<

1

2

∑

u∈V (G)

d(u)n = mn .

If we use the full adjacency matrix, the space complexity is n2, not m. However, when
we check whether a neighbor is adjacent to v, we only need the line for v in the adjacency
matrix. This line needs O(n) space and can be generated with the aid of a reference vector
in O(d(v)) time.

We do this once for every v and thus stay within the time and space limit. 2

Theorem 23.6 The prime factorization of a connected graph over the Cartesian product
is computable in O(mn) time and O(m) space.

Proof Because

σ = (Θ ∪ τ)∗ = (Θ∗ ∪ τ)∗ = (Θ∗
1 ∪ τ)∗ ,

it suffices to compute (Θ∗
1 ∪ τ)∗. We first compute Θ∗

1 in O(mn) time with Algorithm 18.3.
The outcome is a partition of E(G).

Then we compute τ and scan the pairs e, f of edges in τ . If e and f are in different Θ∗
1-

classes, then we merge the two classes (that is, we replace them with their union). Clearly,
there at most m− 1 possible merge operations.

If we consider the elements of Θ∗
1 as edges of a graph GΘ∗

1
whose vertices are the edges

of G, then every merge operation corresponds to a union of connected components of GΘ∗
1
.

By Proposition 17.7, the total time complexity is O(m logm) = O(mn).

Because the assertion about the space complexity is clear, we have proved the theorem.
2

We close this section with a pseudocode for this procedure, but wish to remark that the
algorithm does not provide the coordinates of the vertices of G with respect to the prime
factors. We shall show later that they can easily be computed in O(m) time and space.
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Algorithm 23.1 Cartesian product decomposition

Input: The adjacency list of a connected graph G.
Output: The prime factors of G with respect to the Cartesian product.

1: Compute Θ∗
1.

2: Compute τ .
3: Compute σ = (Θ∗

1 ∪ τ)∗, that is, the equivalence classes E1, E2, . . . , Ek of σ.
4: for i = 1 to k do
5: Compute an arbitrary connected component, say G∗

i , of (V (G), Ei).
6: Return G∗

i . {The G∗
i are the prime factors of G.}

7: end for

23.3 Coordinatization

Once σG is known, we are confronted with the question of how to compute the coordinates
of G’s vertices relative to the prime factorization G = G1 2 · · · 2Gk. We now present a
solution to this problem.

As usual, m and n denote the number of vertices and edges of G. Let E1, E2, . . . , Ek

be the equivalence classes of σ, and let v0 be the root of a BFS-ordering of G. Choose the
indexing so that (V (G), Ei) corresponds to Gi. For each i, the component of (V (G), Ei)
that contains v0 is called a unit-layer, and is denoted Gv0

i . Thus Gv0
i

∼= Gi and G =
Gv0

1 2 · · · 2Gv0
k . In what follows, we coordinatize G relative to this product decomposition.

We first assign to each v ∈ V (G) a BFS-number BFS(v), from 0 to |V (G)|−1, according
to its order in a BFS traversal of G with root v0. Thus BFS(v) > BFS(u) whenever
d(v, v0) > d(u, v0). In particular, this assigns a label to each vertex of each unit-layer.

Every vertex v will have k coordinates p1(v), p2(v), . . . , pk(v), where each pi(v) is a
label of a vertex in the unit-layer Gv0

i . The coordinates of the unit-layers are as follows. If
v ∈ Gv0

i , then pi(v) = BFS(v), but all other coordinates of v are set to zero. Any v not in a
unit-layer can now be given coordinates relative to the decomposition G = Gv0

1 2 · · · 2Gv0
k .

Figure 23.3 shows an example. (Had the unit-layers been numbered consecutively from 1 to
4, and 1 to 2, respectively, we would have a different coordinatization. See Figure 6.1.)

We next develop a formula for the coordinates of the non-unit-layer vertices.
First, we claim that if all down-edges from v are in the same σ-class Ei, then v is in

the unit-layer Gv0
i . Indeed, the down-edges of the down-neighbors of v must all be in Ei, or

otherwise the square property yields a down-edge from v that is not in Ei. By induction,
there is a path from v to v0 consisting of edges from Ei, and therefore v belongs to Gv0

i .
In particular, this means that if v is not in a unit-layer, then it has two down-edges that

are in different σ-classes.
Let v be a vertex in BFS-level Lk with two neighbors u, w of v in Lk−1, where vu and vw

are in different σ-classes. It is easy to show (Exercise 23.2) that pi(v) = max
(
pi(u), pi(w)

)

for 1 ≤ i ≤ k. Denoting the down-neighbors of u by down(v), we thus have

pi(v) = max
u∈down(v)

pi(u), 1 ≤ i ≤ k, (23.2)

which we abbreviate as
p(v) = max

u∈down(v)
p(u)
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FIGURE 23.3 Prime factorization with coordinates.

for all vertices that are not unit-layer vertices. (See Exercise 23.3.)
Because the number of down-neighbors of v bounded by d(v), this means that the

coordinates of v can be found by d(v) · k comparisons from the coordinates of the down-
neighbors of v. Hence all vertices of G that are not unit-layer vertices can be coordinatized
in O(mk) time. Now notice that k, that is, the number of factors of G, is bounded by log2 n,
that the unit-layers can be computed in O(m) time, and that the only nonzero coordinate
of a unit-layer vertex is its BFS-number.

We have thus shown that one can use Equation (23.2) to coordinatize the vertices of G
with respect to its prime factors in O(m logn) time from the equivalence classes of σ.

This simple method uses all down-neighbors. The complexity can be improved to O(m)
if we choose the down-neighbors carefully. See Exercise 23.4 for a proof of the next lemma.

Lemma 23.7 Let G be a connected graph on n vertices and m edges. Given its σ-classes,
one can coordinatize G with respect to its prime factors in O(m) time.

23.4 Factorization in O(m logn) Time

Algorithm 23.1 computes the product relation σ = (Θ ∪ τ)∗ of a connected graph G on n
vertices and m edges in O(mn) time. Notice that Θ reflects both global and local properties
of G, and τ only local ones. Recall that the best algorithm for the computation of Θ has
complexityO(m2), and that even for Θ∗ and τ , we know of no recognition algorithm of better
complexity than O(mn). Hence we have to look for other methods if we wish to improve the
complexity of finding the prime factors and present the local approach of Aurenhammer,
Hagauer, and Imrich (1992).

Given a connected graph G, we choose a vertex v0 of minimal degree and arrange the
vertices of G in BFS-order. We then assign coordinate vectors f(v), or labels as we call them
in this section, to the vertices of G in BFS-order in a way that we call product consistent, or
simply consistent. (We also keep a list of the nonzero entries of f(v), ordered by the place
of the coordinate in the label vector.)
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Before we define this concept, notice that L0 ∪ L1 ∪ · · · ∪ Lj is the ball of radius j with
center v0, which abbreviates as Nj(G, v0). Suppose all vertices up to BFS-level j have been
labeled. Then the labeling is called consistent if it satisfies the following properties:

(i) The endpoints u, v of each edge uv ∈ Nj(G, v0) differ in exactly one coordinate,
whose number is called the (temporary) color of uv.

(ii) Define the ith unit-layer H(i, j) of G up to level Lj as the maximal connected
subgraph ofNj(G, v0) containing v0 and with edges of (temporary) color i. Suppose
that Nj(G, v0) has r colors. Set H = H(1, j)2H(2, j)2 · · · 2H(r, j). Then

Nj(G, v0) = Nj(H, v0) .

(iii) The coloring of Nj(G, v0) is compatible with σ; in other words, edges of Nj(G, v0)
from different σ-classes of G have different (temporary) colors.

This means we can use all properties of Cartesian products for Nj(G, v0) as soon as we have
checked consistency.

Once all vertices in Nj(G, v0) have been consistently labeled, the idea of the algorithm is
to label the vertices of Lj+1 making use of Equation (23.2) and other properties of Cartesian
products, check consistency, combine colors if it is violated, and relabel the vertices.

We terminate when the highest BFS-level has been consistently labeled. It consists of
the vertices of maximal distance from v0, and thus is Le(v0), where e(v0) is the eccentricity
of v0.

For a pseudocode, see Algorithm 23.2. It uses the notation f(v) for the label (coordinate
vector) of v, f(v, i) for the ith component of f(v), and t for its length. Originally t =
d(v0), but when the algorithm terminates, t equals the number k of prime factors of G and
f(v, i) = pi(v), the projection of v into Gv0

i .
Notice that the number of nonzero coordinates of any vertex v ∈ G is bounded by

log2 n. The reason is that the interval I(v, v0) is a box by Exercise 23.5. If v has j nonzero
coordinates, then I(v, v0) has j factors and thus at least 2j vertices. Because I(v, v0) cannot
have more vertices than G, we infer that j ≤ log2 n.

To combine colors and to check consistency it calls Procedure Combine 23.3 and Proce-
dure Consistency Test 23.4.

Correctness of Algorithm Cartesian Product The initialization clearly starts with
a coloring that is contained in σ (the product coloring).

Then the vertices of G are scanned in BFS-order, beginning with L2. Since f(u) and
f(v) of two adjacent vertices differ in exactly one coordinate Line 9 correctly labels v, with
the exception of one coordinate, where it is still unclear which one.

If all down-neighbors of v are in one and the same unit-layer, then v is in the same unit-
layer, and Line 11 clearly properly coordinatizes it. We should keep in mind though, that
we have to combine colors when v has only one down neighbor and if this down-neighbor is
not a unit-layer vertex, see Lines 29 to 32.

The standard case is treated in Lines 16 to 19: There is a second down-neighbor, say
w, of v, and u and w differ in exactly two coordinates. Exercise 23.4 shows that Line 17
correctly coordinatizes the vertex v in this case.

If u and w differ in exactly one coordinate, say f(u, i) 6= f(w, i), and if v is not a
unit-layer vertex, then u it must have a nonzero coordinate, say k 6= i. By the unique
square property v must have a down-edge, say vz, of color k. Clearly f(v, i) = f(z, i) and
f(z, k) 6= f(u, k). This proves the correctness of Lines 20 to 27.

If u and w differ in more than two coordinates (or in no coordinate), then Combine is
called.

Clearly we also have to check for consistency. Thus, the correctness depends on the
correctness of the procedures Combine and Consistency test.
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Algorithm 23.2 Cartesian product

Input: The adjacency list of a connected graph G on n vertices and m edges.
Output: A finest product labeling f of G with respect to the Cartesian product.

Initialization
1: Choose an arbitrary vertex v0 of minimum degree.
2: Modify the adjacency list of G such that v = BFS(v) with respect to v0.
3: For every v ∈ G, reserve a vector of length d(v0) and a list of the same length for the

label f(v) and for an ordered list of the nonzero entries of f(v).
4: Set f(v0, i) = 0 for 1 ≤ i ≤ t. {t = d(v0).}
5: Let v1, . . . , vt be the vertices adjacent to v0.

Set f(vi, i) = vi, f(vi, j) = 0 for 1 ≤ i, j ≤ t, i 6= j.
6: Call Consistency Test for L1.

Labeling
7: for j = 2 to e(v0) do
8: for all v ∈ Lj do
9: Choose the first vertex u in Lj−1 adjacent to v and set f(v) = f(u).

10: if all down-neighbors of v are unit-layer vertices of the same unit-layer i then
11: Set f(v, i) = v.
12: Continue with the next vertex in Lj.
13: else
14: if |Lj−1 ∩N(v)| > 1 then
15: Choose w ∈ Lj−1 ∩N(v), w 6= u.
16: if u and w differ in exactly two components then
17: f(v, i) = max(f(u, i), f(w, i)) for 1 ≤ i ≤ t.
18: Continue with the next vertex in Lj.
19: end if
20: if u and w differ in exactly one component, say component i then
21: Choose a k 6= i, where f(u, k) 6= 0.
22: Scan all down-neighbors z 6= u,w of v.
23: if f(z, k) 6= f(u, k) then
24: Set f(v, i) = f(z, i).
25: Continue with the next vertex in Lj.
26: end if{Remaining case: f(z, k) = f(u, k) for all down neighbors z of v}
27: end if{Remaining case: u,w differ in more than two components}
28: end if{Remaining case: u = {Lj−1 ∩N(v)} and is not a unit-layer vertex}
29: for all u′ ∈ Lj−1 ∩N(v) do
30: Call Combine(u, u′; i), where i is an arbitrary nonzero component of u.
31: end for
32: f(v, i) = v; f(v, k) = 0 for k 6= i. {This labels v and all u′ as unit layer vertices

in the ith unit layer}
33: end if{Now v is labeled, not necessarily consistently}
34: end for{Now all vertices in Lj are labeled}
35: Call Consistency Test for Lj .
36: end for
37: Call Consistency Test for Le(v0)+1.

Complexity of Algorithm Cartesian Product We consider it without procedure
calls. Clearly, the initialization stays within O(m) time and space.

We first show that the cost of one run through the loop from Line 7 to Line 34 is
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O(d(v0)). Since we have n vertices, the cost of coordinatization, without procedure calls, is
O(m).

For Line 10 we observe that there are at most d(v) ≤ d(v0) down neighbors of v and
that we can check in constant time whether a vertex is a unit-layer vertex (and the color of
the unit-layer).

Since the labels have length d(v0) we can check in O(d(v0)) time in how many coordinates
two vertices differ and to write a coordinate vector. This takes care of lines Line 16 and
Line 17.

For Lines 20 to 27 we note that we have to compare just one coordinate (coordinate k)
of every down-edge of v with f(z, k).

Thus the complexity of the entire algorithm will be determined by the Procedures Com-
bine and Consistency test. For the number of calls, notice that d(v0) is the number of original
colors and thus bounds the number of times that colors can be combined. In other words,
it also bounds the number of calls of Procedure Combine 23.3. Procedure Consistency Test
is called once for every BFS-level.

We now treat Procedure Combine.

Procedure 23.3 Combine

Require: Call Combine(u, v; i) from Algorithm Cartesian product or Procedure Consis-
tency test.

Ensure: A new labeling for all labeled vertices, u and v, and all vertices on a shortest path
from u or v to v0 are unit-layer vertices in the ith unit layer.

1: Calculate Index := {j | f(u, j) 6= 0 or f(v, j) 6= 0 or j = i}.
2: If |Index| = 1, then return (do nothing).
3: Calculate U , the set of all unit-layer vertices in the new unit layer.
U = {v ∈ V | v is labeled and f(v, j) 6= 0 =⇒ j ∈ Index};
mark all vertices in U .

4: Assign a new label to each labeled vertex v by:
5: f(v, j) remains unchanged for j /∈ Index
6: f(v, i) = v′, where v′ is the vertex in U with the property:

f(v′, j) = f(v, j) for all j ∈ Index. {f(v′, k) = 0 for all k /∈ Index.}
7: Adjust the label list and the label array.

{The new labeling of G has t− |Index| + 1 components.}

Figure 23.4 illustrates its action on a sample graph.

Correctness of Procedure Combine It is clear the procedure combines colors and
correctly relabels the vertices. The only thing one has to ensure is that the procedure is
only called if two vertices u and v have been recognized as unit-layer vertices. But this we
have already done.

Complexity of Procedure Combine For the case that |Index| = 1 in Step 2, the
complexity is bounded by the number of calls and therefore in O(m). Otherwise |Index| > 1
and the number of components left reduces by |Index| − 1, so this can occur at most d(v0)
times. Step 3 is performed by going through at most n label lists, each of length at most
logn; therefore the overall time complexity of Step 3 is O

(
n logn d(v0)

)
= O(m log n). In

Step 4 the labeled vertices are sorted lexicographically by all components j ∈ Index using
a bucket sort algorithm. Then all vertices with identical components on Index are in the
same bucket. If each bucket contains exactly one unit-layer vertex v, which has been marked
in Step 3, then the component f(v′, i) = v is assigned to each vertex v′ in this bucket.
Otherwise, if two or more unit-layer vertices are in the same bucket, then these vertices
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FIGURE 23.4 Graph before and after Combine(1, 4; 1).

must be identically labeled vertices in the highest level that has been coordinatized and no
other vertex can be in this bucket. The time complexity of Step 4 is determined by bucket
sort and therefore in O(n · |Index|) for a single Combine and thus in O(nd(v0)) = O(m) for
all Combine. Therefore the overall complexity of the Combine subroutine is O(m log n).

We continue with the consistency test. The main problems that may occur when one
wishes to extend the product labeling are missing vertices, missing edges, or too many
vertices or edges. Figure 23.5 depicts the case of a missing vertex and of a missing edge.
They would be detected in Step 8 of Procedure Consistency test 23.4.

The case of too many vertices results in identically labeled vertices; see Figure 23.6. It
shows identically labeled vertices, that is, vertices that are identically labeled by Algorithm
Cartesian product, and the effect of Procedure Combine, that combines colors and assigns
different labels to the previously identically labeled ones.

1204

1001

1035

0202

0000

0236

0033 10 1

13 5

202

000

236

033

FIGURE 23.5 Missing vertex and missing edge.

Correctness of Consistency Test Suppose it is called from level Lj and, in Step 3
two labels f(u) and f(v) are found that differ in ` > 1 components, so d(u, v) ≥ ` by the
distance formula. This can only be resolved if the ` colors in which f(u) and f(v) differ are
merged.

If there is another nonzero coordinate of v, say the ith, then there must be a down-
neighbor v′ of v that differs from v only in the ith coordinate. If there is no down-neighbor
u′ of u with f(u′, i) = f(v′, i), then the square property is violated and we have to combine
coordinate i with the other ` coordinates that we just combined.
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If there is such a down-neighbor, then v′ and u′ differ in ` coordinates (in the temporary
product coloring of Nj−1(G, v0)) and must have distance at least `, but the mapping induced
by vv′,uu′ (and their parallel edges) should be a layer isomorphism. So we have to combine
again.

Notice that whenever we combine colors, these colors must be in the same σ-class.
Step 6 tests whether the mapping u 7→ f(u, i) is a homomorphisms from the ith layer

through u into the ith unit-layer, and Step 8 tests whether the mapping is bijective and
surjective. As before, one shows that the calls Combine(u, v; i) and Combine(u, v′; i) are
justified.

The loop from Step 12 until Step 14 is treated similarly.

Procedure 23.4 Consistency test

Require: Call Consistency for Lj from Algorithm Cartesian Product 23.2.
Ensure: Consistency up to level Lj by combining colors and relabeling vertices.

1: for all u ∈ Lj−1 do
2: for all v ∈ Lj ∩N(u) do
3: If f(u) and f(v) differ in more than one or no component, then

Combine(u′, v; i) for all u′ ∈ Lj−1 ∩N(v); i a nonzero component of v.
4: end for
5: for all actual components i do
6: Test for each edge uv in factor i, v in Lj whether there is an edge u′v′ =

f(u, i)f(v, i).
7: If not, then Combine(u, v; i).
8: Test for each edge u′v′ in factor i, u′ = f(u, i), v′ in level l+1, u′ in level l, whether

there is exactly one edge uv, v ∈ Lj and uv in factor i, such that v′ = f(v, i).
9: If not, then Combine(u, v′; i). {v may not exist !}

10: end for
11: end for
12: for all u ∈ Lj do
13: The same as in the first part, except that v′ and u′ are in the same level (in the

counterpart of Line 8).
14: end for

Complexity of Consistency Test For the time bound in Step 3 take into account
that we never have to compare more than log2(n) components, and since we keep an ordered
list of nonzero components, this can be done by log2 n comparison per edge. This only has
to be done for the down- and cross-edges of Lj , so altogether the time complexity of this
part is O(m logn).

For the rest of the test, some preparations are needed. We split the adjacency list of u
into at most d(v0) lists. The ith list contains all vertices wj , where uwj is in the ith factor.
This list is sorted according to the ith component of the vertices wj . For all vertices this
takes O(m logn) time. Consider the vertex f(u, i). The adjacency list is already split, but
might not be sorted if a Combine step occurred. Observe that in a Combine step, the jth
list of a labeled vertex must be linked to the ith list for all j in Index = {j | f(u, j) 6= 0),
but must not be sorted to achieve the claimed time bound. If the lengths of the ith list
of u and f(u, i) differ, then a failure occurs and the lists need not be sorted. Otherwise
sorting the ith list of f(u, i) for all i takes as long as sorting all lists of u. Therefore the
time complexity of sorting the lists for the vertices f(u, i) is O(m log n). As soon as the ith
lists of both u and f(u, i) are sorted, one has to go through both lists simultaneously and
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to compare the corresponding components. The ith component of a vertex can be found
in constant time using the label-array. At most d(u) comparisons are needed; thus O(m)
time is spent for all comparisons. The time complexity of the Consistency Test is therefore
determined by sorting and thus O(m logn).

It is not hard to show that the space complexities of algorithm Cartesian Product and
procedures Combine and Consistency Test are linear. We thus have the following theorem:

Theorem 23.8 For any connected graph G with n vertices and m edges, Algorithm 23.2
computes the prime factors of G with respect to the Cartesian product in O(m log n) time
and O(m) space.

1204

1001

1205
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1036 0237
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101
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000

136 237

033

FIGURE 23.6 Identically labeled vertices before, and after, Combine.

23.5 Factorization in Linear Time and Space

The time complexity of Algorithm 23.2 depends on the complexities of the consistency test
and the combine procedure. The complexity of the consistency test is determined by sorting.
So the first question that arises is, whether one can replace the sorting algorithm by bucket
sort.

This is possible, as we will explain, but then another problem comes up: that of checking
whether two vertices are adjacent. With the adjacency list, one can check in O(d(u)) time
whether two vertices u, v are adjacent. Taking into account the number of checks we have
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to make, this would raise the time complexity to O(m log n). If one checks with the aid of
the (referenced) adjacency matrix, then the individual checks can be done in O(1) time, but
the space complexity becomes O(n2). This problem can be solved if one uses only one line
of the adjacency matrix at any one time. However, because the initialization of the line of a
vertex v in A(G) takes O(d(v)) time, one cannot do that too often without raising the time
complexity. This requires very careful monitoring of the cases when the line of a vertex v
in A(G) is generated.

Back to the sorting problem. This can be solved by ordering the edges of, say, color i
that are incident with a vertex v of a unit-layer in a fixed way. That is, the down-edges of
color i are sorted, the cross-edges of that color, and also the up-edges. When a vertex u is
labeled, the order of the edges of color i incident with u is then determined by the order of
the edges of color i in a down-neighbor v of u, where c(uv) 6= i. This is justified because
adjacent layers are isomorphic.

Furthermore, it is not hard to see that the consistency test does not have to check
isometry with unit-layers; it suffices to take the layer(s) through a down-neighbor.

Properly implemented, this method also does not need to relabel or recolor anything up
to level Lj if the consistency test at level Lj+1 requires the combination of colors. Finally,
the combination of two colors becomes linear in n with this data structure. Nonetheless,
one has to keep careful control of the lists of actual colors and the (original) colors that
were combined with them.

For details, see Imrich and Peterin (2007).

Exercises

23.1. Let G = G1 2G2 2 · · · 2Gk be a connected graph where k ≥ 2, and let x be a
vertex of G. Prove that the graph G− x is prime.

23.2. Recalling the notation and definitions of Section 23.3, show that pi(v) =
max

(
pi(u), pi(w)

)
for 1 ≤ i ≤ k, where vu and vw are down-edges of v from

different σ-classes.

23.3. Prove the validity of Equation (23.2) for all vertices v that are not unit-layer vertices.

23.4. Show that one can coordinatize the vertices of G with respect to its prime factors
in O(m) time from the equivalence classes of σ.

23.5. Prove that every interval in a Cartesian product induces a box.
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Any connected graph in Γ factors uniquely into primes over the strong product, and con-
nected nonbipartite graphs in Γ0 factor uniquely over the direct product. Unique prime
factorization is not so common for the lexicographic product, but Chapter 10 described
transformations that lead from one prime factorization to all others.

Here we are concerned with the computation and complexity of such factorizations. For
the lexicographic product, Feigenbaum and Schäffer (1986) showed that prime factoriza-
tion is at least as difficult as the graph isomorphism problem. But, as we shall see, prime
factorizations over the direct and the strong product can be found in O(mn2) time.

Feigenbaum and Schäffer (1992) presented the first polynomial algorithm that deter-
mines the prime factorization of graphs over the strong product. Imrich (1998) adapted
their approach to the direct product. Both methods involve the Cartesian Skeleton.1 As
we saw in Chapter 8, the skeleton S(G) envelops a given graph G in such a way that
S(G×H) = S(G)2S(H). The present chapter will describe a variant S[G] of S(G), called
the closed Cartesian skeleton, which obeys S[G �H ] = S[G]2S[H ]. These constructions
link prime factorizations over × (respectively �) to factorizations over 2, and algorithms
for prime factorization over 2 are then applied to the Cartesian skeleton and transferred
back to factorizations of G over × (respectively �).

The main effort in this chapter will be devoted to computing the Cartesian skeleton S(G),
and the closed Cartesian skeleton S[G], for a given graph G. Following Hammack and Imrich
(2009), this gives rise to algorithms of varying complexities, the best one being O(ma(G) ∆)
for the strong product. Notice that even this bound can be of the order O(mn2), which is
just a little better than the complexity of the general algorithm of Feigenbaum and Schäffer
(1992) for the strong product.

1Feigenbaum and Schäffer (1992), and Imrich (1998), define it algorithmically. We use the nonalgorithmic
definition of Hammack and Imrich (2009), which is easier to handle.

289
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290 Recognizing Direct, Strong, and Lexicographic Products

24.1 Direct Product

To compute the prime factors of a connected, nonbipartite graph G with respect to the
direct product, we proceed in several steps. We first factor R-thin graphs, continue with
graphs that are not thin but contain no complete factor, and then treat the general case.

To factor an R-thin graph G, we first compute the Cartesian skeleton S(G), decompose
it into its prime factors with respect to 2 , and then apply Proposition 8.10 for the fac-
torization of G with respect to the direct product. Recall that this proposition asserts that
S(H×K) = S(H)2S(K) for any factorization H×K of G. By grouping the prime factors
of S(G) with respect to the Cartesian product appropriately, we will be able to compute
the layers of the prime factors of G with respect to the direct product.

Algorithmic construction of S(G)

Recall from Definition 8.1 that the Cartesian skeleton S(G) is formed from the Boolean
square Gs by deletion of dispensable edges, where an edge xy is dispensable if it is a loop,
or if there exists some z ∈ V (G) for which both of the following statements hold:

(1) NG(x) ∩NG(y) ⊂ NG(x) ∩NG(z) or NG(x) ⊂ NG(z)⊂ NG(y)
(2) NG(y) ∩NG(x) ⊂ NG(y) ∩NG(z) or NG(y) ⊂ NG(z)⊂ NG(x).

We need a data structure that allows us to compute intersections of neighborhoods and
to check for containment efficiently.

Because our graphs are most efficiently presented by the adjacency list data structure for
G, let us briefly recall the main features. Fix an indexing V (G) = {g1, g2, . . . , gn}. Represent
G as a table with n rows indexed by the vertices g1, g2, . . . , gn. Row i contains a list of the
neighbors of gi. This is illustrated in Figure 24.1.

g1 g2

g4 g3

Vertex Neighbors

g1 g2, g4

g2 g1, g3, g4

g3 g2, g4

g4 g1, g2, g3

FIGURE 24.1 Adjacency list representation of G.

Given a vertex gi, we will often have to check for several vertices gj whether they are
in NG(gi). With the adjacency matrix we could do it in constant time and O(n2) space.
To reduce the space complexity, we recall a method of Cormen, Leierson, and Rivest (1990,
Exercises 12.1 through 12.4) which allows us to check in constant time whether gj ∈ NG(gi).
It involves some preprocessing that computes the line of gi in A(G) in O(d(gi)) time and
O(n) space.

It will be helpful to spell out the method in detail. First form a reference vector ci of
length n, where every ci(k) is an uninitialized pointer. Next form a vector `i of length d(gi),
where every entry is a pointer. For each gk in the adjacency list for gi, do the following:
If gk is the pth vertex on the adjacency list for gi, set ci(k) to point to `i(p) and set `i(p)
to point back to ci(k). Then gj ∈ N(gi) if and only if ci(j) points to a pointer in `i that
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points back to ci(j). This can be checked in constant time, while the effort to create ci and
`i takes O(d(gi)) time and O(n) space. For x = gi we will also write cx and `x instead of ci
and `i.

This justifies the following two remarks concerning the computation of intersections of
neighborhoods and the verification of containment properties. They express central ideas of
our algorithms.

Remark 24.1 Once ci and `i have been created and linked, we can form a list represen-
tation of any intersection N(gi) ∩N(gj) in O(d(gj)) time as follows. Begin with an empty
list I. Then for each x ∈ N(gj), check whether x ∈ N(gi), and if so, then append it to I.

Remark 24.2 If X and Y are finite sets, then X ⊂ Y means |X | = |X∩Y | and |X | < |Y |.
For instance, N(x) ⊂ N(z) provided |N(x)| = |N(x)∩N(z)| and |N(x)| < |N(z)|. Similarly,
N(x)∩N(y) ⊂ N(x)∩N(z) if |N(x)∩N(y)| = |N(x)∩N(y)∩N(z)| and |N(x)∩N(y)| <
|N(x) ∩N(z)|.

Thus we can decide if xy meets conditions (1) and (2) for dispensability by making
such comparisons among the numbers |N(x)|, |N(y)|, |N(z)|, |N(x)∩N(y)|, |N(x)∩N(z)|,
|N(y) ∩N(z)|, and |N(x) ∩N(y) ∩N(z)|.

Proposition 24.1 Given an edge xy of Gs together with the reference vectors cx, `x and
cy, `y, we can check the validity of dispensability conditions (1) and (2) for any vertex
z ∈ V (G) − {x, y} in O(d(z)) time.

Proof We can assume that z 6= y and compute the following sets and numbers, using cx,
`x and cy, `y whenever appropriate:

(i) |NG(z)|
(ii) NG(x) ∩NG(z) and |NG(x) ∩NG(z)|
(iii) NG(y) ∩NG(z) and |NG(y) ∩NG(z)|
(iv) |NG(x) ∩NG(y) ∩NG(z)|

By comparing the cardinalities of the intersections computed above, we check if conditions
(1) and (2) for the dispensability of xy hold. (See Remark 24.2.) All computations can be
executed in O(d(z)) time. 2

We continue with two algorithms for computing S(G), both based on the above remarks.
The first considers all triples of distinct vertices x, y, z.

Algorithm 24.1 Cartesian skeleton 1

Input: Adjacency list representation for graph G with n vertices.
Output: Adjacency list representation for S(G).

1: for all pairs of distinct vertices x,y of G do
2: Compute cx, `x, cy, `y and check whether xy ∈ Gs. If not, then continue with the

next pair x, y.
3: For all z ∈ V (G) − {x, y}, check the validity of dispensability conditions (1) and (2).
4: If these conditions fail for every z, add xy to the adjacency list of S(G).
5: end for
6: Return the adjacency list representation for S(G).

Proposition 24.2 Given an input graph G with m edges and n vertices, the time complexity
of Algorithm 24.1 to compute S(G) is O(mn2). The space complexity is determined by the
size of the output, that is, the number of edges in S(G). It is between O(n) and O(n2).
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Proof Step 2 takes O(n) time. By Proposition 24.1, Step 3 is O(d(z)) for every z, con-
tributing to a total of

∑
z∈GO(d(z)) = O(m) time. Step 4 takes constant time. Because

we have to perform Steps 2 through 4 at most n2 times, we arrive at the asserted time
complexity. 2

In the above algorithm we took all pairs x, y and checked in Step 2 whether they were
in E(Gs). For the pair x, z, the check occurs in Step 3.

The next algorithm makes use of the fact that conditions (1) and (2) for dispensability
can hold only if y and z are both at distance 2 from x. (We must have dG(x, y) = 2 for
xy ∈ E(Gs), and dG(x, z) 6= 2 implies NG(x) ∩ N(z) = ∅, whence none of the conditions
hold. In fact, by condition (2), there must be a neighbor of x, say y′, that is adjacent to
both y and z.) The algorithm lets y and z run through the sets of neighbors of neighbors
of x. To reach all vertices y of distance 2 from x we thus consider all neighbors y′ of x
and then all neighbors y of the y′. Because it may be possible to reach y from x on many
distinct paths of length 2, and because we do not know all paths a priori, the complexity of
this method may be high. However, if ∆3 < n2, then it is better than O(mn2), as we shall
see.

Note that we already observed that we can assume the existence of a y′ ∈ N(x) that is
a neighbor of both y and z.

Algorithm 24.2 Cartesian skeleton 2

Input: Adjacency list representation for a graph G with n vertices.
Output: Adjacency list representation for S(G).

1: for all x ∈ V (G) do
2: Compute cx, `x, and |NG(x)|.
3: for all y′ ∈ NG(x) do
4: for all y ∈ NG(y′) − {x} do
5: Compute cy, `y, and |NG(y)|.
6: for all z ∈ NG(y′) − {x, y} do
7: Check the dispensability conditions (1) and (2).
8: end for
9: If these conditions fail for all z, add xy to the adjacency list of S(G).

10: end for
11: end for
12: end for
13: Return the adjacency list representation for S(G).

Proposition 24.3 Given an input graph G of size m, order n, and maximum degree ∆,
the time complexity of Algorithm 24.2 to compute S(G) is O(m∆3). The space complexity
is between O(n) and O(n2).

Proof We have loops for x, y′, y, z, and show first that the net complexity is given by the
expression

∑

x∈V (G)



O(|N(x)|) +

∑

y′∈N(x)

∑

y∈N(y′)


O(|N(y)|) +


 ∑

z∈N(y′)

O(|N(z)|)


 +O(1)





 .

The sum over x ∈ V (G) stands for the loop from Steps 1 through 12 in the algorithm, and
the term O(|N(x)|) expresses the contribution of Step 2.
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Step 3 comes next in the x-loop. It is a sum over all neighbors of x. For every such
neighbor y′, we must execute Step 4. It is a loop for all y ∈ N(y′). Every instance consists
of three subinstances. The cost for Step 5 is O(|N(y)|), that for Step 9 is O(1), whereas
Step 6 is a sum over z ∈ N(y′), every instance contributing a cost of O(|N(z)|).

To evaluate this expression, note that the Step 6 is nested in all loops and has the largest
contribution to the complexity. It therefore suffices to evaluate just the expression

∑

x∈V (G)

∑

y′∈N(x)

∑

y∈N(y′)

∑

z∈N(y′)

O(|N(z)|).

Clearly,
∑

y∈N(y′)

∑
z∈N(y′)O(|N(z)|) = O(∆3). Thus the total value is

∑

x∈V (G)

∑

y′∈N(x)

O(∆3) = O(∆3)
∑

x∈V (G)

∑

y′∈N(x)

1 = O(∆3)
∑

x∈V (G)

|N(x)| = O(∆3)m.

2

Note that O(m∆3) is a better bound than O(mn2) when ∆3 < n2, and that m∆3 can
be close to n for sparse graphs, say direct products of cycles or of cubic graphs.

24.2 Strong Product

We now describe a variation on S(G), which we denote as S[G]. This modified skeleton is
a subgraph of G (not of Gs) having the property S[H � K] = S[H ]2S[K]. We define it
almost exactly as we defined S(G), except that we use closed neighborhoods instead of open
neighborhoods, and it is a subgraph of G rather than Gs.

We say an edge xy of a graph G ∈ Γ is dispensable if there exists z ∈ V (G) for which
both of the following statements hold:

(1-strong) NG[x] ∩NG[y] ⊂ NG[x] ∩NG[z] or NG[x] ⊂ NG[z] ⊂ NG[y],

(2-strong) NG[y] ∩NG[x] ⊂ NG[y] ∩NG[z] or NG[y] ⊂ NG[z] ⊂ NG[x].

The closed Cartesian skeleton of G is the graph S[G] obtained from G by removing all
dispensable edges.

From here we easily obtain analogues of Lemmas 8.9 and 8.12, as well as Propositions
8.10 and 8.13. In the proofs, one simply replaces open neighborhoods with closed neighbor-
hoods. We use NH�K [(h, k)] = N [h] × N [k] instead of NH×K(h, k) = N(h) × N(k). We
also replace the condition (N(x) = N(y)) =⇒ (x = y) for R-thinness with the condition
(N [x] = N [y]) =⇒ (x = y) for S-thinness. Reasoning exactly as we did for S(G), we obtain
the following results for S[G]. (The only substantial difference is that for connectivity, we
no longer need G to be nonbipartite, as S[G] is a subgraph of G, not of Gs. We can also
remove the condition that G have no isolated vertices, as N [x] 6= ∅, even if x is isolated.)

Proposition 24.4 If G is connected, then S[G] is connected. Also, S[H�K] = S[H ]2S[K]
for S-thin graphs.
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Algorithmic construction of S[G]

We now adapt Algorithm 24.1 to S[G]. Note that the complexities of computing intersections
of closed neighborhoods are the same as those for open neighborhoods. We use the the same
notation ci and `i for the reference vectors for closed neighborhoods.

Notice that conditions (1-strong) and (2-strong) for dispensability can hold only if y
and z are both in N [x]. (We must have y ∈ N(x) in order that xy ∈ E(G), and z /∈ N [x]
implies N [x] ∩ N [y] 6⊂ N [x] ∩ N [z], whence none of the conditions hold.) In other words,
the dispensability conditions can hold only if x, y, and z induce a triangle in G. Thus in
checking for dispensability of xy, the algorithm needs to consider only those z in N [x].

We will also make use of the analog of Proposition 24.1 for strong products. Its validity
is obvious by the above remarks.

Proposition 24.5 Given distinct vertices x,y in V (G) together with reference vectors cx,
`x, and cy, `y, we can check the validity of dispensability conditions (1-strong) and (2-strong)
for any vertex z ∈ V (G) − {x, y} in O(d(z)) time.

Algorithm 24.3 Closed Cartesian skeleton 1

Input: Adjacency list representation for graph a G with n vertices.
Output: Adjacency list representation for S[G].

1: for all edges xy ∈ E(G) do
2: Compute cx, `x, cy, and `y.
3: For each z ∈ N(x), check the validity of the dispensability conditions.
4: If these conditions fail for all z, add xy to the adjacency list of S[G].
5: end for
6: Return the adjacency list representation for S[G].

Proposition 24.6 If G has m edges, and maximum degree ∆, then the complexity of using
Algorithm 24.3 to compute S[G] is the minimum of O(m2) and O(m∆2).

Proof Every instance of the loop from Step 1 to 5 has three subinstances. The first takes
O(∆) time, and the last constant time. We will bound the second in two ways.

On one hand, for every z, the cost of checking dispensability is O(|N(z)|). Because z ∈
N(x) and N(x) ⊆ V (G), the time for the loop in Step 3 is bounded by

∑
z∈V (G)O(|N(z)|) =

O(m). Hence every instance of the first loop takes O(∆)+O(m)+O(1) time. Because there
are m edges, we arrive at a total complexity of O(m2).

On the other hand, the z are among the at most ∆ neighbors of x, so the time needed
for every z is bounded by O(|N(z)|) = O(∆). This yields the bound of O(∆2) for Step 3,
and a total of O(m∆2). 2

A bound involving arboricity

Recall that the arboricity a(G) of a graph G is the minimum number of forests into which
its edges can be partitioned. It is a measure of density of G. For trees it is one, and in
general Equation (20.5) gives the bounds

δ

2
< a(G) ≤ ∆ .

From Theorem 20.9 we know that all triangles of a graph G can be listed in O(ma(G))
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time and space. This is also important for us because the dispensability conditions (1-strong)
and (2-strong) can hold only if x, y, z lie on a triangle. Thus, we will present a variant of
Algorithm 24.3 for the computation of S[G] that involves the arboricity. Its time complexity
is O(ma(G) ∆).

Algorithm 24.4 Closed Cartesian skeleton 2

Input: Adjacency list representation for graph a G with n vertices.
Output: Adjacency list representation for S[G].

1: Compute all triangles of G.
2: Initialize an empty list t(e) for every edge e ∈ E(G).
3: Scan all triangles x1x2x3.
4: for every edge e = xixj of this triangle do
5: Add the third vertex xk to t(e).
6: for all edges xy ∈ E(G) do
7: Compute cx, `x, cy, and `y.
8: For each z ∈ t(xy), check the validity of the dispensability conditions.
9: If these conditions fail for every z, add xy to the adjacency list of S[G].

10: end for
11: end for
12: Return the adjacency list representation for S[G].

A complexity analysis along the lines of the previous ones yields the next proposition:

Proposition 24.7 If G has m edges, arboricity a(G), and maximum degree ∆, then S[G]
can be computed in O(ma(G) ∆) time and O(ma(G)) space.

24.3 Factoring Thin Graphs

We now show that the complexity of computing S(G), respectively S[G], is closely related
to the complexity of factoring thin graphs over the direct, respectively the strong, product.
For the direct product the key to this result is Proposition 8.10, and for the strong one it
is Proposition 24.4.

We consider the direct product first. Given an arbitrary factorization G = H × K,
Proposition 8.10 asserts that S(H × K) = S(H)2S(K). Because S(H) and S(K) are
spanning subgraphs of H and K, this means that the S(H)-layers and S(K)-layers of
S(H)2S(K) have the same vertex sets as the H-layers and K-layers of H ×K.

Furthermore, if G1 × G2 × · · · × Gk is the prime factorization of G, then S(G) =
S(G1)2S(G2)2 · · · 2S(Gk).

Of course the S(Gi) need not be prime with respect to the Cartesian product, but we
can factor them further so that there is a prime factoring S(G) = �i∈I Hi and a partition
J1 ∪ J2 ∪ · · · ∪ Jk of the index set I, such that S(Gi) = �j∈Ji

Hj . Setting HJ = �j∈J Hj

and HI\J = �j∈I\J Hj , we thus have S(G) ∼= HJ 2HI\J and the vertex sets of the HJ -
layers in S(G) correspond to the vertex sets of Gi-layers in G if J = Ji. Clearly, every Ji
is a minimal subset J of I with the property that the vertex sets of the HJ -layers in S(G),
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together with the vertex sets of the HI\J -layers in S(G), induce a factorization of G over
the direct product.

This gives rise to Algorithm 24.5 below.

Algorithm 24.5 Direct product decomposition of R-thin graphs

Input: The adjacency list of a connected, nonbipartite thin graph G in Γ0.
Output: The prime factorization G1 ×G2 × · · · ×Gk of G.

1: Compute S(G).
2: Compute the prime factorization �j∈I Hj of S(G).
3: Find all minimal subsets J of the index set I such that the HJ -layers of HJ 2HI\J ,

where HJ = �j∈J Hj and HI\J = �j∈I\J Hj , correspond to layers of a factor of G
with respect to the direct product.
(This means the projection pJ(G) onto V (HJ ) = V

(
�j∈I Hj

)
is a prime factor of G.)

The algorithm is correct by the preceding considerations. For Step 1 we have the com-
plexity O(min(mn2,m∆3)) by Propositions 24.2 and 24.3.

The complexity of the next step is linear by Section 23.5.
Suppose that we take any subset J of I. We can then define graphs A and B by the

projections pJ(G) and pI\J(G) onto the vertex sets V
(
�j∈I Hj

)
and V

(
�j∈I\J Hj

)
. If J

is one of the sets Ji or a union of such sets, then G = A×B.
Note that I has at most 2|I| subsets. Construction of the graphs A and B requires the

projection of m = |E(G)| edges into the coordinate sets and has complexity O(m |I|). It is
clear that E(G) ⊆ E(A × B). Thus, G = A × B if |E(G)| = |E(A)| · |E(B)|, and we can
find all subsets of I such that G = A×B in O

(
m 2|I||I|

)
time.

If we scan the subsets of I by their size, first one-element subsets, then the two-element
ones, then we can clearly determine all minimal subsets J with the desired properties in
O(m 2|I||I|) time.

Notice that we do not need more than O(m) space with this approach.
We still wish to estimate I. It is the number of prime factors of a subgraph of Gs with

respect to the Cartesian product, which is bounded by log2 n. Then 2|I| ≤ 2log2 n = n, and
thus the total complexity of Step 3 is O(mn log n), which is smaller than O(mn2). Hence
O(mn2) bounds the complexity of Algorithm 24.5.

However, if 2|I||I| ≤ ∆3 ≤ n2, then the complexity of Algorithm 24.5 is O(m∆3). We
have thus shown:

Theorem 24.8 Algorithm 24.5 correctly computes the prime factorization of connected,
thin nonbipartite graphs G with respect to the direct product.

If G has n vertices and m edges, then its time complexity is O(mn2), unless S(G) has
at most f prime factors with respect to Cartesian multiplication and 2ff ≤ ∆3 ≤ n2, where
∆ is the maximum degree of G. Then the complexity is O(m∆3).

For the strong product we similarly derive Algorithm 24.6. Clearly, the time complexity
of Step 1 is O(min(m2,ma(G)∆)) by Propositions 24.6 and 24.7. For Step 3 we obtain, as
in the case of the direct product, the time complexity O(m 2|I||I|).

For a bound on |I|, observe that S[G] is a subgraph of G. Thus its minimum degree is
bounded by the minimum degree δ of G. Of course this is a bound on |I|. Because δ < 2a(G)
we have the bound 2a(G) on |I|. This is better than in the case of the direct product, but
tedious to use for a general statement of the complexity of the algorithm. So we are content
with the following theorem.
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Theorem 24.9 Algorithm 24.6 correctly computes the prime factorization of connected S-
thin graphs G with respect to the strong product.

If G has n vertices and m edges, then its time complexity is O(mn logn + m2), un-
less S(G) has at most q prime factors with respect to Cartesian multiplication and 2qq ≤
a(G)∆ ≤ m, where ∆ is the maximum degree of G. Then the complexity is O(ma(G)∆).

Algorithm 24.6 Strong product decomposition of S-thin graphs

Input: The adjacency list of a connected S-thin graph G in Γ.
Output: The prime factorization G1 �G2 � · · ·�Gk of G.

1: Compute S[G].
2: Compute the prime factorization �j∈I Hj of S[G].
3: Find all minimal subsets J of the index set I such that the HJ -layers of HJ 2HI\J ,

where HJ = �j∈J Hj and HI\J = �j∈I\J Hj , correspond to layers of a factor of G
with respect to the strong product.
(This means the projection pJ(G) onto V (HJ ) = V

(
�j∈I Hj

)
is a prime factor of G.)

We wish to point out that that Hellmuth (2011) presents an algorithm of complexity
O(n∆6) for the prime factorization of connected S-thin graphs with respect to the strong
product. His algorithm covers the given graph G with certain well-defined neighborhoods,
which are decomposed with the help of the algorithms in this chapter. Notice that these
neighborhoods need not be be thin, even if G is thin. Their factorizations are then used to
factor G.

For fixed ∆ and variable n, the algorithm is linear in n. One calls such algorithms
quasi-linear. For a slightly more detailed description, compare Section 33.2.

24.4 Factoring Non-Thin Graphs

If G is not thin, then we first have to determine the relation R or S. For R this means that
we have to partition V (G) into maximal sets of vertices with the same open neighborhoods;
for S we must do the same for closed neighborhoods.

We outline a method of finding the relation R. Given the adjacency list of a graph G,
we can sort it (in linear time) with Algorithm 17.1. To be more precise, let the vertices of
G be v1, v2, . . . , vn, ordered by their indices. If Ai is the list of vertices adjacent to vi, then
sorting means that every list Ai respects the order of the vertices of G.

If we order the lists lexicographically and subsequently group them by their lengths, then
the lists corresponding to an equivalence class of R will form a contiguous block, which can
be determined in O(m) time. Interestingly, the lexicographic order of the lists can also be
computed in linear time, as has been shown by Dahlhaus, Gustedt, and McConnell (2001).
They use radix sort; the argument is subtle, but not difficult.

Because sorting by lengths is also linear, it is clear that R can be computed in O(m)
time. Similarly, using closed neighborhoods, one can compute S in linear time.

For the construction of the quotient graphs G/R or G/S, the adjacencies of the R-classes
or S-classes must be checked, and this can also be be done in linear time. Clearly, the space
complexity is linear too. We formulate this as a lemma.
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Lemma 24.10 If G is a connected graph with m edges, then the relations R, S, and the
quotients G/R and G/S can be computed in O(m) time and space.

By Corollary 8.7, a graph G factors as G = A×Ks
p if and only if p divides the order of

each R-class of G. Because greatest common divisors can be computed in linear time (with
respect to the size of the numbers, not with respect to the lengths of their representations),
we can extract maximal factors Ks

t from G in linear time, that is, in linear time we can find
graphs Ks

t and G′ such that G = Ks
t ×G′, where G′ has no nontrivial Ks

k factor.
Because we also know how to factor G′/R, we are left with the problem of finding the

prime factorization of G′ from that of G′/R. (Notice that G/R ∼= G′/R.)

Let us consider a decomposition G = A × B, where G is connected, nonbipartite, and
has no nontrivial Ks

k as a factor. Suppose we know G and have computed A/R and B/R.
How do we find A and B? In other words, given an element [x] ∈ A/R, how do we find the
the cardinality of [x]? Let [v] be the R-class of v ∈ V (G). It is an element of A/R × B/R
and has projections into V (A/R) and V (A/R), say [vA] and [vB], where [vA] ∈ V (A/R)
and [vB ] ∈ V (B/R). Then |[v]| = |[vA]| · |[vB ]|.

Notice that the greatest common divisor of the numbers |[x]|, for [x] ∈ V (A/R), is 1,
otherwise G would have a nontrivial Ks

k factor. Now consider a vertex [y] in B/R and the
vertices in the A/R-layer through ([x], [y]), where [x] ∈ V (A/R). These are the vertices

([x1], [y]), ([x2], [y]), . . . , ([xn1
], [y]) ,

where {[x1], [x2], . . . , [xn1
]} = V (A/R). Clearly, |[y]| divides every |[xi]| · |[y]|, but because

the gcd of the |[xi]| is 1, |[y]| is the greatest common divisor of the cardinalities of the
R-classes in the (A/R)-layer through ([x], [y]).

This means that we can compute the size of the R-classes of the vertices in A/R and
B/R in linear time.

It is of course possible (even likely) that G has fewer prime factors than G/R. Then we
have to group them to get prime factors of G, just as we had to group prime factors of S(G)
to get prime factors of G when G was thin.

We thus have shown the correctness of the following algorithm:

Algorithm 24.7 Direct product decomposition

Input: The adjacency list of a connected, nonbipartite graph G in Γ0.
Output: The prime factorization G1 ×G2 × · · · ×Gk of G.

1: Represent G in the form G′ ×Ks
t , where G′ has no nontrivial factor isomorphic to Ks

k.
2: Determine the prime factorization of Ks

t , that is, of t.
3: Compute G/R.
4: Compute the prime factorization Q1 ×Q2 × · · · ×Qk of G/R.
5: Compute all minimal subsets J of I = {1, 2, . . . , k} such that there are graphs A and B

with G = A×B, A/R =×i∈J Qi and B =×j∈I\J Qj.

(By the minimality of J , the A must be prime.)

Clearly, the complexity of Step 5 is the same as that of Step 3 in Algorithm 24.5. Notice
also that G cannot have more factors than G/R and that G/R cannot have more factors
than S(G/R). We thus have the following theorem:

Theorem 24.11 Algorithm 24.7 correctly computes the prime factors of connected nonbi-
partite graphs with respect to the direct product in O(mn2) time.
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For the strong product, similar reasoning leads to the following theorem:

Theorem 24.12 One can compute the prime factors of connected graphs with respect to
the strong product in O(mn logn+m2) time.

For the direct product, the situation becomes much more difficult if we are interested in
the number of prime factorizations in Γ.

Beginning with the observation that G × H /∈ Γ if and only if both G and H are in
Γ0 \ Γ, it is easy to verify the following corollaries to Theorem 8.17:

Corollary 24.13 Let G = Q1 × Q2 × · · · × Qk be the prime factor decomposition in Γ0

of a nonbipartite, connected graph G ∈ Γ. Furthermore, let the graphs Gi be defined by
Gi =×j∈Ii

Qj, where the sets I1, I2, . . . , Ir form a partition of the index set {1, 2, . . . , k}.
Then G1 ×G2 × · · · ×Gr is a prime factor decomposition of G in Γ if and only if every set
{Qj | j ∈ Ii} contains exactly one element in Γ.

With this corollary it is straightforward to find sequences of arbitrarily large nonbi-
partite, connected simple graphs Gk for which the number of prime factorizations in Γ is
not bounded by a polynomial in |V (Gk)|. In other words, the number of representations of
simple, connected nonbipartite graphs G as a direct product of prime simple graphs is not
bounded by a polynomial in |V (G)|.

The next corollary shows that even the complexity of deciding whether a nonbipartite,
connected simple graph has unique prime factorization in Γ is at least as hard as isomor-
phism testing of graphs and thus is most likely not polynomial.

Corollary 24.14 Let G = Q1 ×Q2 × · · · ×Qk be the prime factor decomposition in Γ0 of
the nonbipartite, connected graph G ∈ Γ. Then G has unique prime factor decomposition
with respect to the direct product if and only if one of the following conditions is satisfied:

(i) All factors Qi are in Γ.
(ii) Only one of the Qi is in Γ \Γ0, and all the other factors are pairwise isomorphic.

24.5 Lexicographic Product

In this section we show that the recognition complexity of lexicographic products is polyno-
mially equivalent to the graph isomorphism problem. We follow the approach of Feigenbaum
and Schäffer (1986).

The graph isomorphism problem asks whether two graphs G and H are isomorphic. Let
X be the disjoint union of graphs G and H . Clearly, G ∼= H if and only if X = D2 2G =
D2�G = D2 ◦G. Thus, testing whether a disconnected graph is decomposable with respect
to any of these three products is at least as hard as the graph isomorphism problem.

As we have seen in previous chapters, the recognition problem for connected composite
graphs with respect to the Cartesian and the strong product is polynomial. Concerning
connected lexicographic products, we note that X = D2 ◦G = K2 ◦G, so we do not expect
connected lexicographic products to behave better than disconnected ones.
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Decomposition is not easier than isomorphism testing

Several rather strong restrictions of the graph isomorphism problems are known that are at
least as hard as the general problem, for instance, regular graph isomorphism or complement
isomorphism. For our purposes we need another restriction of the problem. To prove it, we
invoke the following well-known number theoretic result.2

Lemma 24.15 For every real number x > 1 there exists at least one prime in the open
interval (x, 2x).

We now show that the graph isomorphism problem is equivalent to a restricted version
that is more convenient for our purposes.

Lemma 24.16 The graph isomorphism problem is polynomially reducible to the restricted
version in which both graphs are connected graphs on p vertices, where p is an odd prime
and where both graphs have maximum degree less than p/2.

Proof Let G and H be graphs on n ≥ 2 vertices. By Lemma 24.15, there is a prime in the
open interval (2n + 2, 4n + 4). Let p be the smallest prime in this interval. Clearly, p can
be computed in time polynomial in n. (Note that we consider the input to be of size n and
not the number of digits needed to represent n. This number is log2 n, and our algorithm
would be exponential with respect to it.)

Select a vertex u of G and attach a path P of length p−n to it. Join the neighbor u′ of
u on P by an edge to every vertex of G, and call the resulting graph G′. (See Figure 24.2.)

. . .

G

u
u′

︸ ︷︷ ︸
p − n vertices

FIGURE 24.2 The graph G′.

Analogously, construct a graphH ′ from H , where v and v′ are the corresponding selected
vertices of H ′. Clearly, G′ and H ′ can be obtained from G and H in polynomial time.

If G ∼= H , then G′ ∼= H ′. Conversely, suppose that G′ is isomorphic to H ′. Then u′

and v′ are unique vertices of degree n+ 1 in G′ and H ′, respectively. Thus an isomorphism
G′ → H ′ maps u′ to v′ and, consequently, the subgraph G of G′ onto the subgraph H of
H ′. It follows that G is isomorphic to H . Because both G′ and H ′ are connected graphs
on a prime number of vertices and because the maximum degree of both G′ and H ′ is
n+ 1 < p/2, the lemma follows. 2

Theorem 24.17 Determining whether a connected graph is prime relative to the lexico-
graphic product is at least as difficult as the graph isomorphism problem.

2See, for instance, Theorem 8.7 in Niven, Zuckerman, and Montgomery (1991).
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Proof We wish to reduce an instance G ∼= H of the graph isomorphism problem to an
instance of decomposability testing. Lemma 24.16 tells us we may assume that G and H
are connected, have a prime number p of vertices, and have maximum degrees less than p/2.

Choose a vertex of G, replace it by a copy of H , and replace each of the remaining p− 1
vertices by a copy of G. For every edge uv of G, we add edges from each vertex of the graph
corresponding to u to each vertex of the graph corresponding to v. Call the resulting graph
X . Clearly, if G ∼= H , then X = G ◦G. In this case X is decomposable.

Conversely, suppose that X = G′ ◦ H ′. We wish to show that G′ ∼= H ′ ∼= G ∼= H .
Because X is connected, G′ is connected. Assume first that H ′ is connected as well. Because
|V (X)| = p2, we have |V (G′)| = |V (H ′)| = p.

Interpret G′ ◦H ′ as being obtained from G′ by replacing each vertex of G′ with a copy of
H ′, and adding all possible edges between copies of H ′ that correspond to adjacent vertices
in G′. Let u, v ∈ V (X) be arbitrary adjacent vertices. We claim that knowing |N(u)∩N(v)|
allows us to decide whether u and v belong to the same copy of H ′. We have constructed
X so that dX(u) = d′p + d′′, where d′, d′′ < p/2 and u is adjacent to d′′ vertices inside
the copy of H ′ and to d′ other copies. Now, if u and v belong to the same copy of H ′,
then |N(u) ∩ N(v)| ≥ d′p. If they belong to different copies of H ′, then |N(u) ∩ N(v)| <
(d′ − 1)p+ p/2 + p/2 = d′p. This proves the claim.

As H ′ is connected, we can detect the vertices that belong to the copy of H ′ containing
u in polynomial time. This way we can find all p copies of H ′. By the construction of X ,
one of these copies is isomorphic to H , and the others to G. Thus G′ ∼= H ′ ∼= G ∼= H .

In the second case, H ′ is not connected. By the above procedure we can find the con-
nected component of H ′ containing u. If that component had fewer than p vertices, it would
correspond to a component of G or H . However, G and H are connected, and so the second
case cannot occur. 2

Thus a polynomial algorithm for testing graph decomposability with respect to the
lexicographic product would allow testing graph isomorphism in polynomial time. It is
commonly believed that the existence of such an algorithm is very unlikely.

Decomposition is not harder than isomorphism testing

Now we show that the graph decomposition problem for the lexicographic product is not
harder than the graph isomorphism problem.

Theorem 24.18 Deciding whether a connected graph on n vertices is prime relative to the
lexicographic product is not more difficult than solving a polynomial (in n) number of graph
isomorphism problems, the size of each of which is also polynomial in n.

Proof The proof is constructive. Assume there is an algorithm that solves the isomorphism
problem. We show that we can decide if a given connected graph G on n vertices is prime
over the lexicographic product by invoking the algorithm a polynomial number of times.

First note that there is a graph H for which G = Kp ◦ H if and only if G is a union
of exactly p copies of a graph H , if and only if the number of components of G in any
given isomorphism class is a multiple of p. The latter condition can be confirmed with a
polynomial number of isomorphism checks. Therefore we can determine if G = Kp ◦H with
a polynomial number of isomorphism checks.

Now consider the general problem of checking if G factors as G = G1 ◦ G2. If there is
such a factoring, then n = n1n2, where ni = |V (Gi)|. Given such n1 and n2, Theorem 10.8
implies that the corresponding factorization G = G1 ◦G2 is unique. Because there are only
polynomially many different factorizations of n as a product of two integers, we may assume
that n1 and n2 are fixed. We first assume that G2 is connected; the other case is treated

© 2011 by Taylor & Francis Group, LLC



302 Recognizing Direct, Strong, and Lexicographic Products

later. We try to find out which vertices of G belong to same G2-layers. Let u be a vertex
of G, and let v be an arbitrary neighbor of u. Let G′(u, v) be the graph obtained from
G by removing the neighbors of u different from v. Denote the connected component of
G′ containing these two vertices by C(u, v). If u and v belong to the same G2-layer, then
C(u, v) contains at most n2 vertices. The same holds for C(v, u). Otherwise, we label u
and v differently, namely as vertices of different layers. We continue this process for every
neighbor of u. If fewer that n2 vertices remain unlabeled at the end, then we label them as
vertices of Gu

2 .
We repeat the above procedure for every vertex of G. As we have already noticed, if

Gu
2 = Gv

2 , then C(u, v) and C(v, u) contain at most n2 vertices. Thus u and v are not labeled
as vertices of different copies. Let Gu

2 6= Gv
2 . If uw is an edge of G and w is not adjacent to

v, then C(u, v) contains at least u, w and all the vertices of Gw
2 . Thus |V (C(u, v))| ≥ n2,

and u and v receive different labels. By symmetry, v and u receive different labels if v has a
neighbor that is not a neighbor of u. Thus the only unmarked neighbors of u are the vertices
from Gu

2 and the vertices of layers whose projection to G1 is a complete subgraph. In these
layers we know all vertices but the vertices of Gu

2 that are not adjacent to u. We add them
as follows: Let U be the set of all unmarked neighbors of u and H be the subgraph of G
induced by the vertices ⋃

v∈U

(v ∪ C(u, v)) .

Let m = |V (H)|/n2; then H must be isomorphic to Km ◦ G2, and we can use the above
algorithm for the case in which the first factor is complete.

If we arrive at a contradiction in the above procedure, for example, if a vertex receives
two different labels or if u ∈ V (Gv

2) but v /∈ V (Gu
2 ), then we stop. On the other hand, if

the procedure consistently marks all vertices, then we have found the only possibility for
the decomposition of G. In other words, we have found a candidate for G2. Just as easily
we can find the candidate for G1. Finally, we check whether G is isomorphic to G1 ◦G2.

To complete the proof, we have to show how to proceed if G2 is not connected. Let
u be a vertex of G. Then the above factorization procedure does not find the entire Gu

2 -
layer but the connected component Cu of Gu

2 that contains u. By a polynomial number of
isomorphism tests, we can partition these components into isomorphism classes, where the
number of components of each class must be divisible by n1. To distribute these components
to the G2-layers, we first note that Gu

2 = Gv
2 and Cu 6= Cv imply that Cu ∩Cv = ∅ and that

u and v have the same neighbors outside Cu ∪Cv. Moreover, if Cu ∩Cv = ∅ and if u and v
have the same neighbors outside Cu ∪ Cv, then we may, without loss of generality, put Cu

and Cv into the same layer. 2

Theorems 24.17 and 24.18, are the work of Feigenbaum and Schäffer (1986). In addition
they showed that Theorem 24.18 also holds for disconnected G.
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Introduction to Part V

A
ny graph invariant can be studied on graph products. Here the standard question

involves the relationship between the invariant of the product and the invariant of
the factors. Not all invariants are equally interesting in this respect. Typically any invariant
leads to interesting problems on specific products. For instance, while the chromatic number
of the Cartesian product is almost trivial, it is quite exciting for the direct product, and
also very interesting on the lexicographic one. On the other hand, the domination number
leads to most interesting problems when applied to the Cartesian product; the independence
number is most interesting on the strong product and the direct product.

We begin with a chapter on connectivity and edge-connectivity of products, which fea-
tures many recent results. In particular, formulas for the connectivity of the Cartesian
product, the strong product, and the lexicographic product are given.

This is followed by Chapter 26, on coloring. For the Cartesian product we easily establish
that χ(G2H) = max{χ(G), χ(H)}, while the corresponding question for the direct product
is one of the deepest unsolved questions in graph theory: Hedetniemi’s conjecture, which
asserts that χ(G×H) = min{χ(G), χ(H)}, has resisted proof for almost half a century. We
present a proof by El-Zahar and Sauer (1985) that this conjecture holds for 4-chromatic
graphs and the recent development by Zhu (2011) that the fractional version of the conjec-
ture is true. Along the way we derive a number of bounds for the chromatic number and
the circular chromatic number of various products. The lexicographic product plays a key
role.

Chapter 27 investigates the independence number. Here the strong product offers many
interesting questions. We investigate the Shannon capacity, for which Lovász’s ϑ-function
is of great importance. For the direct product we give central attention to products of
vertex-transitive graphs.

Chapter 28 addresses the question of domination. We encounter yet another major un-
solved problem in graph theory, namely Vizing’s conjecture, which asserts that γ(G2H) =
γ(G)γ(H). We offer a number of results that support this conjecture, and we prove its
fractional version.

We round out Part V with a chapter on cycle bases of products, and a final chapter
on selected results. The latter contains plenty of results on standard products related to
one-factorizations and edge-colorings, problems involving Hamilton cycles, minors, recon-
struction, topological embeddings, and nowhere-zero flows. We also address modeling of
complex networks via the direct product.

For an extensive survey of invariants on graph products, we refer the reader
to Nowakowski and Rall (1996).

Concerning chapter dependencies, Part V builds on Part I, but is otherwise entirely in-
dependent of the other portions of the book. We hasten to add, however, that whereas Part I
can be digested by the novice graph theorist, Part V often assumes a deeper understanding
of the subject.
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In Chapter 5 we characterized connectedness in the four standard products. The results
were straightforward for all but the direct product. In this chapter we consider connectivity
and edge-connectivity. Here the situation is more complex. In fact, despite some recent
breakthroughs, the problem of determining the (edge-)connectivity of all products is not
yet completely resolved.

In the next section we review connectivity notions and present formulas for the connec-
tivity and edge-connectivity of arbitrary Cartesian products. Section 25.2 treats connectiv-
ity of lexicographic products, and the results are used for a construction that resolves a
conjecture of Mader. The last section considers the strong and the direct product.

25.1 Cartesian Product

A Cartesian product of graphs is connected if and only if every one of its factors is con-
nected (Corollary 5.3). In this section we present formulas for the connectivity and edge-
connectivity of arbitrary Cartesian products. In the latter case, the structure of minimum
disconnecting sets is described. Before doing this we recall the relevant concepts.

Let G be a graph. A subset S ⊆ V (G) is a separating set if G − S is disconnected.
(Separating sets were defined for connected graphs in Chapter 1; the present definition
allows S to be empty if G is disconnected.) The connectivity of G, denoted κ(G), is the
minimum size of S ⊆ V (G) such that G−S is disconnected or a single vertex. A separating
set of size κ(G) is called a κ-set of G. For any k ≤ κ(G), one says that G is k-connected.

Similarly, S ⊆ E(G) is a disconnecting set if G − S is disconnected. A graph is k-edge-
connected if all its disconnecting sets have at least k edges. The edge-connectivity of G,
denoted κ′(G), is the maximum k for which G is k-edge-connected. A disconnecting set of
size κ′(G) is called a κ′-set of G.

Recall from Chapter 7 that for a graph H and a subgraph G′ of G, the subproduct
G′ � H is called the H-tower over G′. We now define analogous concepts of towers over
vertex or edge sets. Given a graph product ∗ and S ⊆ V (G), the set S×V (H) ⊆ V (G ∗H)
is called an H-tower over S. Note that if S is a separating set of G and ∗ is one of the four
standard products, then the H-tower over S is a separating set of G ∗H . Similarly we may
define G-towers over a separating set S ⊆ V (H). (The only substantial difference is that
such a tower may not be a separating set when ∗ is the lexicographic product.)

Similarly, for S ⊆ E(G), the H-tower over S is the set {xy ∈ E(G∗H) | pG(x)pG(y) ∈ S}.
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This is a disconnecting set for G ∗ H if S is. In like fashion, we define a G-tower over
S ⊆ E(H), but this may not be a disconnecting set in the case of the lexicographic product.

The formula for the connectivity of Cartesian products has an interesting history. It
was announced by Liouville (1978) but a proof never appeared. In subsequent decades,
several partial results were obtained. Thirty years later, Špacapan (2008) ended the story
by providing a proof for Liouville’s formula:

Theorem 25.1 Let G and H be graphs on at least two vertices. Then

κ(G2H) = min{κ(G)|V (H)|, κ(H)|V (G)|, δ(G) + δ(H)} .

The proof that the stated minimum is an upper bound for κ(G2H) is reserved for
Exercise 25.3. See Špacapan (2008) or Imrich, Klavžar, and Rall (2008) for the proof of the
lower bound. A different proof of Theorem 25.1 is given by Xu and Yang (2010).

Theorem 25.1 has several interesting consequences. For instance, Exercise 25.4 states

κ(G2H) ≥ κ(G) + κ(H)

for any connected G and H . Interestingly, it was claimed several times that equality holds,
a statement that is clearly wrong; consider for instance the example of Figure 25.1. Fitina,
Lenard, and Mills (2010b) cited four instances of the incorrect claim in the literature, and
resolved this issue by characterizing graphs for which equality holds:

Theorem 25.2 If G and H are connected, nontrivial graphs, then κ(G2H) = κ(G)+κ(H)
if and only if either κ(G) = δ(G) and κ(H) = δ(H) or one factor is complete and κ = 1
holds for the other factor.

Another consequence of Theorem 25.1, proved in Klavžar and Špacapan (2008), asserts

κ(G�,n) = δ(G�,n) = n δ(G)

for all connected, nontrivial graphs G, and n ≥ 2. In general, the minimum in Theorem 25.1
is not always attained on the minimum degree. For example, let Gn be the graph formed
by joining two copies of Kn at a vertex. As κ(Gk) = 1, for any m > n+ 1 ≥ 4 we get

min{κ(Gn)|V (Gm)|, κ(Gm)|V (Gn)|} = 2n− 1 < (n− 1) + (m− 1) = δ(Gn) + δ(Gm) .

Theorem 25.1 gives the impression that every minimum separating set of G2H is ei-
ther a tower over a minimum separating set of a factor or a neighborhood of a vertex of
minimum degree. However, Figure 25.1 shows that this is not always so. Theorem 25.1 gives
κ(G3 2G3) = 4, but the figure shows a minimum separating set of G3 2G3 that is neither
a tower nor the neighborhood of a vertex. This phenomenon may explain why the proof of
Theorem 25.1 was so elusive.

In order to describe a partial characterization of minimum separating sets in Cartesian
products, we need the following concepts.

A graph is called super-connected if every minimum separating set is the neighborhood of
some vertex. Note that the example of Figure 25.1 demonstrates that G3 2G3 is not super-
connected. This example can be generalized as follows. Call a graph G with at least one edge
locally complete if it is not a complete graph and contains a complete block of order δ(G)+1.
(The graph Gn is locally complete as it contains two blocks of order n = δ(Gn) + 1.) Then
the Cartesian product of locally complete graphs is not super-connected (Exercise 25.6).

To characterize super-connected Cartesian product graphs, recall that N [A] denotes the
closed neighborhood of A ⊂ V (G). We say that a connected graph G has property P if there
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FIGURE 25.1 A noncanonical minimum separating set of G3 2G3.

A A

FIGURE 25.2 A graph with property P .

is a set A ⊂ V (G) such that |N [A]| = δ(G) + 1. Note that in this case, A = N [A] \ A is a
separating set, A induces a complete graph, and any vertex of A is adjacent to all vertices
of A. Figure 25.2 shows a graph with property P . Now, if a graph G has property P and a
graph H contains a pendant vertex, then G2H in not super-connected (Exercise 25.7).

We have thus observed that if G and H are locally complete graphs or one of them has
property P and the other a pendant vertex, then G2H is not locally complete. Let us call
such pairs G,H excluded pairs. Then Xu and Yang (2010) proved the following result.

Theorem 25.3 Let G and H be connected graphs, each with at least one edge, and suppose
that G,H is not an excluded pair. Then G2H is super-connected if and only if δ(G) +
δ(H) < min{κ(G)|V (H)|, κ(H)|V (G)|} or G2H ∈ {K22K2, K22K3}.

By contrast, any minimum disconnecting set of a Cartesian product has a certain canon-
ical form. This was proved by Klavžar and Špacapan (2008).

Theorem 25.4 Suppose G and H are connected nontrivial graphs. If S is a minimum
disconnecting set of G2H, then one of the following holds:

(i) S consists of the edges incident to a vertex of G2H of minimum degree,
(ii) S is an H-tower over a κ′-set of G,

(iii) S is a G-tower over a κ′-set of H.

Proof We note first that by Exercise 25.1, |S| ≤ δ(G2H) = δ(G) + δ(H). Moreover, the
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H-tower over a disconnecting set of edges X of G is a disconnecting set in G2H . Thus
|S| ≤ κ′(G)|V (H)| and analogously |S| ≤ κ′(H)|V (G)|.

Because S is a minimum disconnecting set, (G2H)−S consists of exactly two connected
components C and C. We distinguish three cases.

Case 1. Every G-layer intersects both C and C.
In this case the removal of the edges of S from any G-layer disconnects the layer, hence
|S| ≥ κ′(G)|V (H)|. It follows that |S| = κ′(G)|V (H)| and consequently no edges from H-
layers are contained in S. Thus every H-layer is either contained in C or in C. We conclude
that S is an H-tower over a κ′-set of G.

Case 2. Every H-layer intersects both C and C.
By the same argument as in Case 1 we infer that S is a G-tower over a κ′-set of H .

Case 3. There exist a G-layer and an H-layer that are connected in (G2H) − S.
These two layers are in the same connected component of (G2H) − S, say C. Let (a, x)
be an arbitrary vertex of G2H from C.

We claim that d(a, x) ≤ |S|. We prove this by assigning to each neighbor of (a, x) a
unique edge from S. So let (a′, x) be a neighbor of (a, x) in G(a,x). If e = (a, x)(a′, x) ∈ S,
we assign e to (a′, x). If (a, x)(a′, x) /∈ S, then (a′, x) ∈ C, so the layer H(a′,x) meets both
C and C. (Recall that every layer meets C.) Then H(a′,x) contains at least one edge from
S and we assign such an edge to (a′, x). We proceed analogously for a neighbor (a, x′) of
(a, x) that lies in H(a,x). Hence |S| ≥ d(a, x) ≥ δ(G2H), and the claim is proved.

G

H G2H

C
C

a′

(a′, x)
x

a

(a, x)

FIGURE 25.3 Illustration of Case 3. Bold edges are in S. Dashed lines represent layers.

As S is a minimum disconnecting set, the claim implies |S| = d(a, x) for any vertex
(a, x) ∈ C. Suppose

∣∣C
∣∣ > 1. Then we may assume that C has a vertex (a′, x) with a′ 6= a

(for otherwise C would be disconnected provided that G(a,x) and H(a,x) would have only
one vertex in C). Then (a, x)(a′, x) ∈ E(G2H). Indeed, if this were not the case, then
no edge of H(a′,x) would be assigned to (a, x) in the argument that proved the claim.
Because H(a′,x) contains at least one edge of S, this would imply |S| > d(a, x). By the same
argument, D = G(a,x) ∩ C induces a complete graph.

Because D is complete and each vertex of D has the same degree restricted to the
corresponding H-layer (and equal degree), it follows that each vertex in D has an equal
number of neighbors in G(a,x) ∩C. As G is connected, each vertex from D has at least one
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neighbor in G(a,x) ∩ C. Therefore, there is at least one edge in S that was not assigned to
(a, x) in the above argument. We conclude that

∣∣C
∣∣ = 1 and thus S consists of the edges

incident to a vertex of G2H of minimum degree. 2

Theorem 25.4 yields a formula for the edge-connectivity of a Cartesian product, due
to Xu and Yang (2006). Note that it is completely parallel to the connectivity formula.

Corollary 25.5 Let G and H be graphs on at least two vertices. Then

κ′(G2H) = min{κ′(G)|V (H)|, κ′(H)|V (G)|, δ(G) + δ(H)} .

Proof Note that the result is clearly true if G or H is not connected. If G and H are
connected graphs on at least two vertices, the result follows from Theorem 25.4. 2

Klavžar and Špacapan (2008) also prove that κ′(G�,n) = n δ(G) for any connected graph
on at least two vertices, and n ≥ 2, a result entirely parallel to the situation for connectivity.
Also, parallel to Theorem 25.2, we have the following theorem of Fitina, Lenard, and Mills
(2010a) (see also Exercise 25.5):

Theorem 25.6 If G and H are connected and nontrivial, then κ′(G2H) = κ′(G) +κ′(H)
if and only if either κ′(G) = δ(G) and κ′(H) = δ(H), or one factor is complete and κ′ = 1
for the other factor.

25.2 Critically Connected Graphs and the Lexicographic Product

Corollary 5.14 states that the connectedness of a lexicographic product depends only on the
first factor: A lexicographic product G1 ◦G2 ◦ · · · ◦Gk of nontrivial graphs is connected if
and only if G1 is connected. We now determine the connectivity of lexicographic products.
We then use this result to construct `-κ-critically connected graphs of diameter at least 3,
the existence of which were conjectured by Mader.

Proposition 25.7 If G and H are graphs and G is not complete, then κ(G ◦ H) =
κ(G)|V (H)|.

Proof Let S be a κ-set of G. Then S × V (H) is a separating set of G ◦H , so κ(G ◦H) ≤
κ(G)|V (H)|.

Let (a, x) and (b, y) be distinct vertices of G◦H . If a = b, then there are dG(a)|V (H)| ≥
δ(G)|V (H)| ≥ κ(G)|V (H)| internally disjoint (a, x), (b, y)-paths (each of length 2). If a 6= b,
there are κ(G) internally disjoint a, b-paths in G. Each such path can be easily extended to
|V (H)| internally disjoint (a, x), (b, y)-paths; hence we have at least κ(G)|V (H)| such paths
G ◦H . In any case, Menger’s theorem implies κ(G ◦H) ≥ κ(G)|V (H)|. 2

The case when G is complete is left for Exercise 25.8.

Let ` ≥ 0. A graph G 6= Kn is called `-κ-critical if for any X ⊆ V (G), |X | ≤ `, we have
κ(G − X) = κ(G) − |X |. Mader (1977) proved that a 3-κ-critical graph has diameter at
most 4, and later Mader (1984) conjectured that there actually exist 3-κ-critical graphs of
diameter 3 or 4. Using the lexicographic product, Kriesell (2006) was able to confirm the
conjecture. To do this he first applied Proposition 25.7 to get:
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Lemma 25.8 Let G be an `-κ-critical graph with κ(G) = k and |V (G)| ≥ 2k + 2. Let Ĝ
be the graph obtained from the disjoint union of G ◦K2 and two vertices, where one vertex
is adjacent to all vertices of one G-layer and the other vertex to all vertices of the other
G-layer. Then Ĝ is an `-κ-critical graph with κ(Ĝ) = 2k + 2 and diam(Ĝ) ≥ 3.

The graph Ĝ from Lemma 25.8 is illustrated in Figure 25.4.

G

G ◦ K2

b
G

K2

FIGURE 25.4 The construction of Ĝ.

With Lemma 25.8 in hand, we can now describe the construction of Kriesell (2006).

Theorem 25.9 For every ` ≥ 3 there exists an `-κ-critical graph of diameter at least 3.

Proof Let ` ≥ 3 and let G(n, `) be the complement of the `th direct power of Kn, that is,

G(n, `) = K×,`
n .

Clearly, |V (G(n, `))| = n`. Mader (1977) proved that G(n, `) is an `-critical graph with
κ(G(n, `)) = n` − (n − 1)` − 1. Now select an n large enough so that |V (G(n, `))| = n` ≥
2κ(G(n, `)) + 2. Then Lemma 25.8 applied on G(n, `) gives an `-κ-critical graph with con-

nectivity 2κ(G(n, `)) + 2 and diam(Ĝ) ≥ 3. 2

We close the section by noting that the lexicographic product plays an important role
in some other problems related to connectivity. For instance, Meng (2003) proved that a
connected vertex- and edge-transitive graph G is not super-connected if and only if G is
Cn ◦Dm (n ≥ 6, m ≥ 1) or L(Q3) ◦Dm (m ≥ 1), where L(Q3) is the line graph of Q3.

25.3 Strong and Direct Products

It is an easy consequence of Distance Formula for the strong product that a strong product
of graphs is connected if and only if every factor is connected (Corollary 5.5). The next
lemma is useful for determining the connectivity of strong products.

Lemma 25.10 Let G and H be non-complete graphs and let S be a minimum separating
set of G�H. If S intersects every H-layer, then S is a G-tower over a κ-set of H.

Proof We claim that S intersects any H-layer in at least κ(H) vertices. Let a ∈ V (G).
Because we assumed that S intersects every H-layer, there exists a vertex (a, x) ∈ S.
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Partition the vertices of H(a,x) into sets S(a) and S(a) that contain (respectively do not
contain) vertices of S. There is nothing to be proved if |S(a)| = |V (H)|. Hence let S(a) 6= ∅,
set X = G�H − S, and consider the following two cases.

Case 1. S(a) is not contained in a single connected component of X .
In this case, S(a) induces a disconnected subgraph of H(a,x). It follows that S(a) is a
separating set of H(a,x) and hence has size at least κ(H).

Case 2. S(a) is contained in a single connected component of X .
Let C be a component of X that does not contain S(a). (Such a component exists because S
is a separating set.) Because S is a minimum separating set, (a, x) has at least one neighbor
in C, say (a′, x′). Clearly a′ 6= a, but it is possible that x′ = x. However, in any case
(a, x′) ∈ S(a). Indeed, (a, x′) is not in S(a), for otherwise (a′, x′), being adjacent to (a, x′),
would be in the same connected component of X as S(a). By the same argument, (a′, x′)
has no neighbor in S(a). It follows that all the neighbors of (a, x′) in H(a,x) lie in S(a).
Therefore, |S(a)| ≥ 1 + δ(H) ≥ 1 + κ(H).

We have thus shown that S intersects any H-layer in at least κ(H) vertices. Therefore,
|S| ≥ κ(H)|V (G)|. On the other hand, it is straightforward to see that a G-tower over a
separating set of H (such sets exist because H is not complete) is a separating set of G�H .
Therefore, |S| ≤ κ(H)|V (G)| and hence |S| = κ(H)|V (G)|. Moreover, this also implies that
the conclusion |S(a)| ≥ 1 + κ(H) of Case 2 is not possible. It follows that for any vertex
a of G, S(a) is contained in more than one connected component of X . To complete the
argument, one now needs to show that for any vertices a, b ∈ V (G), pH(S(a)) = pH(S(b)),
which in turn implies that S is a G-tower over pH(S(a)). Details are left to the reader. 2

By symmetry, if S is a minimum separating set of G �H that has at least one vertex
in every G-layer, then S is an H-tower over a κ-set of G. The last case to be considered is
when S has empty intersection with at least one G-layer and with at least one H-layer. To
describe S in such cases, we need the following definition.

Let SG and SH be separating sets of connected graphs G and H , and let G′ and H ′ be
arbitrary connected components of G− SG and H − SH . Then the set of vertices

(
SG × V (H ′)

)
∪ (SG × SH) ∪

(
V (G′) × SH

)

is called a k-set of G�H ; see Figure 25.5.

G

H

SG

SH

G

′

H

′

G � H

FIGURE 25.5 A k-set of G�H .
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Špacapan (2010) gives a lengthy and technical proof that if a minimum separating set
S has empty intersection with at least one G-layer and with at least one H-layer, then S is
a k-set of G�H . In conclusion, he proved the following result. (For the special case when
one of G and H is complete, see Exercise 25.10.)

Theorem 25.11 Let G and H be connected graphs, at least one not complete, and let S be
a minimum separating set of G�H. Then one of the following holds:

(i) S is a k-set in G�H,
(ii) S is an H-tower over a κ-set of G,

(iii) S is a G-tower over a κ-set of H.

To see that a k-set can be smaller than any of the towers over κ-sets of G and H ,
and that a k-set need not be induced by minimum separating sets of factors, consider the
following example. Let n ≥ 3 and let Gn be the graph obtained from the disjoint of Kn,
K2n, and K3n, such that two vertices x and y of Kn are identified with two vertices of
K2n, and another vertex z of K2n is identified with a vertex of K3n. Now consider Gn�Gn.
Because {z} is the unique κ-set of Gn, any tower over a κ-set of a factor of Gn�Gn contains
6n−3 vertices. On the other hand, let X be the set of vertices of Gn induced by the vertices
V (Kn) \ {x, y}; then

({x, y} ×X) ∪ ({x, y} × {x, y}) ∪ (X × {x, y})

is a k-set of Gn �Gn of order 2(n− 2) + 4 + (n− 2)2 = 4n− 4 < 6n− 3.
Theorem 25.11 immediately yields a formula for the connectivity of strong products.

Corollary 25.12 Let G and H be connected graphs, at least one not complete. Set `(G�H)
be the minimum size of a k-set of G�H. Then

κ(G�H) = min{κ(G)|V (H)|, κ(H)|V (G)|, `(G�H)} .

Theorem 25.11 and Corollary 25.12 assume that at least one of the factors is not complete
because otherwise their strong product is also complete.

For the edge-connectivity, Brešar and Špacapan (2007) proved the following result.

Theorem 25.13 Let G and H be connected graphs. Then

κ′(G�H) = min{κ′(G)(|V (H)| + 2|E(H)|), κ′(H)(|V (G)| + 2|E(G)|), δ(G �H)} .

It is again not difficult to see that κ′(G �H) is not bigger than the asserted minimum
(Exercise 25.11). The other inequality requires several pages.

We conclude the section with a brief look at the direct product. Recall from Theorem 5.9
that if G and H are connected nontrivial graphs, then G ×H is connected provided that
at least one of G or H has an odd cycle; otherwise G × H has exactly two components.
As this result is more involved than the corresponding results for other products, it is not
surprising that the connectivity and the edge-connectivity of direct products is a difficult
problem.

For the edge-connectivity of direct products, only some partial results are known. For
instance, Brešar and Špacapan (2008) proved the following result.

Theorem 25.14 Let G and H be nonbipartite graphs. Then

κ′(G×H) ≥ min{κ′(G)|E(H)|, κ′(H)|E(G)|, δ(G)δ(H)},
κ′(G×H) ≤ min{2κ′(G)|E(H)|, 2κ′(H)|E(G)|, δ(G)δ(H)} .
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The upper bound holds because δ(G ×H) = δ(G)δ(H) and because it is easy to verify
that (i) the tower over a κ′-set of G is a disconnecting set of G ×H and (ii) such a tower
contains 2κ′(G)|E(H)| edges.

Even less is known about the connectivity of the direct product. Brešar and Špacapan
(2008) give different upper bounds; see Exercise 25.12 for an example.

Exercises

25.1. Show that for any graph G, κ(G) ≤ δ(G) and κ′(G) ≤ δ(G).

25.2. Show that for any graph G, κ(G) ≤ κ′(G).

25.3. Show that for any graphs G and H on at least two vertices, κ(G2H) ≤
min{κ(G)|V (H)|, κ(H)|V (G)|, δ(G) + δ(H)}.

25.4. (Sabidussi, 1957) Show that for any connected graphs G and H , κ(G2H) ≥ κ(G)+
κ(H).

25.5. Show that for any connected graphs G and H , κ′(G2H) ≥ κ′(G) + κ′(H).

25.6. Let G and H be connected, locally complete graphs. Show that then G2H is not
super-connected.

25.7. Let G be a connected graph with property P and let H be a connected graph with
a pendant vertex. Show that G2H is not super-connected.

25.8. Show that for any n ≥ 2 and any graph H ,

κ(Kn ◦H) = (n− 1)|V (H)| + κ(H) .

25.9. Determine the smallest order and connectivity of 3-κ-connected graphs constructed
in Theorem 25.9.

25.10. Show that if G is not complete, then κ(G�Kn) = nκ(G).

25.11. Find disconnecting sets of edges of G�H that realize the minimum in the formula
of Theorem 25.13.

25.12. (Brešar and Špacapan, 2008) For a graph G, let κb(G) be the size of a smallest set
X of vertices of G such that G−X is bipartite. Show that

κ(G×H) ≤ κb(G)|V (H)| + κb(H)|V (G)| − κb(G)κb(H) .
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We begin with the chromatic number of Cartesian, strong, and lexicographic products. The
lexicographic product plays a key role here, and Section 26.2 establishes upper and lower
bounds for its chromatic number. These are then applied in three constructions involving
lexicographic and strong products. The subsequent section considers the fractional and
the circular chromatic number. The former can be expressed in terms of the lexicographic
product, and is multiplicative on this product. The circular chromatic number has many
appealing properties, especially in its relation to the lexicographic product.

The final sections treat Hedetniemi’s conjecture, which asserts χ(G × H) =
min{χ(G), χ(H)} and is the central open problem in product colorings. In Section 26.5
we prove it for the case where G is 4-colorable while in the final section the fractional
version of the conjecture is proved.

We note that loops arise naturally in discussions of Hedetniemi’s conjecture. We adopt
the convention that χ(G) = ∞ if G has a loop.

26.1 Product Coloring

We now develop formulas and bounds for the chromatic number of Cartesian products,
strong products, and lexicographic products. The section concludes with a neat result about
uniquely colorable direct products, although we delay a full treatment of the direct product
until sections 26.4 and 26.5.

Sabidussi (1957) gave a complete and satisfactory answer to the question of the chromatic
number of a Cartesian product. The result has been rediscovered several times.

Theorem 26.1 For any graphs G and H, χ(G2H) = max{χ(G), χ(H)}.

Proof Certainly χ(G2H) ≥ χ(G), because the G-layers of G2H are isomorphic to G.
Similarly χ(G2H) ≥ χ(H), so χ(G2H) ≥ max{χ(G), χ(H)}.

Now consider the reverse inequality. By commutativity, we may assume χ(G) ≥ χ(H).
Let g : V (G) → {0, 1, . . . , χ(G)−1} be a coloring of G, and h : V (H) → {0, 1, . . . , χ(H)−1}
be a coloring of H . Define f : V (G2H) → {0, 1, . . . , χ(G) − 1} as

f(a, x) = g(a) + h(x) (mod χ(G)).

317
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318 Coloring and Hedetniemi’s Conjecture

Given an edge in G2H of form (a, x)(a, y) with xy ∈ E(H), we have f(a, x) 6= f(a, y).
Any edge not of this type has form (a, x)(b, x) with ab ∈ E(G), and again f(a, x) 6= f(b, x).
Thus f is a χ(G)-coloring of G2H , so χ(G2H) ≤ max{χ(G), χ(H)}. 2

Figure 26.1 illustrates the construction from the proof of Theorem 26.1.
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FIGURE 26.1 A 3-coloring of (K4 − e)2C5.

In contrast to Theorem 26.1, there are no explicit formulas for the chromatic number of
the strong or lexicographic products. We do, however, have the following bounds.

Proposition 26.2 For any graphs G and H,

χ(G�H) ≤ χ(G ◦H) ≤ χ(G)χ(H) .

Proof Because G�H ⊆ G◦H , we infer that χ(G�H) ≤ χ(G◦H). For the other inequality,
let g and h be minimal colorings of G and H , respectively. Given (a, x) ∈ V (G ◦H), set

f(a, x) = (g(a), h(x)) .

If (a, x)(b, y) is an edge of G ◦ H , then ab is an edge of G, or xy is an edge of H . Either
way, f(a, x) 6= f(b, y). Therefore f is a coloring of G ◦H with χ(G)χ(H) colors. 2

To see that the inequalities of Proposition 26.2 are sharp, let G and H be graphs whose
chromatic numbers equal their clique numbers. Because Kmn = Km �Kn, it follows that
G�H has Kχ(G)χ(H) as a subgraph, and the proposition yields χ(G�H) = χ(G)χ(H). In
particular, if G and H are bipartite with at least one edge, then χ(G�H) = χ(G ◦H) = 4.

On the other hand, the inequalities can be strict, even simultaneously. Consider the
lexicographic product C5 ◦ K2 (which is isomorphic to C5 � K2). It is easy to see that
χ(C5 ◦K2) = 5, so

5 = χ(C5 ◦K2) < χ(C5)χ(K2) = 6 .

Further, one can establish χ(C5 � C5) = 5 and χ(C5 ◦ C5) = 8, while χ(C5)χ(C5) = 9.
In general, it is difficult to compute chromatic numbers of strong and lexicographic

products. However, the following theorem by Geller and Stahl (1975) implies that for the
lexicographic product, it suffices to assume the second factor is complete.
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Theorem 26.3 If χ(H) = n, then χ(G ◦H) = χ(G ◦Kn) for any graph G.

Proof Suppose χ(H) = n. By Lemma 2.10 (i), there is a homomorphism H → Kn and
hence also a homomorphism G ◦H → G ◦Kn. Thus χ(G ◦H) ≤ χ(G ◦Kn).

Conversely, color G◦H with χ(G◦H) colors. Because χ(H) = n, any givenH-layer has at
least n different colors. Select n vertices of different colors from the H-layer. Connect every
pair of selected vertices by an edge (if it is not already present). Repeating this procedure
for all H-layers and discarding all unselected vertices, we arrive at G ◦Kn, and it inherits
a coloring from G ◦H . Hence χ(G ◦H) ≥ χ(G ◦Kn). 2

We now note two ways that coloring problems relate to the lexicographic product.

• Stahl (1976) introduced an n-tuple coloring of a graph as an assignment of a set of n
colors to each vertex such that adjacent vertices receive disjoint sets of colors. (This is
also known as a set coloring; see Bollobás and Thomason (1979).) The nth chromatic
number χn(G) of G is the smallest number of colors needed to give G an n-tuple
coloring. It is obvious that χn(G) = χ(G ◦ Kn). Thus the nth chromatic number is
the chromatic number of a special lexicographic product.

• Here is another reformulation of the chromatic number of the lexicographic product,
also due to Stahl (1976). Recall that, for n ≥ 2k, the Kneser graph K(n, k) has as
vertices the

(
n
k

)
k-subsets of {1, 2, . . . , n}, and two vertices are adjacent when they

are disjoint. Consider an n-coloring c of G ◦ Kk. Define a map V (G) → K(n, k) as
f(v) = {c(v, i) | i ∈ V (Kk)}. This is clearly a homomorphism. Conversely, every such
homomorphism induces an n-coloring of G ◦Kk. Therefore:

Proposition 26.4 The number χ(G ◦ Kk) is the smallest integer n for which there
is a homomorphism G→ K(n, k).

This generalizes the fact that χ(G) is the smallest n for which there is a homomorphism
G→ Kn.

In the wake of solving Kneser’s conjecture, Lovász (1978) showed χ(K(n, k)) = n−2k+2.
His ingenious proof uses homotopy theory and Borsuk’s theorem. We will have occasion to
use Lovász’s result later (as Proposition 26.4 may suggest) so we state it as a theorem. For
a proof, see Hell and Nešetřil (2004).

Theorem 26.5 If n ≥ 2k, then χ(K(n, k)) = n− 2k + 2. 2

We now shift our attention to the direct product. Recall that a graph G is uniquely
n-colorable if any n-coloring determines the same partition of V (G) into color classes. The
following result is due to Greenwell and Lovász (1974). It will be applied in Section 26.2 to
disprove Geller’s conjecture.

Theorem 26.6 If G is connected and χ(G) > n, then G×Kn is uniquely n-colorable.

Proof The map (u, i) 7→ i is a homomorphism G×Kn → Kn, so G×Kn is n-colorable.
Suppose f : V (G×Kn) → {1, . . . , n} is an n-coloring of G×Kn. Observe that there is a

vertex x ∈ V (G) for which the colors in the Kn-layer over x are all distinct: Indeed, suppose
to the contrary that for every x ∈ V (G) we have f(x, ix) = f(x, jx) for some ix 6= jx. Denote
this color as g(x), so g is a map V (G) → {1, . . . , n}. If xy ∈ E(G), then the vertex (x, ix)
must be adjacent to either (y, iy) or (y, jy), so g(x) 6= g(y). Therefore g is an n-coloring of
G, contrary to assumption.
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320 Coloring and Hedetniemi’s Conjecture

Thus G has a vertex x for which the Kn-layer above x contains n different colors. Let
xy ∈ E(G). Then (x, i) is adjacent to (y, j) whenever i 6= j. It follows that f(x, i) = f(y, i).
Because G is connected, we conclude that the color classes of G × Kn are all of form
V (G) × {i}, so G×Kn is uniquely n-colorable. 2

Actually, Greenwell and Lovász (1974) proved Theorem 26.6 in a somewhat more general
form, but the present version suffices for the next corollary.

Corollary 26.7 For all n, k ≥ 3 there is a uniquely n-colorable graph with no odd cycles
shorter than k.

Proof Apply Theorem 26.6 and the well-known fact that there are graphs with arbitrarily
large chromatic number and without odd cycles shorter than a given constant. 2

Theorem 26.6 was generalized by Zhu (1999) as follows: Given a core G (defined on
p. 34), let C(G) be the graph whose vertices are the maps V (G) → V (G) that are not
automorphisms. Two such maps f and g are adjacent if f(u)g(v) ∈ E(G) for all uv ∈ E(G).
Let H be a core, and suppose that G is connected and does not admit a homomorphism to
C(H). Then there is a unique homomorphism G×H → H .

26.2 Bounds and Three Applications

We continue with bounds on the chromatic number of lexicographic and strong products.
These bounds are then used to construct counterexamples to conjectures by Geller and
Hajós, and to prove a related result about retracts of strong products.

By Proposition 26.2, any upper bound for the lexicographic product is also an upper
bound for the strong product, and any lower bound for the strong product is a lower bound
for the lexicographic product. We will use these facts often.

Geller and Stahl (1975) proved a weaker version of our next result; the present formula-
tion is by Klavžar (1993). Recall that a graph G is χ-critical if χ(G− v) < χ(G) for every
v ∈ V (G). Any nontrivial graph G has a χ-critical subgraph G′ with χ(G) = χ(G′).

Theorem 26.8 If G is a χ-critical graph, then for any graph H,

χ(G�H) ≤ χ(G ◦H) ≤ χ(H) (χ(G) − 1) +

⌈
χ(H)

α(G)

⌉
.

Proof Let {C0, C1, . . . , Cχ(H)−1} be the color classes of a minimal coloring of H , and let
S = {a0, a1, . . . , aα(G)−1} be an independent set in G. Because G is χ-critical, each G− ai
can be colored with χ(G)−1 colors. For each ai ∈ S, let fi : V (G)−ai → {1, 2, . . . , χ(G)−1}
be such a coloring.

For each 0 ≤ j ≤ χ(H) − 1, write j = pj · α(G) + qj , where 0 ≤ qj < α(G). Then set

f(a, x) =

{
jχ(G) + fqj (a) if x ∈ Cj and a 6= aqj ,
pjχ(G) if x ∈ Cj and a = aqj .

It is straightforward to see that f is a coloring of G ◦H that attains the upper bound of
the theorem. 2

Finding a good upper bound for the chromatic number of a product involves finding a
good construction. Lower bounds can be more problematic. Nonetheless, we present three
such results. The first is by Stahl (1976); see also Bollobás and Thomason (1979). Our proof
is from Klavžar and Milutinović (1994).
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Theorem 26.9 If G is a graph with at least one edge, and H is a graph with χ(H) = n,
then

χ(G ◦H) = χ(G�Kn) ≥ χ(G) + 2n− 2 .

Proof The equality follows from Theorem 26.3 and the fact that G ◦Kn
∼= G�Kn.

To prove the inequality, first set s = χ(G�Kn)−2n+2. Because G has at least one edge,
G�Kn has a subgraph isomorphic to K2�Kn = K2n, and hence χ(G�Kn) ≥ 2n, so s > 0.
If we can produce a coloring of G with at most s colors, then χ(G) ≤ s = χ(G�Kn)−2n+2,
and the theorem will follow.

We now construct this coloring. Let f : V (G � Kn) → {1, 2, . . . , χ(G � Kn)} be a
coloring of G � Kn. Put V (Kn) = {x1, . . . , xn}; and for each a ∈ V (G), set ma =
min{f(a, x1), . . . , f(a, xn)}. Define a map g : V (G) → {1, 2, . . . , s} as follows:

g(a) =

{
ma if ma ≤ s− 1 ,
s if ma > s− 1 .

We prove g is a coloring of G by showing g(a) = g(b) implies ab /∈ E(G). If g(a) =
g(b) ≤ s − 1, then ma = mb, and G � Kn has vertices (a, xi) and (b, xj) with the same
color ma. Hence (a, xi)(b, xj) /∈ E(G � Kn), so ab /∈ E(G). On the other hand, suppose
g(a) = g(b) = s. Then the 2n vertices in {a, b} × V (Kn) ⊆ V (G � Kn) are colored with
colors from {s, s+1, . . . , χ(G×Kn)}. There are only χ(G×H)−s+1 = 2n−1 such colors.
Thus ab /∈ G, for otherwise {a, b} × V (Kn) induces a K2n colored with 2n− 1 colors. 2

Theorems 26.5 and the following corollary imply that the lower bound in Theorem 26.9
is sharp. However, Bollobás and Thomason (1979) improved the bound to χ(G) + 2n− 1 in
the case where G is uniquely colorable. (Geller (1976) proved this in the case n = 2.)

Corollary 26.10 For any n and k, χ(K(n, k) ◦Kk) = n.

Proof By Theorems 26.5 and 26.9, we have

χ(K(n, k) ◦Kk) ≥ (n− 2k + 2) + 2k − 2 = n .

On the other hand, we can color K(n, k) ◦ Kk as follows: For any u ∈ V (K(n, k)), color
the vertices {u} ×Kk with the k elements of the set corresponding to u. This clearly is a
n-coloring of K(n, k) ◦Kk. 2

We continue with two more lower bounds. The first was proved in Linial and Vazirani
(1989).

Theorem 26.11 For any graphs G and H,

χ(G ◦H) ≥ (χ(G) − 1)χ(H)

ln |V (G)| .

Proof Set χ(G) = m and χ(H) = n. Let χ(G ◦H) = k, and let C1, C2, . . . , Ck be the color
classes of some k-coloring.

For each i, the set Xi = pG(Ci) is independent in G, so
⋃

i∈S Xi 6= V (G) for every index

set S with |S| = m − 1. Hence
⋂

i∈S Xi 6= ∅ when |S| = m− 1. For each index set S with

|S| = m− 1, choose a representative from
⋂

i∈S Xi.

Now, for any representative a, the H-layer in G ◦H over a is isomorphic to H , so there
are at least n color classes Ci that intersect it. Hence there are at most k − n color classes
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that do not intersect this H-layer. Consequently there are
(
k−n
m−1

)
index sets S that could

have a as a representative. Now reason as follows.

|V (G)| ≥ Number of distinct representatives

≥ Number of choices of S

Maximal number of sets S with same representative

≥
(

k

m− 1

)(
k − n

m− 1

)−1

≥
(

k

k − n

)m−1

=
(

1 − n

k

)−(m−1)

≥ exp

(
(m− 1)n

k

)
.

Taking logarithms, we see that the theorem follows. 2

The next lower bound was obtained by Stahl (1976). Our proof is due to Zhu (personal
communication). See Exercise 26.11 for yet another approach.

Theorem 26.12 Let G be a nonbipartite graph. Then for any graph H,

χ(G ◦H) ≥ 2χ(H) +

⌈
χ(H)

k

⌉
,

where 2k + 1 is the length of a shortest odd cycle in G.

Proof Because the chromatic number of a graph is at least as big as the chromatic number
of any of its subgraphs, we may assume G = C2k+1. Let C1, C2, . . ., Cχ(G◦H) be the color
classes of a coloring of G ◦H . For each a ∈ V (G), let na denote the number of these color
classes that have a nonempty intersection with the H-layer above a. Because each H-layer
is isomorphic to H , we have

na ≥ χ(H).

Now, the sum
∑

a∈V (G) na gives a crude counting of the number of color classes Ci. Because

each pG(Ci) is an independent set in G = C2k+1, we have |pG(Ci)| ≤ k, and it follows that
no Ci gets counted more than k times. Therefore

k χ(G ◦H) ≥
∑

a∈V (G)

na ≥ (2k + 1)χ(H),

and the result follows. 2

Let us now examine three applications of the above results. We will use them to disprove
two conjectures and to answer a question about retracts of strong products. The Kneser
graphs K(n, k) play an essential role in two cases.

Geller’s conjecture. Geller conjectured that χ(G ◦ Kk) = nk for every uniquely n-
colorable graph G. This was disproved by Bollobás and Thomason (1979) with the
following subtle construction. Let

H = (K(n+ 2k − 1, k) ×Kn) ◦Kk.

By Theorem 26.5 we have χ(K(n + 2k − 1, k)) = n + 1, and hence Theorem 26.6
implies that K(n+ 2k − 1, k) ×Kn is uniquely n-colorable. Thus Geller’s conjecture
would imply χ(H) = nk.
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The projection from K(n+ 2k− 1, k)×Kn onto K(n+ 2k− 1, k) is a homomorphism,
so Proposition 26.4 implies that χ(H) ≤ n+ 2k − 1. But n+ 2k − 1 < nk except for
very small n and k, and this disproves Geller’s conjecture.

Hajós conjecture. This well-known conjecture had been open for almost thirty years
before it was disproved by Catlin in 1979. The counterexample requires the following
straightforward corollary to Theorems 26.8 and 26.12.

Corollary 26.13 For any k ≥ 1 and any n ≥ 1, we have

χ(C2k+1 ◦Kn) = 2n+
⌈n
k

⌉
.

A subdivided Kn is a graph obtained by replacing edges uv of the complete graph Kn

by disjoint u, v-paths. In the early 1950s, Hajós posed the following conjecture:

If χ(G) = n, then G contains a subdivided Kn.

This conjecture is stronger than the well-known Hadwiger’s conjecture from 1943
that asserts that every n-chromatic graph has a subgraph that is contractible to Kn.
Hadwiger’s conjecture is trivial for n = 2 and n = 3, and Dirac (1952) proved it for
n = 4. The case n = 5 is equivalent to the Four Color Theorem. Robertson, Seymour,
and Thomas (1993) proved it for n = 6, but the general case is still open.

Hajós’s conjecture is also trivially true for n = 2 and n = 3. (For the latter case, just
observe that an odd cycle is a subdivided K3.) Dirac (1952) proved it for n = 4. The
general case was disproved by Catlin (1979), whose construction follows.

Consider the lexicographic product C2n+1 ◦Kn+1 for n ≥ 2. Corollary 26.13 implies
χ(C2n+1 ◦Kn+1) = 2n+ 4. We claim C2n+1 ◦Kn+1 contains a subdivided K2n+3 but
no subdivided K2n+4, that is, C2n+1◦Kn+1 is a counterexample to Hajós’s conjecture.

Let X be a subset of V (C2n+1 ◦ Kn+1) with |X | = 2n + 4. Because n ≥ 2, at least
two vertices of X , say u and v, lie in nonadjacent Kn+1-layers. Therefore there exist
two Kn+1-layers whose union separates u and v. Because u and v can be separated
by a vertex set of cardinality 2n+ 2, we deduce that X cannot be the original vertices
of a subdivided K2n+4. Hence C2n+1 ◦Kn+1 contains no subdivided K2n+4. On the
other hand, it’s easy to check that two adjacent Kn+1-layers together with a vertex
adjacent to all vertices of one of the layers give rise to a subdivided K2n+3.

If G is any counterexample to Hajós’s conjecture, then the join G ⊕ K1 is also a
counterexample with χ(G⊕K1) = χ(G)+1. As the smallest counterexample described
above is C5 ◦K3 with chromatic number 8, we now have counterexamples for every
n ≥ 8. Moreover, Catlin observed that a counterexample for n = 7 is obtained by
removing two nonadjacent vertices from C5 ◦K3.

Hajós’s conjecture is still open for n = 5 and 6 (see Jensen and Toft (1995)). Progress
was made by X. Yu and Zickfeld (2006) who proved that a minimal counterexample
(with respect to the number of vertices) for n = 5 must be 4-connected.

Retracts of strong products. Our third application uses Corollary 26.10. By Theorem
15.11, every retract of G�H has form G′ �H ′, where G′ is a weak retract of G, and
H ′ is a weak retract of H . The question arises as to whether G′ and H ′ also must be
retracts of G and H . Klavžar and Milutinović (1994) disproved this.

Theorem 26.14 For every n ≥ 2 there is an infinite sequence of pairs of graphs G
and G′ such that G′ is not a retract of G, but G′ �Kn is a retract of G�Kn.
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Proof For k ≥ 2, let H(n, k) be the graph obtained from a copy of the Kneser graph
K(2n+ k, n) and a copy of Kk+1 by joining a vertex of one graph to a vertex of the
other. We can color H(n, k)�Kn with n(k+ 1) colors as follows: By Corollary 26.10,
there exists a (2n+ k)-coloring of K(2n+ k, n) � Kn. Such a coloring can easily be
extended to the subgraph Kk+1 �Kn of H(n, k) �Kn in such a way that not more
than n(k + 1) colors are used altogether. It follows that χ(H(n, k) �Kn) = n(k + 1).
Thus we have a retraction from H(n, k) � Kn onto the subgraph Kk+1 � Kn. On
the other hand, because χ(K(2n+ k, n)) = k + 2, we infer that χ(H(n, k)) = k + 2.
Now Proposition 3.10 implies that there is no retraction from H(n, k) to Kk+1. 2

Theorem 26.14 was first proved by Klavžar (1992) for n = 2. The question of charac-
terizing graphs G, H , G′, and H ′, for which G′ �H ′ is a retract of G�H , and where
G′ is not a retract of G, remains open.

The lexicographic product has often been used in situations similar to the above exam-
ples. See, for instance, Thomason (1989) and Shearer and Watkins (1987).

26.3 Fractional and Circular Chromatic Number

The fractional chromatic number was introduced by Hilton, Rado, and Scott (1973; 1975). It
is also known as the multichromatic number, set-chromatic number, and ultimate chromatic
number. To adequately define it, we must first describe the chromatic number in terms of
linear programming.

Given a graph G, let V (G) = {v1, v2, . . . , vn}, and let I(G) = {I1, I2, . . . , Im} be the set
of all independent sets of G. The independence matrix I(G) of G (relative to this indexing)
is the n×m matrix whose i, j-entry is 1 if vi ∈ Ij and 0 otherwise. Let 1n and 0n denote
the n-dimensional vectors containing only ones and zeros, respectively. Then the chromatic
number of G is the solution of the following integer linear program:

χ(G) = min
x

1T
mx

subject to x ≥ 0m, x ∈ Zm, and I(G)x ≥ 1n. (1)

The condition I(G)x ≥ 1n requires that every vertex of G belong to at least one inde-
pendent set. Hence an optimal solution of (1) is the minimum number of independent sets
that cover V (G). This is indeed the chromatic number of G.

The fractional chromatic number χf (G) ofG is the optimal solution of the linear program
(1) in which we relax the condition x ∈ Zm to x ∈ Rm:

χf (G) = min
x

1T
mx

subject to x ≥ 0m, x ∈ Rm, and I(G)x ≥ 1n. (2)

Note that the fractional chromatic number as well as an optimal feasible vector x are
rational. (This follows from the theory of linear programming on regions of feasible solutions
using the fact that I(G) is an integer matrix.)

Reinterpreting the above linear program yields an equivalent description of χf (G): A
fractional coloring of G is a map f : I(G) → [0, 1] such that for each v ∈ V (G) we have

∑

I∈I(G),v∈I

f(I) ≥ 1 .
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The weight of f is the number w(f) =
∑

I∈I f(I). The fractional chromatic number χf (G)
is then the minimum of the weights of all fractional colorings of G. Note that this minimum
remains unchanged if we replace the above condition by

∑
I∈I,v∈I f(I) = 1.

Theorem 26.15 For any graph G there exists an m such that

χf (G) =
χ(G ◦Km)

m
.

Proof Let c be a p-coloring of G◦Kn, and C1, C2, . . . , Cp be the corresponding color classes.
Each projection pG(Ci) is an independent set ofG, though different color classes may project
onto the same independent set of G. Let D1, D2, . . . , Dq be the distinct projections of the
color classes. For each i = 1, 2, . . . , q, let di be the number of different color classes Cj for
which pG(Cj) = Di. Define a map f : I(G) → [0, 1] as f(Di) = di/n for i = 1, 2, . . . , q and
f(D) = 0 for any other D ∈ I(G). It is easy to check that f is a fractional coloring of G,
and its weight is p/n. It follows that

χf (G) ≤ χ(G ◦Kn)

n
.

Next, let f be a fractional coloring of G. We may assume that for all C ∈ I(G), the
denominator of f(C) is fixed, say m. Then, similar to what was done above, we can find an
mχf (G)-coloring of G ◦Km. Hence

χf (G) ≥ χ(G ◦Km)

m
,

which completes the argument. 2

Combining Theorem 26.15 with Proposition 26.4, we get the following corollary:

Corollary 26.16 For any graph G,

χf (G) = min
{n
k

| there is a homomorphism G→ K(n, k)
}
.

It is interesting to add that χf (G) also equals

lim
n→∞

n
√
χ(G◦,n) ;

see Hell and F. S. Roberts (1982).
Recall that χ(G ◦ H) ≤ χ(G)χ(H), and the inequality can be strict. The situation is

different for the fractional chromatic number, for equality always holds in that case. Before
proving this, we need a new concept. The fractional clique number ωf (G) of G is the optimal
solution of the linear program

ωf(G) = max
y

1T
ny

subject to y ≥ 0n, y ∈ Rn, and I(G)Ty ≤ 1m. (3)

(Notice this would give the usual clique number ω(G) if we imposed the restriction y ∈ Zn.)
Because (3) is the dual of the linear program (2), we have χf (G) = ωf(G) by the duality
theorem of linear programming.

Now we can proceed with the above-mentioned result. We give two proofs; the first is the
original from Gao and Zhu (1996), and the second is by Tardif (personal communication).
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Theorem 26.17 For any graphs G and H we have χf (G ◦H) = χf (G)χf (H).

First proof Let fG and fH be fractional colorings of G and H , respectively. Define a
map f : I(G ◦ H) → [0, 1] as follows: Notice that if I is an independent set of G, and
J an independent set of H , then I × J is an independent set of G ◦ H . Set f(I × J) =
fG(I)fH(J). For any other independent set L of G◦H , set f(L) = 0. If (a, x) ∈ G◦H , then∑

I∈I(G),a∈I fG(I) ≥ 1 and
∑

I∈I(H),x∈I fH(J) ≥ 1. Therefore

∑

I∈I(G◦H),(a,x)∈I

f(I) ≥ 1 ,

so f is a fractional coloring of G◦H . Moreover, notice that w(f) = w(fG)w(fH), and hence
χf (G ◦H) ≤ χf (G)χf (H).

For the reverse inequality, let g be a fractional clique of G of weight ωf (G) and h be a
fractional clique of H of weight ωf(H). Then it can be easily verified that φ(a, x) = g(a)h(x)
defines a fractional clique of G ◦H of weight ωf (G)ωf (H). 2

Second proof Let χf (G) = n/k and χf (H) = n′/k′. By Corollary 26.16, there are
homomorphisms G → K(n, k) and H → K(n′, k′). Combining them coordinatewise, we
obtain a homomorphism

G ◦H → K(n, k) ◦K(n′, k′) .

Together with a natural homomorphism

K(n, k) ◦K(n′, k′) → K(nn′, kk′) ,

we infer the existence of a homomorphism from G ◦ H into K(nn′, kk′). This means that
χf (G ◦H) ≤ (nn′)/(kk′), and we conclude that χf (G ◦H) ≤ χf (G)χf (H).

Conversely, let χf (G ◦H) = n/k so there is a homomorphism G ◦H → K(n, k). Then

n = χ((G ◦H) ◦Kk) = χ(G ◦ (H ◦Kk)).

Set t = χ(H ◦ Kk). Then there are homomorphisms G → K(n, t) and H → K(t, k). It
follows that

χf (G)χf (H) ≤ n

t
· t
k

= χf (G ◦H) ,

and we are done. 2

It is interesting to note that Theorem 26.17 implies that χf (G ◦ H) = χf (H ◦ G),
although, as we know, the lexicographic product is not commutative.

We now turn our attention to the circular chromatic number. After defining it and
stating some of its properties, we then prove several results that relate it to the lexico-
graphic product, and which can be seen as generalizations of results presented earlier in
this chapter. The graphs whose fractional and circular chromatic numbers are equal are
then characterized via the lexicographic product.

The circular chromatic number χc(G) of a graph G may be one of the most natural
generalizations of the chromatic number. It was introduced by Vince (1988) under the
name star chromatic number as follows: Let k and d be two integers with k ≥ 2d. A map
c : V (G) → {0, 1, . . . , k − 1} is a (k, d)-coloring of G if d ≤ |c(u) − c(v)| ≤ k − d whenever
uv ∈ E(G). The circular chromatic number of G is then

χc(G) = inf

{
k

d
| G has a (k, d)-coloring

}
.
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The name stems from a connection with r-circular colorings: Let G be a graph, and C a
circle of circumference r. A map f that assigns to every vertex of G an open arc of unit
length on C, such that adjacent vertices are mapped to disjoint arcs, is called an r-circular
coloring of G. A graph G is r-circular colorable if it admits an r-circular coloring. The
circular chromatic number can also be expressed as

χc(G) = inf{r | G is r-circular colorable} .

See Zhu (1992b, 2001) for a proof that the two definitions are indeed equivalent.
For k ≥ 2d, let Gd

k be the graph on the vertex set {0, 1, . . . , k − 1}, where i and j are
adjacent if d ≤ |i− j| ≤ k − d. Figure 26.2 shows some examples.

G4

8
G3

8
G2

8

0

12

3

4

5 6

7
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12

3

4
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7

FIGURE 26.2 Graphs G4
8, G3

8, and G2
8.

We now list several basic properties of circular chromatic numbers. For proofs, see the
original paper by Vince (1988) or the excellent survey of Zhu (2001). (Note, however, that the
upper bound of (ii) follows immediately from the definition, and (iii) is a trivial consequence
of (ii). Also, any χ(G)-coloring of G is a (χ(G), 1)-coloring, so χc(G) ≤ χ(G).)

Theorem 26.18 For any graph G, we have

(i) χc(G) = k/d for some k and d with 2d ≤ k ≤ n = |V (G)|.
(ii) χ(G) − 1 < χc(G) ≤ χ(G).

(iii) χ(G) = dχc(G)e.
(iv) χc(G

d
k) = k/d.

Theorem 26.19 For any graph G, we have χf (G) ≤ χc(G) ≤ χ(G).

Proof By Theorem 26.18 (ii), we only need to show χf (G) ≤ χc(G). Let χc(G) = k/d,
and let c be a (k, d)-coloring of G. For i = 0, 1, . . . , k − 1, let Ii be the set of vertices of
G colored with colors {i, i + 1, . . . , i + d − 1} (addition is modulo k). Then each Ii is an
independent set of G. Define a map f : I(G) → [0, 1] by f(Ii) = 1/d for i = 0, 1, . . . , k − 1
and f(D) = 0 for any other independent set D ∈ I(G). Then f is a fractional coloring of
G, and its weight is k/d. Therefore χf (G) ≤ k/d = χc(G). 2

In view of Theorem 26.19, it is natural to ask which graphs satifsy χf (G) = χc(G). The
answer requires some preparation.

Lemma 26.20 For any graphs G and H we have χc(G ◦H) ≤ χc(G)χ(H).

Proof Let χc(G) = k/d, and fG be a (k, d)-coloring of G. Moreover, let χ(H) = n and
fH : V (G) → {0, 1, . . . , n− 1} be an n-coloring of H . For any (a, x) ∈ V (G ◦H), set

f(a, x) = fG(a) + kfH(x) .
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Then f is a map V (G ◦H) → {0, 1, . . . , kn − 1}, and it is easy to see that f is a (kn, d)-
coloring of G ◦H . Therefore χc(G ◦H) ≤ kn/d = χc(G)χ(H). 2

Theorem 26.21 If G is a graph with at least one edge, and χ(H) = n, then

χc(G ◦H) = χc(G ◦Kn) .

Proof Let c be a (k, d)-coloring of G ◦Kn. Then c can be extended to a (k, d)-coloring of
G ◦H as follows: Let V (Kn) = {1, 2, . . . , n}, and C1, C2, . . . , Cn be the color classes of an
n-coloring of H . For a vertex (a, x) ∈ V (G ◦H) with x ∈ Ci, set c′(a, x) = c(a, i). Clearly,
c′ is a (k, d)-coloring of G ◦H , hence χc(G ◦H) ≤ χc(G ◦Kn).

Conversely, let c be a (k, d)-coloring of G ◦H , and ab be an edge of G. We may assume,
without loss of generality, that for some vertex x of H we have c(a, x) = 0. To prove that
G ◦ Kn is (k, d)-colorable, it is enough to show that there are vertices y1, y2, . . . , yn of H
such that d ≤ |c(b, yi) − c(b, yj)| ≤ k − d for any distinct vertices yi and yj.

We define vertices y1, y2, . . . , yn inductively as follows: Let y1 be a vertex of H that
minimizes {c(b, x) | x ∈ V (H)}. After yi has been defined, we select yi+1 as a vertex for
which the minimum of

{c(b, x) | x ∈ V (H) and c(b, x) ≥ c(b, yi) + d}

is attained. Clearly, if y1, y2, . . . , yn are well defined, then d ≤ |c(b, yi) − c(b, yj)| ≤ k − d
holds. In particular, because (a, x) is adjacent to (b, yn), we infer c(b, yn) ≤ k − d and
therefore the condition also holds for y1 and yn. Hence we are done if we can show that the
yi’s are well defined.

Assume not; that is, for some i ≤ n− 1, we cannot define yi+1. In other words, there is
no vertex y ∈ V (H) with c(b, y) ≥ c(b, yi) + d. For any x ∈ V (H), set f(x) = j if c(b, yj) ≤
c(b, x) < c(b, yj) + d. Now f is a map V (H) → {1, 2, . . . , i}. Moreover, if f(x) = f(x′),
then x and x′ cannot be adjacent. It follows that f is an i-coloring of H with i < n, a
contradiction. 2

Note that Theorem 26.21 together with Theorem 26.18 (iii) implies Theorem 26.3. (The
case when G is totally disconnected is trivial.)

Combining the above results with Theorem 26.17, we obtain the following theorem:

Theorem 26.22 If G has at least one edge and χc(G) = χf (G), then χc(G ◦ H) =
χc(G)χ(H) for every H.

Proof Say χ(H) = n, and argue as follows:

χc(G ◦H) = χc(G ◦Kn) (by Theorem 26.21)
≤ χc(G)n (by Lemma 26.20)
= χf (G)n (by assumption)
= χf (G)χf (Kn) (obvious)
= χf (G ◦Kn) (by Theorem 26.17)

Theorem 26.19 gives χf (G ◦Kn) ≤ χc(G ◦Kn), so the above yields χc(G ◦H) = χc(G)n. 2

Note that because χc(C2k+1) = χf (C2k+1) = 2 + 1/k (Exercise 26.8), Theorem 26.22
implies Corollary 26.13.

It would be interesting to find a general characterization of graphs G for which χc(G) =
χf (G). The next theorem describes such graphs in terms of the lexicographic product.

Theorem 26.23 If a graph G has at least one edge, then the following are equivalent:
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(i) χf (G) = χc(G).
(ii) For any graph H we have χc(G ◦H) = χc(G)χ(H).

Proof Theorem 26.22 asserts that (i) implies (ii). Conversely, suppose χc(G ◦ H) =
χc(G)χ(H) for every H . Recall (Theorem 26.15) that χf (G) = χ(G ◦ Km)/m for some
m. Combining this with Theorem 26.19 gives

χc(G ◦Km) ≤ χ(G ◦Km) = χf (G)m ≤ χc(G)m = χc(G)χ(Km) .

By assumption, the left- and right-hand terms are equal, hence χf (G) = χc(G). 2

Theorem 26.21 is by Zhu (1992b), while Theorems 26.17, 26.22, and 26.23 are from Gao
and Zhu (1996).

Klavžar and H.-G. Yeh (2002) observed that χ(G) = χf (G) if and only if χ(G ◦H) =
χ(G)χ(H) for all H . (cf. Exercise 26.10.) See Zhu (2001) for a discussion of the case χ(G) =
χc(G).

As Kneser graphs have played such a prominent role in this chapter, it is fitting to add
several remarks about their circular chromatic number. Johnson, Holroyd, and Stahl (1997)
conjectured that the circular chromatic number of a Kneser graph equals its chromatic
number. (See Theorem 26.5.) They proved this conjecture for K(2n+1, n) and K(2n+2, n)
for n ≥ 1, and K(n, 2) for n ≥ 4, while Hajiabolhassan and Zhu (2003) proved it for
every n ≥ 2k2(k− 1). Meunier (2005), and independently Simonyi and Tardos (2006), used
topological tools to prove it for every even n. Finally, P.-A. Chen (2011) closed the story
by establishing the following result.

Theorem 26.24 If n ≥ 2k ≥ 2, then χc(K(n, k)) = χ(K(n, k)) = n− 2k + 2. 2

26.4 Hedetniemi’s Conjecture

We now examine the chromatic number in the context of direct products of graphs. Here
there is a clear and immediate upper bound. Because projectionsG×H → G andG×H → H
are homomorphisms, Proposition 2.10 implies χ(G×H) ≤ min{χ(G), χ(H)}. Indeed, given
an n-coloring g of G, the map f(a, x) = g(a) is an n-coloring of G × H , as illustrated
schematically in Figure 26.3. Notice that the bound χ(G ×H) ≤ min{χ(G), χ(H)} holds
even in the class Γ0, for G×H has a loop if and only if both G and H do.

This simple bound led Hedetniemi (1966) to make the following conjecture:

Conjecture 26.25 For any graphs G and H,

χ(G×H) = min{χ(G), χ(H)}.

The conjecture is very natural, and is a perfect companion to Theorem 26.1. However, it
has withstood all attempts at proof. It is the most challenging problem in product coloring;
only special cases have been solved affirmatively.

We begin with several equivalent formulations of the conjecture. One of them uses the
concept of a coloring graph, an important tool in many approaches to Hedetniemi’s con-
jecture. We will use coloring graphs in this section, and also in the next section, to prove
Hedetniemi’s conjecture for 4-chromatic graphs. Coloring graphs have also been used by
Lovász (1967) and Vesztergombi (1978).
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H

G

FIGURE 26.3 Canonical coloring of a direct product.

If G is a graph and n is a positive integer, then the n-coloring graph Cn(G) of G has
vertex set

V (Cn(G)) = { f | f : V (G) → {1, 2, . . . , n} } ,
where functions f and g are adjacent if f(u) 6= g(v) for every uv ∈ E(G). (Equivalently, we
may view Cn(G) as the set of maps G → Kn, where fg ∈ E(Cn(G)) provided f(u)g(v) ∈
E(Kn) whenever uv ∈ V (G).) Notice that ff is a loop in Cn(G) if and only if f is a (proper)
n-coloring of G. For example, C2(P3) consists of an edge, two vertices with a loop, and four
isolated vertices. The vertices with a loop are the two 2-colorings of P3, and the endpoints
of the edge are the two constant maps. Figure 26.4 shows two more examples.

FIGURE 26.4 Coloring graphs C3(K2) and C3(K3).

From Figure 26.4 we see that C3(K2) and C3(K3) each contains exactly one triangle. The
vertices of these triangles are the constant maps. More generally, the constant maps form
a Kn in Cn(G), and hence any graph G obeys χ(Cn(G)) ≥ n. We summarize these remarks
as a lemma.

Lemma 26.26 For any graph G,

(i) χ(Cn(G)) ≥ n and
(ii) Cn(G) has loops if and only if χ(G) ≤ n.

The remainder of this section uses the following useful notation: If f is an n-coloring of
G×H , then for x ∈ V (H) there is a function

fx : V (G) → {1, . . . , n}
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defined as
fx(a) = f(a, x) .

Notice that fx ∈ V (Cn(G)), and the map x 7→ fx is a homomorphism H → Cn(G). For
a ∈ V (G) we define fa : V (H) → {1, . . . , n} analogously, and a 7→ fa is a homomorphism
G→ Cn(H).

Theorem 26.27 The following statements are equivalent:

(i) χ(G×H) = min{χ(G), χ(H)} for all graphs G and H.
(ii) χ(G×H) = min{χ(G), χ(H)} for all graphs G and H with χ(G) = χ(H).

(iii) For all graphs G,H, and n ≥ 0, if χ(G) > n and χ(H) > n, then χ(G×H) > n.
(iv) For any n ≥ 0, and any graph G, χ(G) > n implies χ(Cn(G)) = n.

Proof The implication (i) ⇒ (ii) is trivial. Because every graph G with χ(G) > n contains
an (n+ 1)-chromatic subgraph, (ii) implies (iii).

(iii) ⇒ (iv). Suppose (iv) is false, so there is a graphG with χ(G) > n and χ(Cn(G)) 6= n.
Then χ(Cn(G)) > n, by Lemma 26.26 (i), and Cn(G) has no loops, by Lemma 26.26 (ii).
Define a coloring of G × Cn(G) as follows. Give each vertex (a, f) of G × Cn(G) the color
f(a). This is an n-coloring of G× Cn(G), so (iii) is false.

(iv) ⇒ (i). Suppose (i) is false. Then there exist graphs G and H for which χ(G) ≤ χ(H)
but χ(G×H) = n < χ(G). Let f be a n-coloring of G×H . It follows that the map x 7→ fx
is a homomorphism H → Cn(G). Then n < χ(G) ≤ χ(H) ≤ χ(Cn(G)), so (iv) is false. 2

Condition (iv) above indicates the important connection between Hedetniemi’s con-
jecture and coloring graphs. The following equivalent formulation of the conjecture, due
to Larose and Tardif (2000), is of a different nature.

Proposition 26.28 Hedetniemi’s conjecture is equivalent to the following statement: For
any graphs G and H and any n ≥ 1, if Kn is a retract of G×H, then Kn is a retract of G
or Kn is a retract of H.

Proof Suppose that Hedetniemi’s conjecture holds. Let Kn be a retract of G ×H . Then
χ(G × H) = χ(Kn) = n by Proposition 3.10. Therefore χ(G) = n or χ(H) = n by our
assumption. On the other hand, because G×H contains Kn as a subgraph, this subgraph
projects to a Kn in G as well as to a Kn in H (Exercise 26.1). We conclude (using Exer-
cise 3.7) that Kn is a retract of G or Kn is a retract of H .

Conversely, suppose that the condition of the statement holds. Let G and H be arbitrary
graphs and let χ(G×H) = n. Now consider the graph

X = (G+Kn) × (H +Kn) = (G×H) + (G×Kn) + (Kn ×H) + (Kn ×Kn) .

Because χ(G×H) = n and any of the graphsG×Kn,Kn×H , andKn×Kn is n-colorable, we
have χ(X) = n. Moreover, Kn×Kn contains Kn as a subgraphs. Hence (using Exercise 3.7
again) Kn is a retract of X = (G+Kn)×(H+Kn). Because we have assumed the condition
of the statement, Kn is a retract of G + Kn or Kn is a retract of H + Kn. It follows that
χ(G) ≤ n or χ(H) ≤ n and thus

min{χ(G), χ(H)} ≤ n = χ(G×H) .

As χ(G×H) ≤ min{χ(G), χ(H)} always holds, the argument is complete. 2

We next examine two conditions under which Hedetniemi’s conjecture holds, but a
preliminary lemma is needed. In Lemma 26.26 we noted the constant maps form a complete
subgraph of Cn(G). The next lemma asserts that this is the only Kn in Cn(G) when G is
connected and (n+ 1)-chromatic.
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Lemma 26.29 If G is connected and (n + 1)-chromatic, then Cn(G) contains a unique
complete subgraph on n vertices (namely the one induced by the constant maps).

Proof Suppose G is connected and (n+ 1)-chromatic, and f1, f2, . . . , fn are vertices of a
complete subgraph of Cn(G).

Our strategy is to show now G has a vertex u for which the values f1(u), f2(u), . . . , fn(u)
are pairwise different. Suppose for a moment that this is true. Then take an edge uw ∈ E(G)
and observe that any fi(w) must equal some fj(u). But then i = j, for otherwise fi and fj
are not adjacent. Thus fi(w) = fi(u) for each i, and the values f1(w), f2(w), . . . , fn(w) are
pairwise different. As G is connected, we get fi(x) = fi(u) for each i and any x ∈ V (G), so
each fi is constant.

It remains to produce some u ∈ V (G) for which f1(u), f2(u), . . . , fn(u) are pairwise
different. Let H be a χ-critical subgraph of G with χ(H) = n+ 1, and take any u ∈ V (H).
Suppose the f1(u), f2(u), . . . , fn(u) are not pairwise different, and, without loss of generality,
say f1(u) = f2(u). Because χ(H − u) = n, the vertices of H − u can be partitioned into n
independent sets X1, X2, . . . , Xn. Define a map c : V (H) → {1, 2, . . . , n} as

c(x) =

{
f1(x) if x = u ,
fi(x) if x ∈ Xi .

Given uw ∈ E(H), if w ∈ X1, we have f1(u) = f2(u) 6= f1(w), which means c(u) 6= c(v). If
w ∈ Xj for j 6= 1, then c(u) 6= c(w) because f1 is adjacent to fj . Similarly, c(v) 6= c(w) for
any other vw ∈ E(H). Thus c is an n-coloring of H , a contradiction. We conclude that the
values fi(u) are pairwise different. 2

The following two theorems demonstrate the utility of coloring graphs. The first result
was obtained by Welzl (1984) and independently by Duffus, Sands, and Woodrow (1985).

Theorem 26.30 If G and H are connected, (n+ 1)-chromatic graphs that both contain a
complete subgraph on n vertices, then χ(G×H) = n+ 1.

Proof IfG andH are as stated, thenG×H has aKn as a subgraph, so n ≤ χ(G×H) ≤ n+1.
Suppose f is an n-coloring of G ×H . Let a1, a2, . . ., an be the vertices of a Kn in G. By
Lemma 26.26 (ii), the graph Cn(H) has no loops, and hence maps fa1

, fa2
, . . ., fan are

pairwise distinct and form a complete subgraph of Cn(H). By Lemma 26.29, these are
constant maps. Likewise, if x1, x2, . . ., xn are the vertices of a Kn in H , then fx1

, fx2
, . . .,

fxn are constant. Then

f(a1, x1) = fa1
(x1) = fa1

(x2) = fx2
(a1) = fx2

(a2) = f(a2, x2),

contrary to f being a coloring. Thus G×H has no n-coloring, so χ(G×H) = n+ 1. 2

Hedetniemi’s conjecture is thus true for (n+ 1)-chromatic factors that contain complete
subgraphs on n vertices. The next theorem, due to Burr, Erdős, and Lovász (1976), places
a condition on only one factor, but it is stronger than the one of Theorem 26.30.

Theorem 26.31 If G and H are (n+1)-chromatic graphs and each vertex of G is contained
in a complete subgraph on n vertices, then χ(G×H) = n+ 1.

Proof Suppose χ(G×H) < n+ 1. Let f be an n-coloring of G×H . Now, the map a 7→ fa
is a homomorphism G → Cn(H). As Cn(H) has no loops (Lemma 26.26 (ii)), complete
subgraphs of G map onto complete subgraphs of Cn(G). By Lemma 26.29, G is mapped
onto the unique complete subgraph on n vertices in Cn(G), contrary to χ(G) = n+ 1. 2

We next briefly discuss two different approaches to Hedetniemi’s conjecture. Duffus,
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Sands, and Woodrow (1985) proposed a method that is based on a result of Hajós (1961).
The approach uses a new concept, the so-called multiplicativity property. In both cases,
(generalized) coloring graphs play an important role.

The Hajós sum of graphs G and H , with respect to edges ab ∈ E(G) and xy ∈ E(H),
is the graph obtained from the disjoint union of G and H by identifying the vertices a
and x, removing the edges ab and xy, and adding the edge by. Note that although G and
H are undirected graphs, the order of vertices in the edges ab and xy is important in the
definition. Hajós (1961) proved that every graph G with χ(G) > n can be constructed from
copies of Kn+1 by the following three operations: Hajós sum, addition of vertices and edges,
and contraction of nonadjacent vertices. For brevity, let us refer to these as “the three
operations.” It is easy to see that none of the three operations decreases the chromatic
number.

Fix an integer n. Call a graph G with χ(G) > n persistent if χ(G×H) = n+ 1 for any
graph H with χ(H) = n+ 1. Clearly, Hedetniemi’s conjecture (for fixed n) is equivalent to
the assertion that every graph G with χ(G) > n is persistent. Furthermore, because every
graph G with χ(G) > n can be constructed from copies of Kn+1 by the three operations, it
is enough to prove that each graph constructed in this manner is persistent. Duffus, Sands,
and Woodrow (1985) obtained the following result.

Theorem 26.32 Let G be constructed from copies of Kn+1 by executing the three opera-
tions in such a way that contractions of nonadjacent vertices are executed after all other
operations. Then G is persistent. 2

Call a graph strongly persistent if it is persistent and its Hajós sum with any other
persistent graph is again persistent. The following (highly nontrivial) result is due to Sauer
and Zhu (1992).

Theorem 26.33 Let G be constructed from copies of Kn+1 by executing the three operations
with at most one contraction. Then G is strongly persistent. Furthermore, the Hajós sum
of two strongly persistent graphs is strongly persistent. 2

It is easy to see that a persistent graph remains persistent after contraction of two
nonadjacent edges. Thus Theorem 26.33 extends Theorem 26.32 such that in addition to
the given operations, we may perform one contraction at any time.

The second approach to the conjecture leads to a less optimistic perception. Häggkvist,
Hell, Miller, and Neumann-Lara (1988) claim that it seems conceivable that the conjecture
may be false for large n. Let us write G 6→ H if there exists no homomorphism G→ H . A
graph G is called multiplicative if G1 6→ G and G2 6→ G imply G1 ×G2 6→ G for all graphs
G1 and G2. Hedetniemi’s conjecture is equivalent to the assertion that complete graphs
are multiplicative. This approach to the conjecture stems from Häggkvist et al. (1988),
although the concept of multiplicativity is not new; see, for example, Nešetřil and Pultr
(1978). Häggkvist, Hell, Miller, and Neumann-Lara proved the following theorem:

Theorem 26.34 Each cycle Cn is multiplicative. 2

Finally, we mention another result that suggests the conjecture may be false for graphs
with large chromatic number. Poljak and Rödl (1981) introduced the function

f(n) = min{χ(G×H) | χ(G) = χ(H) = n}.

It is surprising that it is not even known whether f(n) tends to infinity for n→ ∞. Poljak
and Rödl (1981) showed that if f is bounded, then f(n) ≤ 16 for all n. This result can be
improved to the following theorem.
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Theorem 26.35 Let n be a natural number. Then the minimum chromatic number of the
direct product of two n-chromatic graphs is either bounded by 9 or tends to infinity. 2

Theorem 26.35, an improvement from 16 to 9, was discovered independently by Poljak,
Schmerl, and Zhu. For a proof, see Poljak (1991).

Multiplicativity is also a natural concept for digraphs. It was introduced and studied
under the name productivity by Nešetřil and Pultr (1978). They prove that all directed

paths are multiplicative, and that a directed cycle ~Cn is multiplicative for prime n. It
was also conjectured that ~Cn is multiplicative if n is a power of a prime. This conjecture
has been confirmed by Häggkvist, Hell, Miller, and Neumann-Lara (1988). Their proof
uses homotopy theory, while a simple combinatorial proof is due to Zhu (1992a). Zhou
(1991a,b) obtained new classes of multiplicative and nonmultiplicative digraphs. A complete
classification of multiplicative directed cycles is due to Hell, Zhou, and Zhu (1994). New
classes of multiplicative digraphs have also been obtained by Zhou and Zhu (1997).

Two extensive surveys on Hedetniemi’s conjecture were written by Zhu (1998) and Sauer
(2001). The latter survey in particular gives an emphasis on the ordered sets that arise in
the context. Another, more recent survey due to Tardif (2008) is shorter but nevertheless
very informative and gives a clear picture of the state of the art.

26.5 Hedetniemi’s Conjecture for 4-Chromatic Graphs

In this section we prove that Hedetniemi’s conjecture holds for 4-chromatic graphs, that is,
we will show that if G is 4-chromatic and H is arbitrary, then χ(G×H) = min{χ(G), χ(H)}.
The proof is due to El-Zahar and Sauer (1985), and in a sense it presents the strongest
support yet for the conjecture.

Note first that the conjecture is true if G or H is 2-chromatic (i.e., bipartite), for then
G×H is also bipartite. It also holds if one factor is 3-chromatic: Indeed, if G and H both
have odd cycles, then so does G×H , so its chromatic number is at least 3.

Therefore, to prove the conjecture is true when G is 4-chromatic, it suffices to show that
the condition 4 = χ(G) ≤ χ(H) implies χ(G×H) = 4. For this, the following lemma is key.

Lemma 26.36 If n = χ(G) ≤ χ(H), and χ(Cn−1(G)) = n− 1, then χ(G×H) = χ(G).

Proof Suppose n = χ(G) ≤ χ(H), and χ(Cn−1(G)) = n − 1, but χ(G ×H) < χ(G). Let
f be an (n− 1)-coloring of G×H . Then x 7→ fx is a homomorphism H → χ(Cn−1(G)), so
χ(G) ≤ χ(H) ≤ χ(Cn−1(G)) < χ(G), a contradiction. 2

Our proof of Hedetniemi’s conjecture for 4-chromatic graphs uses Lemma 26.36. We will
prove that χ(G) = 4 implies χ(C3(G)) = 3. The coloring graph C3(G) will enable us to
reduce certain arguments to odd cycles. Although this is a splendid idea, it will be clear
that it can hardly be generalized to graphs that are more than 4-chromatic.

Given a cycle Cn with vertices v0, v1, . . . , vn−1, we will always understand that its edges
are vivi+1, where the addition is computed modulo n.

Consider the 3-coloring graph C3(C) of a cycle C, and let f ∈ V (C3(C)). A vertex vi of
C is a fixed vertex for f , if f(vi−1) 6= f(vi+1). We say f is odd/even if it has an odd/even
number of fixed vertices. We need two lemmas concerning parity of odd cycles.

Lemma 26.37 Let fg ∈ E(C3(C2k+1)). Then f and g have the same parity.
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Proof The direct product K2 × C2k+1 is isomorphic to the even cycle C4k+2. Because
fg ∈ E(C3(C2k+1)), we can (properly) 3-color K2 × C2k+1 by applying f and g to the two
C2k+1-layers, respectively. Denote this coloring by h, and note that the number of fixed
vertices for h is the sum of the numbers of fixed vertices for f and g. To complete the proof,
it suffices to show that h is even. We prove this for 3-colorings of even cycles by induction
on length.

Suppose h is a 3-coloring of the even cycle C2n. If n = 2, then h is clearly even. Suppose
now that n ≥ 3. If all vertices are fixed, we are done. We may thus assume, without
loss of generality, that vertex v1 is not fixed. We may also assume that h(v1) = 1 and
h(v2) = h(v0) = 2. Let C2n−2 be the cycle that we get from C2n by deleting v1 and
identifying v0 with v2. Clearly, C2n−2 is properly colored by the restriction of h. Note also
that if h(v2n) = h(v3) = 3, then the number of fixed vertices decreases by two. In all the
other cases, the number is unchanged. Induction completes the argument. 2

By Lemma 26.37, all vertices of a connected component of C3(C2k+1) have the same
parity, which is called the parity of a component of C3(C2k+1). Recall that for any n-coloring
f of G×H and any x ∈ V (H), there is a vertex fx ∈ Cn(G) defined as fx(a) = f(a, x), and
x 7→ fx is a homomorphism G→ Cn(G). (Similar remarks hold for any a ∈ V (G).)

Lemma 26.38 If f is a proper 3-coloring of C2k+1×C2`+1 and (a, x) ∈ V (C2k+1×C2`+1),
then fa and fx have opposite parity.

Proof Put V (C2k+1) = {v0, v1, . . . , v2k}, and V (C2`+1) = {u0, u1, . . . , u2`}. Set n = 2k+ 1
and m = 2`+ 1.

For any i and j, let Mi and Nj be the number of fixed vertices in the induced colorings
fvi and fui , respectively. Because the map vi 7→ fvi is a homomorphism Cn → C3(Cm), all
colorings fvi lie in the same component of C3(Cm), and thus, by Lemma 26.37, they all have
the same parity. Similarly, all the Nj ’s have the same parity. In order to show that the Mi’s
and Mj ’s have different parity, it is enough to show that the following number is even:

a = nm−
n∑

i=1

Mi −
m∑

j=1

Nj .

To this end we consider 4-cycles of Cn × Cm. Let Qij denote the 4-cycle induced by the
vertices (vi−1, uj), (vi, uj+1), (vi+1, uj), (vi, uj−1), namely, the 4-cycle “centered” at (vi, uj).
Observe that there are nm such 4-cycles.

Because f is a 3-coloring, each Qij is colored with two or three colors. If Qij is colored
with three colors, then exactly one of vi or uj is a fixed vertex of fuj or fvi , respectively.
If Qij is colored with two colors, then neither vi nor uj is a fixed vertex of fuj or fvi ,
respectively. It follows that

∑n
i=1Mi +

∑m
j=1Nj equals the total number of Qij that are

colored with three colors. Hence a is the number of Qij that are colored with two colors.
To complete the proof, we show that the number of 2-colored Qij is even.

Direct the edges of Cn ×Cm so that arrows go from color 1 to 2, from 2 to 3, and from
3 to 1. Simple checking shows that the arrows of a Qij are directed “in parallel” if 3 colors
are used, and in opposite directions otherwise. Consider the following sequence of 4-cycles:

Q00, Q11, . . . , Qi−1,j−1, Qi,j , Qi+1,j+1 . . . , Q00 .

For instance, for n = m = 5, the sequence is Q00, Q11, Q22, Q33, Q44, Q00. For n = 3
and m = 5, it is Q00, Q11, Q22, Q03, . . ., Q24, Q00 and lists all 4-cycles. In general we can
partition the set of all Qij into gcd(n,m) disjoint sequences of this type. Moreover, any two
consecutive 4-cycles in such a sequence share an edge. The number of 2-colored 4-cycles in
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a sequence equals the number of orientation reversals of common edges as we traverse the
sequence. This number must be even, because first and last common edges are the same. 2

We continue the proof with two lemmas for 4- and 3-chromatic graphs.

Lemma 26.39 If χ(G) = 4, and the restriction of some f ∈ V (C3(G)) to each odd cycle
of G has odd parity, then f is an isolated vertex of C3(G).

Proof To the contrary, suppose G and f are as stated, but assume fg is an edge of C3(G).
Let H be the subgraph of G induced on the vertices u that have a neighbor v with

f(v) = f(u). We claim that H has an odd cycle. Indeed, if H were bipartite, with partite
sets V1 and V2, we could define a map c : G→ {1, 2, 3} as

c(u) =

{
f(u) if u ∈ V (G) \ V1 ,
g(u) if u ∈ V1 .

Using fg ∈ E(C3(G)), it is easy to verify that c is a 3-coloring of G, a contradiction.
We now know H has an odd cycle C. Notice that no three consecutive vertices vi−1vivi+1

are assigned pairwise different colors by f . If this were the case, then from g(vi) 6= f(vi−1)
and g(vi) 6= f(vi+1) we would deduce g(vi) = f(vi). By definition, H would have an edge
viw, not on C, with f(vi) = f(w). But then g(vi) = f(w), violating fg ∈ E(C3(G)).

Now partition V (C) into maximal monochromatic intervals vi, vi+1, . . . , vj . Notice that
the fixed vertices of f on C are precisely the endpoints of the monochromatic intervals of
length greater than 1. There are an even number of such endpoints, so f has an even number
of fixed vertices on C, so its restriction to C has even parity. This contradiction proves the
lemma. 2

It is interesting to add that it is not known whether there is a 4-chromatic G and a
f ∈ V (C3(G)) whose restriction every odd cycle of G is odd; see El-Zahar and Sauer (1985).

Lemma 26.40 Every component of C3(C2k+1) with even parity is at most 3-chromatic.

Proof For the sake of contradiction, suppose C3(C2k+1) has a component T with even
parity, and with χ(T ) > 3. Then T has a connected 4-chromatic subgraph H . Certainly, the
graph C2k+1 ×H is 3-chromatic, for the map c(v, h) = h(v) is a 3-coloring of it. Moreover,
for any h ∈ V (H), we have ch(v) = c(v, h) = h(v). Hence ch = h ∈ V (T ) is even.

By Lemma 26.38, any cv has odd parity on each odd cycle of H . By Lemma 26.39, cv is
an isolated vertex of C3(H). Consider an edge vw ∈ E(C2k+1). For any fg ∈ E(C3(H)), we
have f(v) 6= g(w), and so cv(f) 6= cw(g), which means cvcw ∈ E(C3(H)), a contradiction. 2

We have reached the main result of this section. Combined with Lemma 26.36, it proves
Hedetniemi’s conjecture for 4-chromatic graphs.

Theorem 26.41 If G is 4-chromatic, then C3(G) is 3-chromatic.

Proof Suppose, to the contrary, that χ(G) = 4, but χ(C3(G)) ≥ 3. Then C3(G) has a
4-chromatic connected subgraph H . Let h ∈ V (H). By Lemma 26.39, G has an odd cycle
C for which the restriction of h to C is even. Let ψ : H → C3(C) be the map sending each
h ∈ V (H) to its restriction to C. Clearly, ψ is a homomorphism. Moreover, ψ maps H into
a component T of C3(C) with even parity. Thus, χ(T ) ≥ χ(H), contrary to Lemma 26.40.
2

© 2011 by Taylor & Francis Group, LLC



Circular and Fractional Version of Hedetniemi’s Conjecture 337

26.6 Circular and Fractional Version of Hedetniemi’s Conjecture

We conclude the chapter with a discussion of the circular and the fractional version of
Hedetniemi’s conjecture. Because χ(G) = dχc(G)e, the following conjecture of Zhu (1992b)
generalizes Hedetniemi’s conjecture.

Conjecture 26.42 For any graphs G and H,

χc(G×H) = min{χc(G), χc(H)} .

The next result by Zhu lends credibility to this conjecture.

Theorem 26.43 Let G and H be graphs, and k ≥ 1. If min{χc(G), χc(H)} > 2+1/k, then
χc(G×H) > 2 + 1/k.

Proof A graph G has a (k, d)-coloring if and only if there is a homomorphism G → Gd
k

(Exercise 26.9). Thus, by Theorem 26.18 (iv), we infer that χc(G) ≤ k/d if and only if there
is a homomorphism G → Gd

k. For our situation this means that neither G nor H admits a
homomorphism into Gk

2k+1. Note now that Gk
2k+1 = C2k+1. Theorem 26.34 completes the

argument. 2

In support of Conjecture 26.42, Larose and Tardif (2002) and Tardif (2005b) prove results
analogous to Theorems 26.30 and 26.41. The latter result asserts that Conjecture 26.42 holds
for all graphs G and H with min{χc(G), χc(H)} ≤ 4 and is the strongest result so far on
the circular version of Hedetniemi’s conjecture.

Consider now the factional version of Hedetniemi’s conjecture. As with Hedetniemi’s
conjecture, the inequality χf (G × H) ≤ min{χf (G), χf (H)} is easy to establish (Exer-
cise 26.17). Zhu (2002) asked if equality holds for all G and H . The same paper answered
the question affirmatively for the case when one factor is a circulant graph or a Kneser
graph. Tardif (2005a) proved that

χf (G×H) ≥ 1

4
min{χf(G), χf (H)}

for all graphs G and H .1 Moreover, because χf (G) = |V (G)|
α(G) for any vertex-transitive graph,

Theorem 27.15 answers Zhu’s question affirmatively for vertex-transitive graphs. These
efforts culminated in the following theorem from Zhu (2011):

Theorem 26.44 For any graphs G and H,

χf (G×H) = min{χf(G), χf (H)} .

Before Zhu proved this, Paul and Tardif (2011) observed that it implies the Burr-Erdős-
Lovász conjecture concerning chromatic Ramsey numbers posed in Burr, Erdős, and Lovász
(1976). We do not go into details here, but the interested reader can consult Paul and Tardif
(2011) or Zhu (2011).

The remainder of the section is devoted to proving Theorem 26.44.
As noted on p. 325, χf (G) is the minimum of the weights of all fractional colorings of

G, where a fractional coloring is a map f : I(G) → [0, 1] such that for each v ∈ V (G),

1In fact, he proved a stronger result: χf (G×H) ≥ min{χf (G), χf (H)}/4 for any digraphs G and H.
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∑
I∈I(G),v∈I f(I) ≥ 1. (Recall that I(G) is the set of all independent sets of G.) Recall also

(see p. 325) that χf (G) = ωf (G), where ωf(G) is the fractional clique number of G. Because
these two concepts are dual, the fractional clique number can also be defined as follows:
ωf (G) is the maximum of the weights of all fractional cliques of G, where a fractional clique
is a map f : V (G) → [0, 1] such that

∑
x∈I f(x) ≤ 1 for each I ∈ I(G).

Because we already know that χf (G ×H) ≤ min{χf (G), χf (H)} and because χf (G ×
H) = ωf(G×H), it suffices to prove that

ωf (G×H) ≥ min{ωf(G), ωf (H)} .

For A ⊂ V (G), let N [A] = ∪u∈AN [u] be the closed neighborhood of A.

Lemma 26.45 Let G be a graph, I ∈ I(G), and g a maximum fractional clique of G. Then

g(I) ≤ g(N [I])

ωf(G)
.

Proof Let G′ = G−N [I] and I ′ ∈ I(G′). Then I∪I ′ ∈ I(G), so g(I∪I ′) = g(I)+g(I ′) ≤ 1.
If g(I) = 1, then g(u) = 0 for any u ∈ V (G′), and it follows that ωf (G) = g(N [I]), and we
are done.

Assume g(I) < 1. Define g′ : V (G′) → [0, 1] as g′(u) = g(u)/(1 − g(I)). Then for
I ′ ∈ I(G′) we have

g′(I ′) =
∑

u∈I′

g(u)

1 − g(I)
=

g(I ′)

1 − g(I)
≤ 1 .

Hence g′ is a fractional clique of G′. It follows that

g(V (G′)) = g′(V (G′))(1 − g(I)) ≤ ωf (G′)(1 − g(I)) ≤ ωf(G)(1 − g(I)) .

Using this inequality and the fact that ωf (G) = g(V (G′)) + g(N [I]), we get

g(N [I]) = ωf (G) − g(V (G′)) ≥ ωf (G) − ωf (G)(1 − g(I)) = ωf (G)g(I) ,

and the argument is complete. 2

Here is the key idea of the proof of Theorem 26.44. Let g and h be maximum fractional
cliques of G and H , respectively. Define ϕg,h : V (G×H) → [0, 1] as ϕg,h(a, x) = g(a)h(x).
We will show that

ϕg,h

max{ωf (G), ωf (H)} (26.1)

is a fractional clique of G×H . Then its weight is
ωf (G)ωf (H)

max{ωf (G),ωf (H)} , and this implies that

ωf (G×H) ≥ ωf(G)ωf (H)

max{ωf(G), ωf (H)} = min{ωf (G), ωf (H)} ,

and the theorem follows.
To show that (26.1) is indeed a fractional clique of G×H , we need to prove that

ϕg,h(I) ≤ max{ωf(G), ωf (H)}

for any I ∈ I(G×H). Assume without loss of generality that ωf(G) ≥ ωf (H) and partition
I into subsets A and B where

A = {(a, x) ∈ I | aa′ ∈ E(G) ⇒ (a′, x) /∈ I}
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= A

= B

a

FIGURE 26.5 An independent set of C7 × P5 partitioned into subsets A and B.

and B = I \A. This is illustrated in Figure 26.5.
For a vertex x ∈ V (H) let

A(x) = {a ∈ V (G) | (a, x) ∈ A} ,

that is, A(x) is the projection on G of the intersection of A with the G-layer above x.
Similarly, for a vertex a ∈ V (G) let

B(a) = {x ∈ V (H) | (a, x) ∈ B} .

Now, A(x) is an independent set of G by the definition of A. Moreover, B(a) is an indepen-
dent set of H by the definition of B and the definition of the direct product.

For a ∈ V (G) we also define

C(a) = {x ∈ V (H) | N [a] ∩ A(x) 6= ∅} .

For example, in Figure 26.5 the set C(a) consists of all but one vertex of H = P5.
By Lemma 26.45,

ϕg,h(B) =
∑

a∈V (G)

g(a)h(B(a)) ≤ 1

ωf (H)

∑

a∈V (G)

g(a)h(N [B(a)]) .

Similarly, keeping in mind that ωf (G) ≥ ωf (H), we see that

ϕg,h(A) =
∑

x∈V (H)

g(A(x))h(x) ≤ 1

ωf(G)

∑

x∈V (H)

g(N [A(x)])h(x)

=
1

ωf (G)

∑

x∈V (H),a∈N [A(x)]

g(a)h(x)

=
1

ωf (G)

∑

a∈V (G)

g(a)h(C(a))

≤ 1

ωf (H)

∑

a∈V (G)

g(a)h(C(a)) .
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Because I partitions into A and B, we thus obtain

ϕg,h(I) = ϕg,h(A) + ϕg,h(B)

≤ 1

ωf(H)

∑

a∈V (G)

g(a) (h(C(a)) + h(N [B(a)])) .

Using the definitions of B(a) and C(a), it is not hard to see that C(a) ∩ N [B(a)] = ∅. It
follows that

h(C(a)) + h(N [B(a)]) ≤ h(V (H)) = ωf(H)

and therefore ϕg,h(I) ≤ ωf (G).

Exercises

26.1. Show ω(G×H) = min{ω(G), ω(H)} for any graphs G and H in Γ.

26.2. Suppose G ∈ Γ. Prove that Kn is a retract of G×Kn if and only if n ≤ ω(G).

26.3. (Vesztergombi, 1978) Show that χ(G�K2) ≥ χ(G) + 2 if G has at least one edge.

26.4. (Vesztergombi, 1978) Show that χ(C2k+1 � C2n+1) = 5 for k ≥ 2 and n ≥ 2.

26.5. Show that χ(G◦Kn+m) ≤ χ(G◦Kn)+χ(G◦Km) for all natural numbers n,m ≥ 1.

26.6. Determine χ(C2k+1 ◦ C2n+1) for all k ≥ n ≥ 2.

26.7. Show that χf (G) ≥ |V (G)|/α(G) for any graph G.

26.8. Show that χf (C2k+1) = χc(C2k+1) = 2 + 1/k for any k ≥ 1.

26.9. Show that G has a (k, d)-coloring if and only if there is a homomorphism G→ Gd
k.

26.10. (Klavžar and H.-G. Yeh, 2002) Show χ(G◦H) ≥ χf (G)χ(H) for any graphs G and
H .

26.11. Using Exercise 26.10, give another proof of Theorem 26.12.

26.12. (Bondy and Hell, 1990) Show that if a graph G has a (k, d)-coloring, then it also
has a (k′, d′)-coloring, where k′ and d′ are positive integers such that k/d ≤ k′/d′.

26.13. (Zhu, 1992b) Show that χc(G2H) = max{χc(G), χc(H)}.

26.14. (Zhu, 1992b) Show that the graphs Gd
k are circular critical, that is, χc(G

d
k−u) < k/d

for any vertex u of Gd
k.

26.15. Show that χ(G×G) = χ(G).

26.16. With the aid of Lemma 26.29, verify Hedetniemi’s conjecture for 3-chromatic graphs.

26.17. Show that for any graphs G and H , χf (G×H) ≤ min{χf(G), χf (H)}.
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This chapter is concerned with the independence number for the four standard products. The
question is simple for the lexicographic product, and Exercise 27.1 gives a complete answer.
The central concept of the first section, the Shannon capacity, involves the strong product,
and in this case the determination of the independence number is extremely difficult. Sec-
tion 27.2 studies the independence number of direct products, with a special emphasis on
vertex-transitive graphs. We also treat the ultimate direct independence ratio, a concept
parallel to the Shannon capacity. The final section investigates the independence number
for the Cartesian product and introduces the ultimate Cartesian independence ratio.

27.1 Shannon Capacity

If IG and IH are independent sets of G and H , respectively, then IG×IH is (by the definition
of the strong product) an independent set of G�H . Hence

α(G �H) ≥ α(G)α(H) .

However, Exercise 27.3 shows that a largest independent set of G � H need not be a
subproduct. In fact, in the course of this section it will become clear that the determination
of α(G�H) is a notoriously difficult problem.

The primal motivation for the independence number of the strong product is an
information-theoretical concept introduced by Shannon (1956). Suppose that we wish to
transmit messages through a channel and have a finite alphabet for this purpose. Due to
noise in the channel, some pairs of letters may be “confoundable.” We say that two words
of equal length are confoundable if for any i, the ith letters of the words are either the same
or confoundable. We wish to find sets of words for which no pair is confoundable. Let G be
a graph whose vertices are letters of the alphabet and in which two vertices are adjacent
whenever the corresponding letters are confoundable. Clearly, the maximum number of one-
letter messages that can be sent such that no confusion occurs equals α(G). Moreover, by
the definition of the strong product, two words of length n are confoundable if and only if
the corresponding vertices in G�,n are adjacent. It follows that the largest set of pairwise
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342 Independence Number and Shannon Capacity

nonconfoundable words of length n has α (G�,n) elements. The Shannon capacity of G is
then defined as

Θ(G) = lim
n→∞

n
√
α (G�,n) .

Because α(G�,m+n) ≥ α(G�,m)α(G�,n), the limit exists by Fekete’s lemma. (Fekete’s
lemma states that if f : N → N satisfies f(m + n) ≥ f(m)f(n) for all m and n, then
limn→∞

n
√
f(n) exists. See Lemma 11.6 of van Lint and Wilson (1992).)

As α (G�,n) ≥ α(G)n, we have Θ(G) ≥ α(G). In fact, if n is fixed, then for any k ∈ N,

nk

√
α (G�,nk) ≥ nk

√
α
(
G�,n

)k
= n

√
α
(
G�,n

)
. (27.1)

Combined with the definition of Θ, this implies Θ(G) ≥ n
√
α(G�,n) for every n ∈ N. Thus

Θ(G) = sup
n∈N

n
√
α (G�,n).

We consider the Shannon capacity only in this chapter, so there is no danger of confusing
it with the relation Θ from previous chapters.

Attaining the capacity

Let K(G) be the smallest integer n for which Θ(G) = n
√
α (G�,n), if such an integer ex-

ists; otherwise, set K(G) = ∞. The above considerations imply K(G) = 1 if and only if
α(G�,n) = α(G)n for all n, that is, if and only if Θ(G) = α(G). Also, K(G) = ∞ if and
only if Θ(G) > n

√
α(G�,n) for all n. As we will see below, K(G) = ∞ is indeed possible.

It is known that Θ(G) = α(G) if G is perfect, so K(G) = 1 in this case. In fact, for every
graph G where Θ(G) is known, K(G) is either 1, 2 or ∞; see Alon and Lubetzky (2006).
We now present a construction by Guo and Watanabe (1990) of a graph with K(G) = ∞.

Recall that G + H denotes the disjoint union of graphs, and observe that α(G + H) =
α(G) + α(H). Recall also that nG denotes the disjoint union of n copies of G. By the
distributive and commutative properties of the strong product, we have

(G+H) � (G+H) = (G�G) + (G�H) + (H �G) + (H �H)

= G�,2 + 2(G�H) +H�,2 ,

and, more generally, the binomial theorem

(G+H)�,n =

n∑

i=0

(
n

i

)
G�,i �H�,n−i .

Call a graph H universal if α(G � H) = α(G)α(H) holds for any graph G. We can now
state the theorem of Guo and Watanabe.

Theorem 27.1 If G satisfies K(G) > 1 and H is universal, then K(G+H) = ∞.

Proof Let X = G+H . Because H is universal,

α
(
X�,2n

)
= α



(

n∑

i=0

(
n

i

)
G�,i �H�,n−i

)
�




n∑

j=0

(
n

j

)
G�,j �H�,n−j






= α




n∑

i=0

n∑

j=0

(
n

i

)(
n

j

)
G�,i+j �H�,2n−i−j




=

n∑

i=0

n∑

j=0

(
n

i

)(
n

j

)
α
(
G�,i+j

)
α
(
H�,2n−i−j

)
.
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Similarly, we obtain

α
(
X�,n

)2
=

n∑

i=0

n∑

j=0

(
n

i

)(
n

j

)
α
(
G�,i

)
α
(
G�,j

)
α
(
H�,2n−i−j

)
.

Combining the above equations, α
(
X�,2n

)
− α (X�,n)

2
equals

n∑

i=0

n∑

j=0

(
n

i

)(
n

j

)
α
(
H�,2n−i−j

) (
α
(
G�,i+j

)
− α

(
G�,i

)
α
(
G�,j

))
.

Thus for any n we have α
(
X�,2n

)
≥ α (X�,n)

2
, because α

(
G�,i+j

)
≥ α

(
G�,i

)
α
(
G�,j

)
.

Moreover, as K(G) > 1, there are integers I and J with α
(
G�,I+J

)
> α

(
G�,I

)
α
(
G�,J

)
.

Therefore α
(
X�,2n

)
> α (X�,n)

2
for all n ≥ k0 = max{I, J}. In other words,

2n
√
α (X�,2n) > n

√
α (X�,n)

for all n ≥ k0. Combining this with Inequality (27.1), we see that, for any integer n,

Θ(X) ≥ 2nk0

√
α (X�,2nk0) > nk0

√
α (X�,nk0) ≥ n

√
α (X�,n).

This means K(X) = ∞. 2

By Exercise 27.4, the even cycles C2m are universal. Moreover, Hales (1973) proved
that α

(
C�,2

2k+1

)
> α(C2k+1)2 for k ≥ 2, so K(C2k+1) > 1 in these cases. Thus the graphs

X = C2k+1 + C2m with k,m ≥ 2 satisfy K(X) = ∞.

With a probabilistic approach, Alon and Lubetzky (2006) proved two theorems that
show the situation is much worse than we might expect from the above discussion. Their
first theorem asserts, roughly, that for every large integer k, there exists a δ = δ(k) > 0 and a
graph G such that all the values α(G), 2

√
α (G�,2), . . . , k

√
α (G�,k) are at least |V (G)|δ away

from Θ(G). Their second result shows that the series n
√
α (G�,n) can increase significantly

in an arbitrary number of terms. More precisely, they proved:

Theorem 27.2 For any j1 < j2 < · · · < js ∈ N and any ε > 0, there exists a graph G such
that for all k < ji,

k

√
α (G�,k) < ji

√
α (G�,ji)

ε

holds for i = 1, 2, . . . , s.

We thus cannot necessarily expect that we have a good approximation to Θ(G) if the
series n

√
α (G�,n) remains roughly the same in several consecutive terms. Alon and Lubetzky

(2006) go further and pose:

Question 27.3 Is the problem of deciding whether Θ(G) of a given graph G exceeds a given
value decidable?

Lovász’s ϑ-function

To investigate the Shannon capacity, Lovász (1979) introduced a concept that is now known
as Lovász’s ϑ-function. The approach, in which eigenvalues play a crucial role, leads to a
computation of Θ(C5).
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344 Independence Number and Shannon Capacity

Let G be a graph on n vertices. An orthonormal representation of G is a system
(v1,v2, . . . ,vn) of unit vectors in some Rm, such that each vertex of G corresponds to
a unique vector vi, and two vectors vi and vj are orthogonal whenever the correspond-
ing vertices of G are nonadjacent. Clearly, G has an orthonormal representation, namely
any orthonormal basis of Rn. (But unless G = Dn, it has orthonormal representations in
some Rm with m < n.) The value of an orthonormal representation (u1,u2, . . . ,un) of G is
defined as the minimum over all unit vectors c ∈ Rm of the quantity

max

{
1

(cTu1)2
,

1

(cTu2)2
, . . . ,

1

(cTun)2

}
.

A vector c for which the minimum is attained is called a handle of the representation.
Lovász’s ϑ-function, ϑ(G), is defined as the minimum value over all orthonormal repre-
sentations of G. Several equivalent definitions of Lovász’s ϑ-function can be found in the
literature. Often one finds a definition based on the following theorem of Lovász (1979).

Theorem 27.4 Let G be a graph with vertex set {1, 2, . . . , n}. Let A(G) be the set of all
symmetric n× n matrices A = (aij) such that aij = 1 whenever i is not adjacent to j. Let
λmax(A) denote the largest eigenvalue of the matrix A. Then

ϑ(G) = min{λmax(A) | A ∈ A(G)} .

We will present two computations of Θ(C5), one with and one without reference to
Theorem 27.4. To this end we next describe some basic properties of the ϑ-function. For
vectors u = (u1, u2, . . . , un)T ∈ Rn and v = (v1, v2, . . . , vm)T ∈ Rm, let

u⊗ v = (u1v1, . . . , u1vm, u2v1, . . . , u2vm, unv1 . . . , unvm)T

be their tensor product in Rnm. The next lemma uses the tensor product to construct an
orthonormal representation of the strong product of graphs.

Lemma 27.5 For any u,v ∈ Rn and x,y ∈ Rm, we have (u⊗ x)T (v⊗y) = (uTv)(xTy) .
Moreover, suppose (u1,u2, . . . ,un) and (v1,v2, . . . ,vm) are orthonormal representations of
the graphs G and H, respectively. Then

(u1 ⊗ v1, . . . ,u1 ⊗ vm, u2 ⊗ v1, . . . ,u2 ⊗ vm, . . . ,un ⊗ v1 . . .un ⊗ vm)

is an orthonormal representation of G�H.

Proof For the first statement, let u = (u1, . . . , un)T , v = (v1, . . . , vn)T , x = (x1, . . . , xm)T ,
and y = (y1, . . . , ym)T . Direct computations show that both sides of the equation equal∑n

i=1

∑m
j=1 uivixjyj .

For the second statement, suppose ai ∈ V (G) corresponds to ui, and bj ∈ V (H)
corresponds to vj . Notice that (ui ⊗ vj)

T (uk ⊗ v`) = (uT
i uk)(vT

j v`). This equals 1 if
(ai, bj) = (ak, b`), and it equals 0 if (ai, bj) and (ak, b`) are not adjacent in G�H . 2

Lovász proved that ϑ(G �H) = ϑ(G)ϑ(H), but for our purposes the first statement of
the following lemma will suffice.

Lemma 27.6 Let G and H be any graphs. Then

(i) ϑ(G�H) ≤ ϑ(G)ϑ(H) and
(ii) α(G) ≤ ϑ(G).
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Proof (i) Let (u1,u2, . . . ,un) and (v1,v2, . . . ,vm) be optimal orthonormal representations
of G and H , and let c and d be corresponding handles, respectively. By Lemma 27.5 the
vectors ui ⊗ vj form an orthonormal representation of G � H . Moreover, c ⊗ d is a unit
vector, as Lemma 27.5 gives (c⊗ d)T (c⊗ d) = (cT c)(dTd) = 1. We now obtain

ϑ(G�H) ≤ max
i,j

1

((c ⊗ d)T (ui ⊗ vj))
2

= max
i,j

1

(cT ⊗ ui)2
· 1

(dT ⊗ vj)2

= ϑ(G)ϑ(H) .

(ii) Let α(G) = k, and (u1,u2, . . . ,un) be an optimal orthonormal representation of G with
handle c ∈ Rm. We may assume, without loss of generality, that the vectors u1,u2, . . . ,uk

correspond to a largest independent set of G and are thus pairwise orthogonal. Thus these
vectors can be extended to an orthonormal basis B of Rm, say B = {v1,v2, . . . ,vm}, where

ui = vi for i = 1, 2, . . . , k. Let c =
∑m

i=1 λivi. Then cT c =
∑m

i=1 λ
2
i and

∑k
i=1(cTui)

2 =∑k
i=1(cTvi)

2 =
∑k

i=1 λ
2
i . Hence

1 = cT c ≥
k∑

i=1

(cTui)
2 ≥ k

ϑ(G)
=
α(G)

ϑ(G)
·

2

Here is the fundamental relation between Lovász’s ϑ-function and the Shannon capacity:

Theorem 27.7 For any graph G, we have Θ(G) ≤ ϑ(G).

Proof By Lemma 27.6 (ii), we have α(G�,n) ≤ ϑ(G�,n), and by Lemma 27.6 (i), we get
ϑ(G�,n) ≤ ϑ(G)n. So, for any n, we have n

√
α(G�,n) ≤ ϑ(G), and the theorem follows. 2

We now use Theorem 27.7 to compute the Shannon capacity of the 5-cycle.

Theorem 27.8 The Shannon capacity of the 5-cycle is Θ(C5) =
√

5.

Proof By Exercise 27.3, α(C5�C5) = 5, so Θ(C5) ≥
√

5. To complete the proof, it suffices
to show that ϑ(C5) ≤

√
5.

Let (u1,u2,u3,u4,u5) be an orthonormal representation of C5 with handle c ∈ R3,
as follows: the vectors ui are the five ribs of an umbrella opened such that the maximum
angle between them is π/2, and c is the umbrella’s handle. (Figure 27.1.) Let C be the
circle of radius r defined by the endpoints of the ui. As each ui has length 1, we have
cTui =

√
1 − r2. Let T be the point where c intersects the plane containing C, and consider

the triangle u1u3T . By the cosine theorem, we have 2 = r2 + r2 − 2r2 cos(4π/5). Hence
r2 = (5 −

√
5)/5, so cTui =

√
1 − r2 = 1/ 4

√
5. Then ϑ(C5) ≤ maxi 1/(cTui)

2 =
√

5. 2

Lovász (1979) asked whether ϑ(G) = Θ(G) holds for all graphs G. Haemers (1979)
settled this question negatively by showing that the Shannon capacity of the Schläfli graph
is strictly less than its ϑ-function.

Theorem 27.8 is one of the main achievements in the area. It can also be proved with
the following Corollary of Theorem 27.4.

Corollary 27.9 Let G be a d-regular graph on n vertices, and let λmin be the smallest
eigenvalue of the adjacency matrix A of G. Then

ϑ(G) ≤ −nλmin

d− λmin
.
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0

u1

u2

u5

u3

u4

T

C

c

FIGURE 27.1 The construction in Theorem 27.8.

Proof Let J be the n× n matrix, all entries of which are 1, and

M = J − n

d− λmin
A .

Note that mij = 1 whenever the corresponding vertices of G are not adjacent. By Theo-
rem 27.4, it suffices to prove that the largest eigenvalue of M equals (−nλmin)/(d− λmin).

Because G is d-regular, A1n = d1n. We thus infer

M1n =

(
n− n

d− λmin
d

)
1n .

Let µ 6= d be an eigenvalue of A, with corresponding eigenvector x. Because A is symmetric,
we may assume (by the Spectral Theorem) that x is orthogonal to 1n. Thus Jx = 0, so

Mx = − nµ

d− λmin
x .

Hence the eigenvalues of M are n − [n/(d − λmin)]d and −nµ/(d − λmin), where µ is an
eigenvalue of A. The latter quotient is largest for µ = λmin. Now an easy computation
shows that −nλmin/(d− λmin) ≥ n− [n/(d− λmin)]d, and so −nλmin/(d− λmin) is indeed
the largest eigenvalue of M . 2

For C5 we have λmin = (−1 −
√

5)/2, so Corollary 27.9 yields ϑ(C5) ≤
√

5. Invoking
Theorem 27.7 and the fact that Θ(C5) ≥

√
5, we have a second proof of Theorem 27.8.

Schrijver (1979) and McEliece, Rodemich, and Rumsey (1978) found alternative forms
of Theorem 27.7 for graphs that appear in association schemes; see also Miklós (1996). In
particular, their approach yields yet another proof that Θ(C5) =

√
5.

The simplest graphs for which the Shannon capacity is not known are odd cycles of length
at least 7 and their complements. Let us have a closer look at C7. Combining Theorem 27.7
with the fact that for any odd k, ϑ(Ck) = (k cos(π/k))/(1 + cos(π/k)) (see Lovász (1979)),
we infer that

Θ(C7) ≤ ϑ(C7) = (7 cos(π/7))/(1 + cos(π/7)) < 3.3177 .

Baumert, McEliece, Rodemich, Rumsey, Stanley, and H. Taylor (1971), and, independently,
Vesel (1998), showed that α(C�,3

7 ) = 33. Thus Θ(C7) ≥ 3
√

33 > 3.2075. Vesel and Žerovnik
(2002) found an independent set of C�,4

7 with 108 vertices, improving the lower bound to

Θ(C7) > 3.2237 .

However, Theorem 27.2 says that these facts give no clue as to how close we are to the actual
value of Θ(C7). In this respect we add that Hales (1973) and independently Sonnemann
and Krafft (1974) proved the following result. (See Exercise 27.3.)
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Theorem 27.10 For 1 ≤ k ≤ n,

α(C2k+1 � C2n+1) = kn+

⌊
k

2

⌋
.

Hell and F. S. Roberts (1982) (see also Farber (1986)) studied several analogues of the
Shannon capacity involving the strong product, the lexicographic product, and the so-called
disjunction, which is the complementary product of the strong product.

27.2 Independence in Direct Products

We know from Section 26.4 that direct product graphs have small chromatic numbers.
Consequently they must have large independent sets. This is confirmed by our next result.

Proposition 27.11 For any graphs G and H,

α(G ×H) ≥ max{α(G) |V (H)|, α(H) |V (G)|} .

Proof If I is an independent set of G, then I × V (H) is an independent set of G×H . 2

On the other hand, Špacapan (2011) proved the following nontrivial upper bound:

Theorem 27.12 For any graphs G and H,

α(G ×H) ≤ α(G) |V (H)| + α(H) |V (G)| − α(G)α(H) .

Proof Let I be an independent set of G×H . Partition I into

J = {(a, x) ∈ I | there exists (a, x′) ∈ I such that xx′ ∈ E(H)}

and K = I \ J . For any a ∈ V (G), let Ka be the intersection of K with the H-layer over
a; and for any x ∈ V (H), let Jx the intersection of J with the G-layer over x. In addition,
let IH be a largest independent set of H , let Y = (V (G) × IH) ∩ J , and for a ∈ V (G) let
Y a be the intersection of Y with the H-layer over a. Clearly, pH(Y a) is an independent
set of H because pH(Y a) ⊆ IH . By definition of J and K, we also infer that pH(Ka) is
independent, pH(Y a)∩ pH(Ka) = ∅, and that pH(Ka)∪ pH(Y a) is independent. Therefore,
α(H) ≥ |Ka|+|Y a|. Note also that pG(Jx) is an independent set of G so that α(G)−|Jx| ≥ 0
for any x ∈ V (G). Putting all this together, we have

∑

a∈V (G)

(α(H) − |Ka|) +
∑

x∈V (H)

(α(G) − |Jx|) ≥

∑

a∈V (G)

|Y a| +
∑

x∈IH

(α(G) − |Jx|) =

∑

x∈IH

|Jx| +
∑

x∈IH

(α(G) − |Jx|) =

α(G)α(H) .

The result now follows from that fact that I is partitioned into J and K and hence |I| =∑
a∈V (G) |Ka| +

∑
x∈V (H) |Jx|. 2
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Graphs for which equality holds in Proposition 27.11 were studied in a series of papers
by Jha and Klavžar (1998), Jha (2000), and Paulraja and Varadarajan (2004). For instance,
equality holds if G is a bipartite graph with a perfect matching and H has a Hamilton path.

Sharpness of the bound of Proposition 27.11 is also demonstrated by a result due
to Larose and Tardif (2002) involving powers of vertex-transitive graphs. (See Exercise 27.7
for a specific case.) Their proof uses the No-Homomorphism Lemma 2.13; the reader is
invited to rediscover their arguments in Exercise 27.6. Here we follow the elegant, self-
contained probabilistic proof by Alon, Dinur, Friedgut, and Sudakov (2004).

Theorem 27.13 Let G be a vertex-transitive graph. Then for any n ≥ 1,

α
(
G×,n

)
= α(G) |V (G)|n−1 .

Proof Let V (G) = {v1, v2, . . . , v|V (G)|} and n ≥ 1. Select a maximum independent set I of
G×,n.

Because G is vertex-transitive, |Aut(G)| ≥ |V (G)|. Hence we may randomly, indepen-
dently, and uniformly select automorphisms α1, α2, . . . , α|V (G)| of G. Then to each vertex
vi of G, 1 ≤ i ≤ |V (G)|, assign a random vertex xi of G×,n with

xi = (α1(vi), α2(vi), . . . , α|V (G)|(vi)) .

By Lemma 2.14, the vertices xi are uniformly distributed among the vertices of
G×,n and hence the expected size of I ∩ {x1, x2, . . . , x|V (G)|} is |I| · |V (G)|/|V (G×,n)|.
Now, because the αi’s are automorphisms, xi = (α1(vi), α2(vi), . . . , α|V (G)|(vi)) is ad-
jacent to xj = (α1(vj), α2(vj), . . . , α|V (G)|(vj)) if and only if vi is adjacent to vj .
Therefore, x1, x2, . . . , x|V (G)| induce a subgraph isomorphic to G. This implies |I ∩
{x1, x2, . . . , x|V (G)|}| ≤ α(G), and consequently

|I| |V (G)|
|V (G×,n)| = α

(
G×,n

) |V (G)|
|V (G)|n ≤ α(G) .

On the other hand, writing G×,n = G×G×,n−1, Proposition 27.11 implies

α
(
G×,n

)
≥ α(G) |V (G)|n−1

and the argument is complete. 2

With Theorem 27.13 in hand, it is natural to ask what can be said about the structure
of largest independent sets in powers of vertex-transitive graphs and, more generally, of
regular graphs. To this end, we say that a direct product G×H is MIS-normal (maximum-
independent-set-normal) if all of its largest independent sets are canonical, that is, of the
form I×V (H) or V (G)× I, where I is a maximum independent set of G or H , respectively.
These definitions extend naturally to direct products of more than two factors. In particular,
G×,n is MIS-normal if for any maximum independent set I of G×,n there exists an i,
1 ≤ i ≤ n, and a maximum independent set IG of G such that

I = V (G×,i−1) × IG × V (G×,n−i) .

Powers of many classes of graphs are MIS-normal. This is the case for complete graphs,
as was proved by Greenwell and Lovász (1974) and independently by Müller (1979). It
is also true for powers of circular graphs and of Kneser graphs, as proved in Larose and
Tardif (2002); see also Valencia-Pabon and Vera (2006). The latter result includes complete
graphs as a special case and follows from a more general result of Ahlswede, Aydinian, and
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Khachatrian (1998). On the other hand, Larose and Tardif (2002) showed that the powers
of truncated simplices (which are vertex-transitive) are not MIS-normal.

Alon, Dinur, Friedgut, and Sudakov (2004) used spectral techniques and Fourier analysis
on Abelian groups to obtain several interesting results on the structure of maximal indepen-
dent sets in direct powers of regular graphs. They first reproved the above-mentioned result
of Greenwell and Lovász, and then proved that an independent set that is close to being
a maximum is close to being canonical. (This was further developed in Dinur, Friedgut,
and Regev (2008).) From the spectral point of view, they proved the following theorem.
(Compare it with Corollary 27.9.)

Theorem 27.14 Let G be a connected, d-regular graph on r vertices and let λmin be the
smallest eigenvalue of the adjacency matrix of G. If

α(G) = |V (G)| −λmin

d− λmin
,

then for any n ≥ 1,

α(G×,n) = |V (G×,n)| −λmin

d− λmin
.

Moreover, if G is not bipartite, then Gn is MIS-normal.

There exist connected, bipartite, vertex-transitive graphs whose second powers are MIS-
normal, but whose higher powers are not. (See Exercise 27.10.) On the other hand, Ku and
McMillan (2009) proved that if G is a connected, vertex-transitive, nonbipartite graph, and
G×,2 is MIS-normal, then so is any power G×,n. H. Zhang (2011) proved the same result
independently, and in a more general setting. Moreover, Ku and McMillan (2009) showed
that the Cayley graph of the symmetric group S4 generated by the permutations with at
most one fixed point is a connected, nonbipartite, vertex-transitive graph that does not
fulfill the eigenvalue assumption of Theorem 27.14, yet all its powers are MIS-normal.

Theorem 27.13 (and Proposition 27.11) also led to the following problem posed in Tardif
(1998): Is it true that for any vertex-transitive graphs G and H ,

α(G×H) = max{α(G) |V (H)|, α(H) |V (G)|} ?

The problem was solved in H. Zhang (2010), where the structure of largest independent sets
is also clarified. To state H. Zhang’s theorem, we need one more concept. An independent

I of a graph G is called IS-imprimitive if |I| < α(G) and |I|
|N [I]| = α(G)

|V (G)| . Moreover, G is

IS-imprimitive if it has an IS-imprimitive independent set. H. Zhang (2010) proved:

Theorem 27.15 If G and H are vertex-transitive graphs for which α(G)
|V (G)| ≥

α(H)
|V (H)| , then

α(G×H) = α(G)|V (H)|. Moreover, one of the following holds:

(i) G×H is MIS-normal,

(ii) α(G)
|V (G)| = α(H)

|V (H)| and one of G and H is IS-imprimitive,

(iii) α(G)
|V (G)| >

α(H)
|V (H)| and H is disconnected.

Ultimate direct independence ratio

The independence ratio i(G) of a graph G is defined as

i(G) =
α(G)

|V (G)| .
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In the spirit of the Shannon capacity, Brown, Nowakowski, and Rall (1996) introduced the
ultimate direct independence ratio I×(G) of a graph G as

I×(G) = lim
n→∞

i
(
G×,n

)
.

This parameter is well-defined. Indeed, from Proposition 27.11 we easily infer that
i (G×,n) ≥ i

(
G×,n−1

)
for any n. Hence the sequence i (G×,n) is nondecreasing, and it

is clearly bounded above by 1, so the limit exists. Brown, Nowakowski, and Rall (1996)
proved the following fundamental and rather surprising result.

Theorem 27.16 Let G be a graph. Then I×(G) ∈
(
0, 12

]
∪ {1}.

Proof Because i(G) > 0 and the sequence i (G×,n) is nondecreasing, I×(G) > 0. If
i (G×,n) ≤ 1

2 for any n, then I×(G) ≤ 1
2 . Suppose next that there is a k such that

i
(
G×,k

)
> 1

2 . Selecting k to be the smallest such index, we distinguish two cases.

Case 1. k = 1. In this case, G has an independent set I with |I| = α(G) > |V (G)|/2.
Consider the subset

J =
⋃

X

{(x1, . . . , xn) | xi ∈ I if i ∈ X, xi ∈ V (G) \ I if i /∈ X}

of G×,n, where the union is taken over all subsets X of {1, 2, . . . , n} with |X | > n/2. Then
for any vertices x and y of J , there is a coordinate i for which xi, yi ∈ I. Thus x and y are
not adjacent, so J is an independent set. Notice that

|J | =
∑

n
2
<k≤n

(
n

k

)
|I|k
(
|V (G)| − |I|

)n−k
,

from which we obtain

|J |
|V (G)|n =

∑

n
2
<k≤n

(
n

k

)
i(G)k

(
1 − i(G)

)n−k
.

This equals the probability of getting more than n/2 successes out of n trials of an event
that has probability i(G) > 1/2. Therefore the value approaches 1 as n tends to infinity.
We conclude I×(G) = 1.

Case 2. k > 1. Set H = G×,k. Then by Case 1, I×(H) = 1. Because for any s ≥ 1,
H×,s = G×,ks, and having in mind that the sequence i (G×,n) is nondecreasing,

I×(G) = lim
n→∞

i
(
G×,n

)
= lim

s→∞
i
(
G×,ks

)
= lim

s→∞
i
(
H×,s

)
= I×(H) = 1 .

2

Brown, Nowakowski, and Rall (1996) also proved that for any independent set I of G,

I×(G) ≥ |I|
|I| + |N(I)| ,

where N(I) =
⋃

v∈I N(v) is the neighborhood of I. This lower bound and Theorem 27.16
led Alon and Lubetzky (2006) to define

i×(G) = max

{ |I|
|I| + |N(I)| | I is an independent set of G

}
,
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and to set

i∗×(G) =

{
i×(G) if i×(G) ≤ 1 ,
1 if i×(G) > 1 .

They posed the question of whether every graph G satisfies I×(G) = i∗×(G). A positive
answer would reduce the computation of the seemingly much more complicated invariant
I×(G) to i∗×(G). Nevertheless, no negative example to the question is known. We conclude
the section by noting that Tóth (2009) determined the ultimate direct independence ratio
of complete multipartite graphs.

27.3 Independence in Cartesian Products

For the independence number of Cartesian products, Vizing (1963) observed:

Theorem 27.17 For any graphs G and H,

(i) α(G2H) ≤ min{α(G) |V (H)|, α(H) |V (G)|},
(ii) α(G2H) ≥ α(G)α(H) + min{|V (G)| − α(G), |V (H)| − α(H)}.

Proof (i) Layers of the Cartesian product are isomorphic to the factors; hence there are
at most α(G) and α(H) independent vertices in any G-layer and H-layer, respectively.

(ii) If I and J are independent sets in G and H , respectively, then I×J is an independent
set of G2H . Let I and J be largest independent sets of G and H . By commutativity, we
may assume that |V (H)| − α(H) ≤ |V (G)| − α(G). Say V (H) \ J = {x1, . . . , xk}, and take
a subset {a1, . . . , ak} ⊆ V (G) \ I. Then (I × J) ∪ {(ai, xi) | 1 ≤ i ≤ k} is an independent
set of G2H with α(G)α(H) +

(
|V (H)| −α(H)

)
vertices. (This set is shown schematically

in Figure 27.2.) 2

G

H

J

I

I × J

G2H

x1

x2

x3

a1 a2 a3

FIGURE 27.2 Bound (ii) of Theorem 27.17.

It is easy to verify that α(P3 2P3) = 5, so equality can hold in Theorem 27.17 (ii). The
bound (i) also cannot be improved in general, as the following result shows.

Proposition 27.18 If 1 ≤ k ≤ n, then

α(C2k+1 2C2n+1) = k(2n+ 1).
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Proof Theorem 27.17 (i) yields α(C2k+1 2C2n+1) ≤ k(2n + 1). In fact, there exists an
independent set I with exactly k(2n + 1) vertices. This is indicated in Figure 27.3, where
the vertices of I are darkened. Let V (Cm) = {0, 1, . . . ,m− 1}. For each i ∈ V (C2n+1), with
0 ≤ i ≤ 2k, the set I has k vertices

(i, i), (i, i+ 2), (i, i+ 4), . . . , (i, i+ 2k − 2)

in the C2k+1-layer over i. (The arithmetic is done modulo 2k+1.) For the remaining 2n−2k
vertices of C2n+1, the first two columns in the diagram are repeated n− k times. It is easy
to check that I is independent. 2

︸ ︷︷ ︸
2k+1

︸ ︷︷ ︸
2n−2k

C2n+1

C2k+1

FIGURE 27.3 A maximum independent set in C2n+1 2C2k+1.

As Klavžar (2005) observed, Theorem 27.17 (i) generalizes (Exercise 27.14) as follows:

Theorem 27.19 Let H be a graph and let {V1, V2, . . . , Vk} be a partition of V (H). Then
for any graph G,

α(G2H) ≤
k∑

i=1

α(G2 〈Vi〉) .

Abay-Asmerom, Hammack, Larson, and Taylor (2011) proved that

α(G2H) ≥ 2r(G)r(H) ,

where r(G) is the radius of G (cf. page 261) and classified graphs for which equality holds.
They also proved that for nontrivial graphs G and H , α(G2H) = r(G2H) if and only if
one factor is a K2 and the other a nontrivial complete graph.

The independence graph of G has the maximum independent sets of G as vertices, two
vertices being adjacent if the corresponding independent sets are disjoint. Hell, X. Yu, and
H. Zhou (1994) observed that the equality in Theorem 27.17 (i) holds if and only if there
exists a homomorphism from one of the factors to the independence graph of the other. The
independence graph was further studied in Brešar and Zmazek (2003). For instance, they
proved that every graph is the independence graph of some graph.
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Ultimate Cartesian independence ratio

Hell, X. Yu, and H. Zhou (1994) introduced the ultimate Cartesian independence ratio I�(G)
of a graph G as

I�(G) = lim
n→∞

i(G�,n) .

By Theorem 27.17 (i), i(G�,2) ≤ i(G), and, more generally, i(G�,n+1) ≤ i(G�,n). Thus the
sequence i(G), i(G�,2), . . . is decreasing and bounded by 0, so I�(G) always exists.

Hahn, Hell, and Poljak (1995) proved the following result, which is similar to the No-
Homomorphism Lemma:

Theorem 27.20 If there exists a homomorphism from G to H, then I�(G) ≥ I�(H).

Hahn, Hell, and Poljak (1995) in addition proved that if H is a subgraph of a graph G,
then I�(H) ≥ I�(G).

Theorem 26.1 immediately implies χ(G�,n) = χ(G). The fact that χ(G) ≥ |V (G)|/α(G)
then yields i(G�,n) = α(G�,n)/|V (G)|n ≥ 1/χ(G�,n) = 1/χ(G). Hence the inequalities
1/χ(G) ≤ I�(G) ≤ i(G) always hold. These bounds can be improved as follows. The lower
bound is by Zhu (1996); the upper bound is by Hahn, Hell, and Poljak (1995).

Theorem 27.21 For any graph G,

1

χc(G)
≤ I�(G) ≤ 1

χf (G)
.

We refer to the extensive survey of Hahn and Tardif (1997) for more information on the
ultimate independence ratio. Simonyi (2006) studied a related concept called the Hall-ratio,
with respect to various graph products. It turns out that the ultimate Cartesian Hall-ratio
is essentially the same concept as the ultimate Cartesian independence ratio.

Exercises

27.1. (Geller and Stahl, 1975) Show that α(G◦H) = α(G)α(H) for all graphs G and H .

27.2. (Jha and Slutzki, 1994) Prove that α(G◦H) ≤ α(G�H) ≤ α(G2H) ≤ α(G×H)
for any G and H .

27.3. Show that α(C5 � C5) = 5.

27.4. Show that even cycles are universal.

27.5. (Vesztergombi, 1978) Show that

2α(G� C2k+1) ≤ (2k + 1)α(G)

for arbitrary G and any k ≥ 1.

27.6. Use No-Homomorphism Lemma 2.13 to give another proof of Theorem 27.13.

27.7. (Greenwell and Lovász, 1974) Show directly (that is, not using Theorem 27.13)
that α(K×,k

n ) = nk−1 for any n, k ≥ 1.
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27.8. (Alon, Dinur, Friedgut, and Sudakov, 2004) Suppose that a red-amber-green traffic
light is controlled with n (n ≥ 1) three-position switches. The color of the traffic
light changes whenever all the switches are changed. Show that the traffic light is
controlled by only one of the switches.

27.9. (Jha and Slutzki, 1994) Show that

α(G×H) ≤ |V (G)| |V (H)| − ω(G)ω(H) + max{ω(G), ω(H)} .

27.10. (Ku and McMillan, 2009) Show that for any m ≥ 2, K×,2
m,m contains only canonical

maximum independent sets, and that when n ≥ 3, K×,n
m,m, also contains noncanonical

maximum independent sets.

27.11. Show that for any graphs G and H ,

α(G×H) ≤ 2 |E(G)| |E(H)|
δ(G) δ(H)

.

27.12. Show that α(G ×Kn) ≤ n|E(G)|/δ(G) for any graph G.

27.13. Show that I×(G) = i∗×(G) holds for any vertex-transitive graph G.

27.14. Deduce Theorem 27.17 (i) as a consequence of Theorem 27.19.

27.15. Let α2(G) be the size of a largest bipartite subgraph of G and let τ(G) be the size
of its largest matching (that is, independent set of edges). Show that for any graphs
G and H ,

α(G2H) ≤ τ(H)α2(G) + (|V (H)| − 2τ(H))α(G) .

27.16. (Hahn, Hell, and Poljak, 1995) Show that I�(G) = 1/2 if G is a bipartite graph
with at least one edge.
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Vizing’s conjecture, the central open problem of domination theory, concerns the domination
number of Cartesian products. We investigate this conjecture in Sections 28.1 and 28.2.
Then, in Section 28.3, we turn to the the fractional domination number and prove that the
fractional version of Vizing’s conjecture is true. Along the way we obtain several results
about the domination number for strong products. The final section treats domination of
direct products.

28.1 Vizing’s Conjecture

Vizing’s conjecture regards the domination number of the Cartesian product. Before stating
it, we note the following upper bound.

Proposition 28.1 For any graphs G and H,

γ(G2H) ≤ min{γ(G) |V (H)|, γ(H) |V (G)|} .

Proof Let D be a minimum dominating set of G. Then D × V (H) dominates G2H , so
γ(G2H) ≤ γ(G) |V (H)|. Similarly, γ(G2H) ≤ γ(H) |V (G)|. 2

The following conjecture of Vizing (1968) is the central problem of domination theory.
It asserts a lower bound that appears natural, but has eluded all attempts at proof.

Conjecture 28.2 If G and H are graphs, then γ(G2H) ≥ γ(G)γ(H).

Given a graph G, we say that Vizing’s conjecture holds for G if γ(G2H) ≥ γ(G)γ(H)
for every graph H . We present in this section large classes of graphs for which Vizing’s
conjecture holds. We will need the following simple but useful result due to Rall; see Theorem
7.3 in Hartnell and Rall (1998).

Proposition 28.3 Let G be a graph for which Vizing’s conjecture holds, and v be a vertex
of G for which γ(G− v) = γ(G) − 1. Then Vizing’s conjecture holds for G− v.

Proof Let G′ = G − v, let H be arbitrary, and let D be a minimum dominating set of
G′

2H . We can dominate G2H by combining D with a minimum dominating set for the
H-layer above v. Hence γ(G′

2H) + γ(H) ≥ γ(G2H) ≥ γ(G)γ(H), from which follows
γ(G′

2H) ≥ γ(G)γ(H) − γ(H) = γ(G′)γ(H). 2

355
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The next observation is also useful in determining when Vizing’s conjecture holds for
various graphs.

Proposition 28.4 Suppose γ(G2H) ≥ γ(G)γ(H), and let G′ be a spanning subgraph of
G with γ(G′) = γ(G). Then γ(G′

2H) ≥ γ(G′)γ(H).

Proof We have γ(G′
2H) ≥ γ(G2H) ≥ γ(G)γ(H) = γ(G′)γ(H), where the first in-

equality holds because G′ is a spanning subgraph of G, and therefore G′
2H is a spanning

subgraph of G2H . 2

We now turn to a fundamental result. A graph G is called decomposable if V (G) can be
partitioned into γ(G) sets, each of which induces a complete subgraph of G.

Theorem 28.5 If G′ is a spanning subgraph of a decomposable graph G, and γ(G′) = γ(G),
then Vizing’s conjecture holds for G′.

Proof By Proposition 28.4, it suffices to prove the theorem only for the case G′ = G.
Partition V (G) into sets Q1, Q2, . . . , Qγ(G), where each Qi induces a complete subgraph
of G. Take an arbitrary H , and let D be a minimum dominating set for G2H . For each
i ∈ {1, 2, . . . , γ(G)}, form the set Di = D ∩ (Qi × V (H)). For each index i and vertex
v ∈ V (H), let Kiv denote the complete subgraph of G2H induced on Qi × {v}. Let K =
{Kiv | 1 ≤ i ≤ γ(G), v ∈ V (H)}, and form the following disjoint subsets of K:

R = {Kiv ∈ K | no vertex of Kiv is dominated by a vertex of Di} ,
S = {Kiv ∈ K | D ∩ V (Kiv) 6= ∅} .

Note that if Kiv ∈ R, then (by definition of the Cartesian product) any vertex of Kiv is
dominated by an element of D that is in some Kjv, with j 6= i.

To prove γ(G2H) ≥ γ(G)γ(H), we first show |R∪S| ≥ γ(G)γ(H), then |D| ≥ |R∪S|.
For each 1 ≤ i ≤ γ(G), let Ri = {Kiv ∈ R | v ∈ V (H)} and Si = {Kiv ∈ S | v ∈ V (H)}.

Observe that for fixed i, the set {v ∈ V (H) | Kiv ∈ Ri∪Si} dominates H and has cardinality
|Ri ∪ Si|, so |Ri ∪ Si| ≥ γ(H). Summing over all i, we get |R ∪ S| ≥ γ(G)γ(H).

Fix v ∈ V (H), and put Dv = D ∩ (V (G) × {v}) and Rv = {Kiv ∈ R | 1 ≤ i ≤ γ(G)}
and Sv = {Kiv ∈ S | 1 ≤ i ≤ γ(G)}. Every Kiv in Rv or Sv is a subgraph of 〈p−1

H (v)〉 ∼= G,
and every vertex of such a Kiv is dominated by a vertex in Dv. Now notice that there are
γ(G) − |Rv ∪ Sv| subgraphs Kiv that are not in Rv ∪ Sv. We can extend Dv to a set that
dominates 〈p−1

H (v)〉 by appending to it one vertex from each of these extra subgraphs. Thus

|Dv| + (γ(G) − |Rv ∪ Sv|) ≥ γ(G),

so |Dv| ≥ |Rv ∪ Sv|. Summing over all v ∈ V (H), we get |D| ≥ |R ∪ S| ≥ γ(G)γ(H). 2

Theorem 28.5 was proved by Barcalkin and German (1979). Consequently, any graph
satisfying its hypothesis is called a BG-graph. The next corollary illustrates their utility.

Corollary 28.6 Vizing’s conjecture holds for graphs with domination number 2.

Proof Suppose G′ is a graph with γ(G′) = 2. Form another graph G by adding to G′ the
greatest possible number of edges for which we still have γ(G) = 2. By Theorem 28.5, we
just need to show that G is decomposable.

Let Q1 ⊆ V (G) be a maximal vertex set inducing a complete subgraph of G. Then Q1

must be a proper subset of V (G), for otherwise γ(G) = 1. Set Q2 = V (G) \Q1. We claim
that Q2 induces a complete subgraph. To see this, take an arbitrary pair vw /∈ E(G) and
note that v and w are not both in Q2: Surely, because γ(G) = 2 and γ(G ∪ vw) = 1, either
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v or w dominates all of G ∪ vw. Thus, if v and w were both in Q2, then one of them would
dominate every vertex of Q1, contrary to our choice of Q1. It follows that any two vertices
of Q2 are adjacent. 2

Sun (2004) proved Vizing’s conjecture for graphs with domination number 3. His proof
is very technical and a more intuitive proof would be welcome.

Theorem 28.5 appeared in an obscure journal, in Russian, and remained largely un-
noticed until 1991. Hartnell and Rall (1991) finally pointed out its importance and gave
an alternative proof, which we followed above. In the meantime, several corollaries were
obtained by authors who were unaware of Barcalkin and German’s work.

Before listing notable examples of BG-graphs, we define an important concept. The 2-
packing number P2(G) of G is the largest cardinality of a set S ⊆ V (G) such that d(u, v) ≥ 3
for any distinct vertices u, v of S. (In other words, S is a largest subset of V (G) for which
N [u] ∩N [v] = ∅ for any pair of distinct vertices u, v ∈ S.)

• Jacobson and Kinch (1986) independently proved that Vizing’s conjecture holds for
any graph whose 2-packing number equals its domination number (Exercise 28.1).
This is in particular true for trees, as proved first by Meir and Moon (1975).

• El-Zahar and Pareek (1991) independently proved Vizing’s conjecture for cycles (Ex-
ercise 28.3).

• Vizing’s conjecture was proved for graphs with a certain vertex-partition property by
Faudree, Schelp, and Shreve (1990) and by G. Chen, Piotrowski, and Shreve (1996).
Hartnell and Rall (1998) showed that the first class is a proper subclass of the BG-
graphs while the second is the same as the class of BG-graphs.

Two classes of graphs that fulfill Vizing’s conjecture and properly contain BG-graphs
are known. They are the largest such classes of graphs currently known:

1. Hartnell and Rall (1995) introduced so-called graphs of Type X , and proved that
this class fulfills Vizing’s conjecture and properly contains BG-graphs. Further, they
proved that this implies the validity of Vizing’s conjecture for graphs G with γ(G) ≤
P2(G) + 1. For a rather technical definition of Type X graphs, see Hartnell and Rall
(1995), as well as Hartnell and Rall (1998).

2. Brešar and Rall (2009) introduced the concept of fair domination, and proved that a
graph G with a fair reception of size γ(G) fulfills Vizing’s conjecture, and that BG-
graphs are particular examples of such graphs. Moreover, they used this approach to
prove Vizing’s conjecture for chordal graphs. (For an alternative approach to chordal
graphs, see Section 28.2.)

Hartnell and Rall (1991) proposed another approach to Vizing’s conjecture. The idea
is to start with some class of graphs for which the conjecture is known to be true. Then
certain operations that preserve the conjecture’s validity are applied to these graphs. One
would have to show that all graphs can be obtained in this fashion.

Several exact domination numbers of particular Cartesian products have been com-
puted by Jacobson and Kinch (1984); Cockayne, Hare, Hedetniemi, and Wimer (1985);
T. Y. Chang and Clark (1993); as well as Klavžar and Seifter (1995).

A subset S ⊆ V (G) is a perfect code of G if the closed neighborhoods of the vertices in
S form a partition of V (G). Not every graph contains a perfect code. However, if S is a
perfect code of G, then |S| = γ(G) (Exercise 28.4). Perfect codes (and hence the domination
number) have been studied in various graph products in Abay-Asmerom, Hammack, and
Taylor (2009); Gravier, and Mollard (1997); Jerebic, Klavžar, and Špacapan (2005); Jha
(2002, 2003); Klavžar, Špacapan, and Žerovnik (2006); and Taylor (2009).
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28.2 Clark and Suen’s Approach

In this section we prove γ(G2H) ≥ 1
2γ(G)γ(H) for all graphs G and H , thus proving

Vizing’s conjecture up to a factor of 2. The approach, due to Clark and Suen, is called the
double-projection argument, and nicely incorporates the product structure of G2H . The
idea yields additional results. In particular we will show that Vizing’s conjecture holds for
chordal graphs.

Let {h1, . . . , hγ(H)} be a dominating set of a graphH . Choose a partition {π1, . . . , πγ(H)}
of V (H) with hi ∈ πi and πi ⊆ N [hi] for each i. Let Gi = V (G) × πi. For g ∈ G, the set
{g} × πi is called a cell. (See the left-hand side of Figure 28.1.)
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FIGURE 28.1 Clark-Suen partition (left) and Aharoni-Szabó partition (right).

Let D be a minimum dominating set of G2H . For i = 1, . . . , γ(H), let ni be the number
of cells in Gi for which all vertices are dominated from the same H-layer as the cell. Then,
considering the projection pG(D ∩Gi), it follows that |D ∩Gi| + ni ≥ γ(G), and thus

|D| +

k∑

i=1

ni ≥ γ(G)γ(H) . (28.1)

On the other hand, for each g ∈ V (G), set Dg = D∩({g}×V (H)), and let mg denote the
number of cells {g} × πi for which every vertex is dominated by an element of Dg. We can
form a dominating set of the H-layer above g by appending to Dg the γ(H) −mg vertices
(g, hi) that do not belong to the above-mentioned cells. Thus |Dg| + (γ(H) −mg) ≥ γ(H),
so |Dg| ≥ mg. Hence

|D| ≥
∑

g∈G

mg . (28.2)

The sums
∑k

i=1 ni and
∑

g∈Gmg are equal because they represent two ways of counting
the same set of cells. Inequalities (28.1) and (28.2) now yield the result of Clark and Suen
(2000):
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Theorem 28.7 For all graphs G and H,

γ(G2H) ≥ 1

2
γ(G)γ(H).

The factor 1/2 of Theorem 28.7 comes from a double counting of the vertices of the
minimum dominating set D. To avoid this problem, Aharoni, and Szabó (2009) modified
Clark and Suen’s approach as follows.

LetM be a set of vertices in a graphG. The smallest cardinality of a setD that dominates
M (i.e., such that M ⊆ N [D]) is denoted γG(M). Let γi(G) denote the maximum, over all
independent sets M in G, of the value γG(M).

Let I be an independent set of G that is dominated by at least γi(G) vertices. Let
{π1, . . . , πγ(H)} be a partition of V (H) as above. Let D be a (minimum) set that dominates
I×V (H). In this modified approach we consider only cells of form {x}×πi, where x ∈ I. (See
the right-hand side of Figure 28.1.) Otherwise we follow Clark and Suen’s approach. Let m
be the number of cells that are dominated from their corresponding H-layers. Considering
the projection onto G, we infer that

|D ∩ (V (G) \ I × V (H))| ≥ γi(G)γ(H) −m. (28.3)

Projection onto H gives
|D ∩ (I × V (H))| ≥ m, (28.4)

so Inequalities (28.3) and (28.4) imply |D| ≥ γi(G)γ(H). Because any dominating set of
G2H also dominates I × V (H), we have γ(G2H) ≥ |D|, hence the following theorem.

Theorem 28.8 If G and H are graphs, then γ(G2H) ≥ γi(G)γ(H).

Clearly, γi(G) ≤ γ(G). Unfortunately, γi(G) can be arbitrarily smaller than γ(G) (Ex-
ercise 28.7). On the positive side, Aharoni, E. Berger, and Ziv (2002) proved that if M is
any set of vertices in a chordal graph G and if x, y ∈ M are adjacent, then at least one of
γG(M −{x}) or γG(M −{y}) equals γG(M). By starting with M = V (G) and applying this
repeatedly, it follows that γ(G) = γi(G) when G is a chordal graph. This combined with
Theorem 28.8 yields the main result of Aharoni, and Szabó (2009):

Theorem 28.9 If G is a chordal graph, then G satisfies Vizing’s conjecture.

If G is a graph—such as a tree—that has a 2-packing of cardinality γ(G), it is easy to
see that γ(G) = γi(G).

We conclude our discussion of Vizing’s conjecture by noting that in general γ(G2H) is
most likely much larger than γ(G)γ(H). Nevertheless, there are infinite families of graphs
for which equality holds. Such families occur implicitly in Payan and Xuong (1982) and
explicitly in Fink, Jacobson, Kinch, and J. Roberts (1985), as well as in Jacobson and
Kinch (1986) and Hartnell and Rall (1991). El-Zahar, Khamis, and Nazzal (2007) proved
that γ(Cn 2G) = γ(Cn)γ(G) holds only if n ≡ 1 (mod 3). They also characterized graphs
that satisfy the equality when n = 4 and provided infinite classes of such graphs for general
n ≡ 1 (mod 3).

For additional information on Vizing’s conjecture, see the extensive survey by Brešar
et al. (2011) that also contains some new results and proofs.
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28.3 Fractional Version of Vizing’s Conjecture

We now prove the so-called fractional version of Vizing’s conjecture. It follows immediately
from the multiplicativity of the fractional domination number on the strong product. We
adopt the approach of D. C. Fisher (1994) and of D. C. Fisher, Ryan, Domke, and Majumdar
(1994).

The domination number and the fractional domination number can be expressed as
solutions to certain linear programs. To begin, let us rephrase the domination number of a
graph G into the language of weight functions. There is a bijective correspondence between
subsets X ⊂ V (G) and weight functions w : V (G) → {0, 1}, where w(x) = 1 exactly when
x ∈ X . Note that X dominates G if and only if

∑
x∈N [v]w(x) ≥ 1 for each v ∈ V (G).

Moreover, γ(G) is the minimum, over all such w, of the sum
∑

x∈V (G) w(x).

By analogy, a weight function w : V (G) → R is called a fractional domination of G
provided that for any vertex v we have w(v) ≥ 0 and

∑

x∈N [v]

w(x) ≥ 1 .

The fractional domination number of G, denoted γf (G), is the minimum, over all fractional
dominations, of the sum

∑
x∈V (G)w(x).

If G has adjacency matrix A(G) relative to some ordering of its vertices, then its neigh-
borhood matrix is N(G) = A(G) + I, where I is the identity matrix. Any X ⊂ V (G) can be
encoded as 0-1 vector x ∈ Zn, whose ith entry is 1 precisely when the ith vertex of G is in
X . Then

γ(G) = min
x

1T
nx

subject to N(G)x ≥ 1n, x ≥ 0n, and x ∈ Zn . (28.5)

Because we search for a minimum, conditions x ≥ 0n and x ∈ Zn imply that the solution x
is a 0-1 vector. The condition N(G)x ≥ 1n ensures that for any vertex v, we find in N [v] at
least one vertex of x. It follows that a solution to the above linear program is indeed γ(G).
Similarly, the linear program below determines the fractional domination number of G:

γf (G) = min
x

1T
nx

subject to N(G)x ≥ 1n, x ≥ 0n, and x ∈ Rn . (28.6)

Likewise, the following integer linear program returns the 2-packing number of G:

P2(G) = max
x

1T
nx

subject to N(G)x ≤ 1n, x ≥ 0n, and x ∈ Zn . (28.7)

It will be convenient to use the dual version of the program (28.6):

γf (G) = max
x

1T
nx

subject to N(G)x ≤ 1n, x ≥ 0n, and x ∈ Rn . (28.8)

A feasible solution of the linear program (28.8) is called a fractional 2-packing.
Figure 28.2 illustrates the concepts of fractional domination and fractional 2-packing.
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FIGURE 28.2 A fractional domination and a fractional 2-packing of Mycielski’s graph.

(This graph M is known as the Mycielski or Grötsch graph.) The weights are a frac-
tional domination. Hence the linear program (28.6) gives γf (M) ≤ 9/4. On the other hand,
γf (M) ≥ 9/4 as the weights are also a fractional 2-packing. Thus γf (M) = 9/4.

The linear programming approach yields the following result of Domke, Hedetniemi, and
Laskar (1988).

Proposition 28.10 For any graph G, we have P2(G) ≤ γf (G) ≤ γ(G).

Proof The maximum of (28.7) is searched on a subset of the set used in (28.8); thus
P2(G) ≤ γf (G). Comparing (28.5) with (28.6), we get γf (G) ≤ γ(G). 2

Let’s apply the above approach to the strong product. Suppose G and H are graphs
with vertex sets V (G) = {g1, g2, . . . , gn} and V (H) = {h1, h2, . . . , hm}, respectively. Label
the i, j-entry of the neighborhood matrix N(G) as gij , so that gij = 1 precisely when
gigj ∈ E(G) or i = j. By the same rule, label each i, j-entry of N(H) as hij .

Let Z(n,m) denote the set of n × m integer matrices, and R(n,m) denote the set of
n×m real matrices. We regard such a matrix Z = [zij ] as an assignment of the number zij
to each vertex (gi, hj) of G�H . If Z is a 0-1 matrix, we view it as a characteristic vector
for the subset XZ = {(gi, hj) : zij = 1} ⊆ V (G�H).

Now consider the product N(G)ZN(H). Notice that its i, j-entry is

(N(G)ZN(H))ij =

n∑

k=1

gik

m∑

s=1

zkshsj =

n∑

k=1

m∑

s=1

gikhjszks . (28.9)

Observe that each term in this sum has value

gikhjszks =

{
zks if (gi, hj)(gk, hs) ∈ E(G�H) or (gi, hj) = (gk, hs) ,
0 otherwise .

(28.10)

In the case where Z is a 0-1 matrix, it follows that gikhjszks = 1 precisely if the vertex
(gi, hj) of G � H is dominated by the vertex (gk, hs) ∈ XZ . Comparing with Equation
(28.9), we see that XZ dominates G�H if and only if (N(G)ZN(H))ij ≥ 1 for each i and
j. Moreover, the cardinality of the dominating set is the sum of the entries of Z.

We can thus express γ(G�H) as the solution of the integer linear programming problem
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of minimizing the sum of the zij subject to the constraints

∑n
k=1

∑m
s=1 gikhjszks ≥ 1 ,

zks ≥ 0 .
(28.11)

We can write these constraints as N(G)ZN(H) ≥ 1n1
T
m, and Z ≥ O, where O is the n× n

zero matrix. In summary, for graphs G and H of order n and m, respectively, we have

γ(G�H) = min
Z

1T
nZ1m

subject to N(G)Z N(H) ≥ 1n1
T
m, Z ≥ O, Z ∈ Z(n,m) . (28.12)

By the same kind of reasoning, we also have

γf (G�H) = min
Z

1T
nZ1m

subject to N(G)Z N(H) ≥ 1n1
T
m, Z ≥ O, Z ∈ R(n,m) , (28.13)

P2(G�H) = max
Z

1T
nZ1m

subject to N(G)Z N(H) ≤ 1n1
T
m, Z ≥ O, Z ∈ Z(n,m) . (28.14)

Finally, by examining the constraints (28.11) and using the symmetry of N(G) and N(H),
we can formulate the dual of the program (28.13) as

γf (G�H) = max
Z

1T
nZ1m

subject to N(G)Z N(H) ≤ 1n1
T
m, Z ≥ O, Z ∈ R(n,m) . (28.15)

Theorem 28.11 If G and H are graphs, then γf (G�H) = γf (G)γf (H).

Proof Suppose G and H have orders n and m, respectively. Let x and y be solutions of
the linear program (28.8) for G and H , respectively. Then

N(G)xyTN(H) = (N(G)x)(N(H)y)T ≤ 1n1
T
m .

We infer that xyT is a feasible solution of (28.15). Therefore

γf (G�H) ≥ 1T
nxy

T1m = (1T
nx)(1T

my)T = γf (G)γf (H) .

Conversely, let z and w be solutions of (28.6) for G and H , respectively. As above we
conclude that zwT is a feasible solution of (28.13). Therefore

γf (G�H) ≤ 1T
nzw

T1m = (1T
nz)(1T

mw)T = γf (G)γf (H) .

2

Note the similarity between Theorems 28.11 and 26.17.
Because G2H is a spanning subgraph of G � H , we have γf (G2H) ≥ γf (G � H).

From this, Theorem 28.11 immediately implies the next corollary.

Corollary 28.12 (Fractional version of Vizing’s conjecture) If G and H are graphs,
then γf (G2H) ≥ γf (G)γf (H).
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FIGURE 28.3 Fractional domination and fractional 2-packing of P3 2P6.

Consider, for instance, the graph P3 2P6, in Figure 28.3. The top shows a fractional
domination, and the bottom shows a fractional 2-packing. Because both sum to 14/3, we
infer γf (P3 2P6) = 14/3. As γf (P3) = 1 and γf (P6) = 2, we see that the inequality
in Corollary 28.12 can be strict. The Hamming graph K3 2K3 is a similar example, as
γf (K3 2K3) = 9/5. (Assign the weight 1/5 to every vertex of K32K3.) The inequality in
Corollary 28.12 is also the best possible, as γf (P4) = 2 and γf (P4 2P4) = 4.

The above technique yields additional results. Here is an example.

Theorem 28.13 For any graphs G and H,

γ(G)γf (H) ≤ γ(G�H) ≤ γ(G)γ(H) .

Proof If X and Y are dominating sets of G and H , respectively, then X×Y is a dominating
set of G�H , and the upper bound follows. (Of course this bound could also be derived by
linear programming methods, as above.) The lower bound requires new arguments.

Let Z ∈ Z(n,m) be a solution of the program (28.12). Then

N(G)Z N(H) ≥ 1n1
T
m .

For the jth column, we have
(N(G)Z N(H))j ≥ 1n ,

and hence
(N(G)Z N(H))j = N(G)(Z N(H))j ≥ 1n .

Thus (Z N(H))j is a feasible solution of the program (28.5); that is, it represents a domi-
nating set of G. Hence 1T

n (Z N(H))j ≥ γ(G) holds for any column j, and thus

1T
nZ N(H) ≥ γ(G)1T

m .

Transposing this inequality and using N(H) = N(H)T , we find

N(H)

(
1

γ(G)
ZT1n

)
≥ 1m .
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By program (28.6), this implies that ZT1n/γ(G) is a fractional domination of H . Hence

γf (H) ≤ 1

γ(G)
(1T

mZ
T1n) =

1

γ(G)
(1T

nZ1m)T =
1

γ(G)
γ(G�H) ,

so γ(G)γf (H) ≤ γ(G×H). 2

Theorem 28.13 has several consequences. This one is immediate:

Corollary 28.14 If γf (G) = γ(G), then γ(G�H) = γ(G)γ(H).

The next corollary follows from Theorem 28.13 and Proposition 28.10. Nowakowski and
Rall (1996) give a direct proof.

Corollary 28.15 If P2(G) = γ(G), then γ(G�H) = γ(G)γ(H).

We conclude the section with one more related result, which the reader can verify by
imitating the proof of Theorem 28.13.

Theorem 28.16 If G and H are graphs, then P2(G)P2(H) ≤ P2(G�H) ≤ P2(G)γf (H).

28.4 Domination in Direct Products

Proposition 28.1 gives a natural and obvious upper bound for the domination number
of a Cartesian product. The corresponding bound for the direct product is less intuitive.
Nevertheless, our next theorem presents both upper and lower bounds. The lower bound
involves the following natural concept. A total dominating set of G is a subset S ⊆ V (G)
for which every vertex of G is adjacent to a vertex in S. (If G has no isolated vertices,
then V (G) is a total dominating set.) The total domination number γt(G) of G is the
minimum cardinality of a total dominating set. The lower bound in our next theorem is
from Nowakowski and Rall (1996); the upper bound is from Brešar, Klavžar, and Rall
(2007).

Theorem 28.17 For any graphs G and H with no isolated vertices,

max{P2(G)γt(H), P2(H)γt(G)} ≤ γ(G×H) ≤ 3γ(G)γ(H) .

Proof Suppose D is a dominating set for G × H . To prove the lower bound, it suffices
(by commutativity) to show P2(G)γt(H) ≤ |D|. Let S be a 2-packing of G, so the sets
N [a] × V (H) for a ∈ S are pairwise disjoint. The desired inequality will follow as soon
as we establish γt(H) ≤ |D ∩ (N [a] × V (H))| for each a ∈ S. This is easy to do: Set
M = D ∩ (N [a] × V (H)). Each vertex (a, h) ∈ {a} × V (H) is dominated by some vertex
from D ∩ (N [a] × V (H)). If a vertex (a, h) ∈ D is dominated only by itself, then remove
it from M and append to M a vertex (a′, h′), where (a, h)(a′, h′) ∈ E(G × H). After
doing this for each such (a, h), we arrive at a set M with |M | ≤ |D ∩ (N [a] × V (H))|. It is
straightforward to verify that pH(M) is a total dominating set for H , so γt(H) ≤ |pH(M)| ≤
|M | ≤ |D ∩ (N [a] × V (H))|.

For the upper bound, select minimum dominating sets S and T of G and H , respectively.
Enlarge S to a set S by including a neighbor of any vertex x ∈ S that has no neighbor in S.
Then S is a total dominating set of G and |S| ≤ 2|S|. In the same way, enlarge T to a total
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dominating set T of H . Then (S×T )∪(S×T ) dominates G×H , by Exercise 28.11. As |S| =
γ(G), and |T | = γ(H), and |S| ≤ 2|S|, and |T | ≤ 2|T |, it follows that |(S × T )∪ (S × T )| =
|S × T | + |S × T | − |S × T | ≤ 2|S||T | + 2|S||T | − |S||T | = 3γ(G)γ(H). 2

Because γ(G) ≤ γt(G) holds for any graph G, the lower bound of Theorem 28.17 implies
that max{P2(G)γ(H), P2(H)γ(G)} ≤ γ(G×H).

Given arbitrary connected graphs G and H , subdivide each of their edges by two vertices
to get G′ and H ′. Let G′′ and H ′′ be further obtained from G′ and H ′ by attaching two
pendant vertices to each vertex of their minimum dominating sets. Then γ(G′′ × H ′′) =
3γ(G′′)γ(H ′′), so the upper bound of Theorem 28.17 is the best possible.

Gravier and Khelladi (1995) made the following Vizing-like conjecture:

γ(G×H) ≥ γ(G)γ(H) .

It was disproved by a counterexample (Exercise 28.9) in Nowakowski and Rall (1996).
Also, Klavžar and Zmazek (1996) showed that for any k ≥ 0, there is a graph G with
γ(G×G) ≤ γ(G)2 − k.

The next result is due to Mekǐs (2010) (cf. Exercise 28.10):

Proposition 28.18 If G = ×r
i=1Kni , with r ≥ 3 and ni ≥ r+1 for all i, then γ(G) = r+1.

This was used for the following nice construction. Let n ≥ 3 and set G = ×n
i=1K2n+1. Then

Proposition 28.18 gives γ(G)γ(G) − γ(G×G) = (n+ 1)(n+ 1) − (2n+ 1) = n2.

Exercises

28.1. Show that γ(G2H) ≥ P2(G)γ(H) for any graphs G and H .

28.2. (Jacobson and Kinch, 1984) Show that for any graphs G and H ,

γ(G2H) ≥ |V (H)|
∆(H) + 1

γ(G) .

28.3. Show that the n-cycle Cn, n ≥ 3, is a spanning subgraph of a decomposable graph
G with γ(G) = dn/3e.

28.4. Let S be a perfect code of a graph G. Show that |S| = γ(G).

28.5. (Jacobson and Kinch, 1984) Show that γ(P2 2Pn) = d(n+ 1)/2e.

28.6. (Klavžar and Seifter, 1995) Show that γ(C3 2Cn) = n− bn/4c for n ≥ 4.

28.7. (Roy Meshulam, see Aharoni and Szabó (2009)) Let n ≥ 1 and let Gn be the
complement of the Kneser graph K(n, n2). Show that γi(Gn) = 1 and that γ(Gn) =
n.

28.8. Show that γ(Kn ×Km) = 3 for any n,m ≥ 3.

28.9. (Nowakowski and Rall, 1996) Let G be the graph on six vertices obtained from
K6 by removing three independent edges (that is, a perfect matching). Show that
γ(G×G) = 3.
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28.10. Let G be as in Proposition 28.18. Find a dominating set of G of size r + 1.

28.11. Complete the proof of Theorem 28.17 by verifying that the set S × T ∪ S × T from
the proof is a dominating set of G×H .

28.12. Let H be a graph with γ(H) = 1 (that is, a graph with a vertex of degree |V (H)|−1).
Show γ(G ◦H) = γ(G) for any G.
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There are numerous interesting and useful graph invariants associated with the cycle space
of a graph. Of particular interest are certain “efficient” bases called minimum cycle bases.
These ideas have a long history in applied discrete mathematics, going back at least as
far as G. Kirchhoff’s (1847) treatise on electrical networks. More recently, Berger, Flamm,
Gleiss, Leydold, and Stadler (2004) describe an application of minimum cycle bases to the
problem of characterizing molecular graphs. See Kaveh (1995) for applications to structural
flexibility analysis. Kaveh and Mirzaie (2008) apply minimum cycle bases of Cartesian and
strong products to the force method of frame analysis.

This chapter is primarily concerned with constructing minimum cycle bases of product
graphs in terms of the cycle structures of the factors. We begin with a review of cycle spaces.

29.1 The Cycle Space of a Graph

Given a graph G, let E(G) be the power set of E(G), that is, the set of all subsets of E(G),
including the empty set. This is a vector space over the two-element field GL(2) = {0, 1},
where the zero vector is 0 = ∅ and the sum X + Y of elements X,Y ∈ E(G) is symmetric
difference; that is, X + Y = (X ∪ Y ) \ (X ∩ Y ). We call E(G) the edge space of G. We
identify any element X ∈ E(G) with the subgraph of G whose edge set is X and whose
vertices are endpoints of edges in X . Thus E(G) is the set of all subgraphs of G that have
no isolated vertices (plus the empty subgraph 0). Therefore E(G) is a basis for E(G), and
dim(E(G)) = |E(G)|.

Similarly, the vertex space V(G) of G is the power set of V (G) viewed as a vector space
over GL(2). (Again the sum is symmetric difference.) It is the set of all edgeless subgraphs
of G. Its dimension is |V (G)|.

There is a linear boundary map δ : E(G) → V(G) defined on the basis E(G) as δ(xy) =
x+y. The subspace C(G) = ker(δ) is called the cycle space of G. Notice that the cycle space
consists precisely of the subgraphs X in E(G) whose vertices all have positive even degree.
Each component of such a subgraph is Eulerian, so it can be decomposed into edge-disjoint
cycles (each of which belongs to C(G)), so it follows that C(G) ⊆ E(G) is spanned by the
cycles in G. Figure 29.1 shows the cycle space of a graph. In this instance the cycle space
is two-dimensional; the sum of any two nonzero elements equals the remaining nonzero
element.

367
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The dimension of C(G), denoted β(G), is called the first Betti number, or the cyclomatic
number, of G. It has a simple formula. By Exercise 29.1, the image of δ has dimension
|V (G)| − c(G), where c(G) is the number of components of G. The rank theorem yields

β(G) = |E(G)| − |V (G)| + c(G) . (29.1)

A basis for the cycle space is called a cycle basis for G. For the graph in Figure 29.1,
any two nonzero elements form a cycle basis. (However, in general, the elements of a cycle
basis need not be cycles.)

C( ) = {
∅ , , , }

FIGURE 29.1 The cycle space of a graph.

There is a simple construction for a cycle basis of G: Let F be a maximal spanning forest
of G, so the set S = E(G) − E(F ) has |E(G)| − (|V (G)| − c(G)) = β(G) edges. For each
e ∈ S, let Ce be the unique cycle in F + e. Then B = {Ce | e ∈ S} is linearly independent,
as each element possesses an edge that belongs to no other element. (Such an edge cannot
be canceled in a nontrivial sum of the cycles Ce.) As B has cardinality β(G), it is a basis.

The elements of a cycle basis are naturally weighted by their number of edges. The total
length of a cycle basis B is the number `(B) =

∑
C∈B |C|. Given a graph G, a cycle basis

with the smallest possible total length is called a minimum cycle basis, or MCB for G. As
an example, the graph in Figure 29.1 has exactly one MCB, namely the basis consisting of
the square and the triangle.

The cycle space is a weighted matroid where each element C has weight |C|. Hence
the Greedy Algorithm (see Oxley (1992)) always terminates with an MCB. (That is, begin
with M = ∅; then append shortest cycles to it, maintaining independence of M, until
no further shortest cycles can be appended; then append next-shortest cycles, maintaining
independence, until no further such cycles can be appended; and so on, until M is a maximal
independent set. Then M is an MCB.)

Here is our primary criterion for determining if a cycle basis is an MCB. For a proof,
see Exercise 29.4.

Proposition 29.1 A cycle basis B = {B1, B2, . . . , Bβ(G)} for a graph G is an MCB if and
only if every C ∈ C(G) is a sum of basis elements whose lengths do not exceed |C|.

We close this section with some remarks that will be essential for our later arguments.
Any weak homomorphism f : G → H induces a linear map f∗ : E(G) → E(H) defined on
the basis E(G) as f∗(xy) = f(x)f(y) if f(x) 6= f(y) and f∗(xy) = 0 if f(x) = f(y). One
checks that this restricts to a linear map f∗ : C(G) → C(H) between cycle spaces. Clearly,
if f is a graph isomorphism, then f∗ is a vector space isomorphism.

We also remark that if H is a subgraph of G, then C(H) is a subspace of C(G).

29.2 Minimum Cycle Bases for Cartesian and Strong Products

We now describe a means of forming MCBs of Cartesian and strong products in terms of
MCBs of their factors. However, in both cases it is necessary to include some cycles that do
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not correspond to cycles in the factors. For instance, a Cartesian product G2H contains
many squares of form e2 f , where e and f are edges in G and H . We would expect such
short cycles to appear in an MCB, and this is indeed the case.

Let S(G2H) ⊆ C(G2H) be the subspace spanned by {e2 f | e ∈ E(G), f ∈ E(H)}.
We call this the square space of G2H . The next lemma produces a large independent set
of squares in the square space. It, and the theorems that follow, are adapted from Imrich
and Stadler (2002).

Lemma 29.2 Suppose G and H are graphs with maximal spanning forests T ⊆ G and
U ⊆ H. Then the following set of squares is linearly independent in S(G2H) ⊆ C(G2H):

B =
{
e2 f | e ∈ E(G), f ∈ E(U)

}
∪
{
e2 f | e ∈ E(T ), f ∈ E(H) \ E(U)

}
.

(Note: B consists of all e2 f except those with e ∈ E(G) \ E(T ) and f ∈ E(H) \ E(U).)

Proof Let BL denote the set on the left of the union and BR the set on the right. It suffices
to show that BL and BR are linearly independent, and Span(BL) ∩ Span(BR) = {0}.

To check the independence of BL, consider an arbitrary nonempty collection {ei2 fi | i ∈
I} ⊆ BL, indexed over some set I. We will show that the linear combination S =

∑
i∈I ei 2 fi

is nonzero. Take a pendant edge ab of the subforest
⋃

i∈I fi ⊆ U , such that b is an end vertex.

Only the terms of the sum that have the form ei 2 ab have an edge in the G-layer p−1
H (b).

Each ei2 ab contributes a unique such edge, so S contains edges in a G-layer and hence is
not zero.

By the same argument (with the roles of the factors reversed), we see that BR is inde-
pendent, and any nontrivial linear combination of its elements has edges in an H-layer.

Finally, suppose S ∈ Span(BL) ∩ Span(BR). If S were nonzero, the previous paragraph
would guarantee that S had some edge {x}2 f in an H-layer. But then the definitions of
BL and BR would imply f ∈ E(U) and f ∈ E(H) \ E(U). Hence S = 0. 2

With the lemma proved, we can now give a construction for a MCB of G2H in terms
of MCBs of layers Gx ∼= G and Hx ∼= H . For simplicity, we impose the added constraint
that the factors are triangle-free. In reading the proof, the reader may opt to assume that
both G and H are connected; this makes the dimension count simpler. (And it does restrict
the generality of the result: The proof can be completed with the observation that an MCB
of a disconnected graph is the union of MCBs of its components.)

Theorem 29.3 (An MCB for G2H) For any x ∈ V (G2H), there is a direct sum
decomposition

C(G2H) = C(Gx) ⊕ S(G2H) ⊕ C(Hx) .

Let G be an MCB for Gx, let H be an MCB for Hx, and let B be as defined in Lemma 29.2.
If G and H are triangle free, then G ∪ B ∪H is an MCB for G2H.

Proof We first check that the three spaces in the sum are independent. Suppose A+B+C =
A′ + B′ + C′, where A,A′ ∈ C(Gx), B,B′ ∈ S(G2H) and C,C′ ∈ C(Hx). We must
show A = A′, B = B′ and C = C′. Notice that p∗G(e2 f) = 0 = p∗H(e2 f) for any
square e2 f , so 0 = p∗G(B) = p∗G(B′) = p∗H(B) = p∗H(B′). Also p∗G(C) = 0 = p∗G(C′) and
p∗H(A) = 0 = p∗H(A′). Applying p∗G to both sides of A + B + C = A′ + B′ + C′ gives
p∗G(A) = p∗G(A′). Now, pG : Gx → G is an isomorphism, so p∗G : C(Gx) → C(G) is too. We
conclude A = A′. Similarly C = C′, hence B = B′.

A routine computation involving Equation (29.1) reveals dim(C(G2H)) = |G|+|B|+|H|,
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so G ∪ B ∪ H is a basis. To see that it is a minimum cycle basis, we use Proposition 29.1.
Take any C ∈ C(G2H), and write it as

C =
∑

i∈I

Gi +
∑

j∈J

Bj +
∑

k∈K

Hk ,

where the Gi are from G, the Bj are from B, and the Hk are from H. According to Propo-
sition 29.1, it suffices to show that C has at least as many edges as any term in this sum.
Certainly C is not shorter than any square Bj (by the triangle-free assumption). To see
that it is not shorter than any Gi in the sum, apply p∗G to the above equation to get

p∗G(C) =
∑

i∈I

p∗G(Gi) .

Now, because p∗G : C(Gx) → C(G) is an isomorphism, the terms p∗G(Gi) are part of an
MCB for G, and thus |p∗G(C)| ≥ |p∗G(Gi)| = |Gi| for each i, by Proposition 29.1. But
also |C| ≥ |p∗G(C)| (as some edges may cancel in the projection) so |C| ≥ |Gi|. Similarly,
|C| ≥ |Hi|. 2

Finding an MCB for G2H is not quite so simple if the factors have triangles, for an
MCB should capitalize on the triangles in the layers at the expense of squares in the square
space. Imrich and Stadler (2002) prove that in general an MCB for G2H can be obtained
by starting with G ∪ H, then appending to this the triangles in the MCBs of the other
layers, and finally appending a “suitable” subset of B. However, the exact details of this
construction are not spelled out.

We now consider the problem of constructing an MCB for the strong product. The
construction is quite similar to that of the Cartesian product, and does not require the
factors to be triangle-free. For each pair of edges e and f of G and H , there is a subgraph
e� f ⊆ G�H . Each such subgraph is isomorphic to K4, and thus contains four triangles.
Notice that for each such triangle K, we have p∗G(K) = 0 = p∗H(K). Letting T (G �H) ⊆
C(G�H) be the subspace spanned by all such triangles, we immediately get a direct sum

C(Gx) ⊕ T (G�H) ⊕ C(Hx)

of subspaces of C(G � H). Parallel to the case of the Cartesian product, an MCB for the
strong product hinges on finding a basis of triangles for T (G�H).

Such a basis can be found with the aid of the set B from Lemma 29.2. Each e2 f in B
corresponds to a complete subgraph e� f in G�H . For each such e2 f , let Tef be a basis
of (three) triangles for C(e� f). Now, the set T =

⋃
e2f∈B Tef is independent, for any sum

of its elements either contains a diagonal of some square e2 f (and is hence nonzero), or it
is a nontrivial sum of squares in the linearly independent set B (thus nonzero).

But additional triangles can append to T without violating independence. For each of
the β(G)β(H) squares e2 f that is not in B, we can append to T two triangles of e � f
whose sum is not e2 f . (That is, one triangle contains one diagonal of e2 f , and the other
contains the other diagonal.) The extended set T is still independent, for each of the new
triangles contains an edge that does not belong to any other element of T . (Hence it cannot
be canceled in a linear combination of elements of T .)

Therefore we have a set T of 3|B|+2β(G)β(H) independent triangles in T (G�H). The
proof of the following proposition mirrors that of Proposition 29.3.

Theorem 29.4 (An MCB for G�H) Let G and H be graphs, and x ∈ V (G�H). Let
G be an MCB for Gx, and H an MCB for Hx. Then G ∪ T ∪ H is an MCB for G � H,
where T is as follows.
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Take maximal spanning forests T ⊆ G and U ⊆ H. For each subgraph e�f ⊆ G�H with
e ∈ E(G) \ E(T ) and f ∈ E(H) \ E(U), let the set Tef consist of two linearly independent
triangles in C(e� f) whose sum is not e2 f . For all other e� f ⊆ G�H, let Tef be a basis
of C(e� f) consisting of three triangles. Define T to be the union of all the Tef .

29.3 Minimum Cycle Bases for the Lexicographic Product

Because lexicographic products typically have an abundance of triangles, their minimum
cycle bases generally consist mostly of triangles. Given graphs G and H , let T (G ◦H) be
the subspace of C(G ◦H) spanned by those triangles of G ◦H that have exactly one edge
in some H-layer. (In other words, it is spanned by the triangles with vertices (a, y), (b, u),
and (b, v), where ab ∈ E(G) and uv ∈ E(H).) This subspace plays a major role in our
construction of an MCB for G ◦H , and in the next several paragraphs we develop a large
(in fact, maximal) independent set of triangles in T (G ◦H).

Let us break the problem into smaller parts. Assume H is connected and take a spanning
tree U of H . Give G an arbitrary but fixed orientation, so that any edge ab under discussion
will be oriented from a to b. For each ab ∈ E(G), form the following set of triangles in
T (G ◦H):

Tab = {〈(a, y), (b, u), (b, v)〉 | y ∈ V (U), uv ∈ E(U)} .
This set is easily seen to be independent. (Use induction on the order of H .) Now fix
y0 ∈ V (H) and append to Tab all triangles of the form 〈(a, u), (a, v), (b, y0)〉 with uv ∈ E(U).
The appended set Tab is still independent, for each new triangle contains an edge (a, u)(a, v)
that belongs to no other element of Tab. Observe also |Tab| = |E(U)| · |V (U)| + |E(U)| =
|V (H)|2 − 1.

Now, put T ′ =
⋃

ab∈E(G) Tab. Notice that this union is independent, as follows: Each
Tab is a set of triangles in ab ◦ U . For a fixed edge ab, any nontrivial linear combination of
triangles in Tab cannot lie in the acyclic graph Ua + U b, and therefore it contains an edge
of form (a, y)(b, z). Such an edge cannot be canceled by any triangles in Ta′b′ for a′b′ 6= ab.

Next, for each a ∈ V (G), fix an edge ab ∈ E(G), and let

Ta = {〈(a, u), (a, v), (b, y0)〉 | uv ∈ E(H) − E(U)} .

Put T ′′ =
⋃

a∈V (G) Ta. This is an independent set of triangles, because any triangle in it

contains an edge (a, u)(a, v) that belongs to no other triangle of T ′′. But, then, for the same
reason, T ′ ∪ T ′′ is linearly independent.

We have now constructed a set T = T ′ ∪ T ′′ of linearly independent triangles for which

|T | = |E(G)| ·
(
|V (H)|2 − 1

)
+ |V (G)| ·

(
|E(H)| − |V (H)| + 1

)

=
(
|E(G)| · |V (H)|2 + |V (G)| · |E(H)|

)
− |V (G)| · |V (H)| + c(G ◦H) − β(G)

= β(G ◦H) − β(G) .

(Here we used c(G◦H) = c(G).) This can be extended to a cycle basis of G◦H by appending
just β(G) more elements. In fact, we have the following proposition, modeled after F. Berger
(2004) and Jaradat (2008).

Theorem 29.5 (An MCB for G ◦H) Suppose G and H are graphs, and H is connected.
Let x ∈ V (G ◦H), and G be an MCB for the layer Gx. Then G ∪ T is an MCB for G ◦H,
where T is the set of triangles defined above.

© 2011 by Taylor & Francis Group, LLC



372 Cycle Spaces and Bases

Proof As was noted above, |G ∪ T | = β(G ◦ H). Given that G and T are independent,
it will follow that G ∪ T is a basis as soon as we show Span(G) ∩ Span(T ) = {0}. To this
end, suppose A is in the intersection of the spans. Now, because A ∈ Span(T ), we have
p∗G(A) = 0, as p∗G sends every triangle in T to zero. But p∗G(A) = 0 implies A = 0, because
A ∈ Span(G), and p∗G restricts to an isomorphism on C(Gx) ⊆ C(G ◦H). Thus G ∪ T is a
basis.

We use Proposition 29.1 to show that it is an MCB. For any C ∈ C(G ◦H), write

C =
∑

i∈I

Gi +
∑

j∈J

Tj ,

where the Gi are from G and the Tj are from T . Certainly C is not shorter than any triangle
Tj. To see that it is not shorter than any Gi in the above sum, apply p∗G to the sum to get

p∗G(C) =
∑

i∈I

p∗G(Gi) .

Now, because p∗G : C(Gx) → C(G) is an isomorphism, the terms p∗G(Gi) are part of an
MCB for G, and thus |p∗G(C)| ≥ |p∗G(Gi)| = |Gi| for each i, by Proposition 29.1. But also
|C| ≥ |p∗G(C)| (as some edges may cancel in the projection) so |C| ≥ |Gi|. 2

This proof breaks down if H is disconnected, for in that case the set T is too small.
(Indeed, at one extreme, if H is totally disconnected, then T = ∅.) Indeed, this situation is
somewhat more complex; for details see Hellmuth, Ostermeier, and Stadler (2010).

29.4 Minimum Cycle Bases for the Direct Product

The problem of constructing an MCB for a direct product in terms of the cycle structures
of its factors is difficult. This is primarily so because the layers in a direct product need
not be isomorphic to the factors, so the cycle spaces of the factors are not subspaces of
the cycle space of the product, as was the case for the other products. Even the problem
of finding an MCB for the direct product of two complete graphs is surprisingly nontrivial
and specialized—see Hammack (2007) and Bradshaw and Jaradat (2009).

This section presents a brief survey of several results.

P

Q

(a, y)

(b, z)

(c, y)

(b, x)

PQ

x

y

z

a b c

FIGURE 29.2 A diamond in G×H .

Direct products tend to contain an abundance of a particular kind of square. Given
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paths P and Q of length 2 in G and H , respectively, one of the two components of P ×Q
is a square. (See Figure 29.2.) We call such a square a diamond in G×H ; the subspace of
C(G×H) spanned by all diamonds is called the diamond space of G×H .

If G×H is bipartite, then diamonds are shortest cycles, and we expect them to play a
role in any minimum cycle basis. In fact, we have the following result. See Hammack (2006)
for a proof, as well as a construction for the basis D of the diamond space.

Theorem 29.6 Suppose G and H are connected bipartite graphs, and let e and f be edges
of G and H, respectively. Thus G × f consists of two disjoint copies of G, and e × H is
two disjoint copies of H. Let G and G′ be MCBs for the two copies of G; let H and H′ be
MCBs for the two copies of H. Let D be a basis for the diamond space of G × H. Then
G ∪ G′ ∪D ∪H ∪H′ is a minimum cycle basis for G×H.

Despite the simplicity of Theorem 29.6, removing the assumption of bipartiteness makes
the problem hard. In this case G×f , rather than being two copies of G, is a connected graph
whose cycle structure may bear little resemblance to that of G. Bradshaw and Hammack
(2009) address this problem and present a construction for a minimum cycle basis for
G × Cp, where G has an odd cycle and p > 3 is odd. To underscore the subtlety of the
general situation, we present their homological construction for a minimum cycle basis for
the product Cp × Cq of two odd cycles, where 3 < p ≤ q.

A minimum cycle basis for the product of odd cycles

Let 3 < p ≤ q. Observe that Cp × Cq can be embedded on the torus with pq square
regions whose boundaries are the diamonds of Cp × Cq. This is illustrated for C5 × C9 in
Figure 29.3(a) and for C5×C11 in Figure 29.3(b). In each case the torus is an identification
space obtained by identifying paths A (of length p), paths B (of length p), and the zig-zag
path C (of length q − p). The general case is illustrated in Figures 29.4(a) and 29.4(b).
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FIGURE 29.3 Identification space for Cp × Cq on the torus.

The set of all pq diamonds is linearly dependent, for if they are all added together their
edges will cancel pair-by-pair. But it is not hard to see that any pq − 1 of them form an
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independent set. Because Cp×Cq has no triangles, a set B of pq−1 of these diamonds must
be a part of an MCB. And because β(Cp × Cq) = pq + 1, there are just two more cycles to
append to B in order to get an MCB.
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?

6
?
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?
6
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2
(q − p)

1

2
(q − p)
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00

00

00
A
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B

B

C

00

0p

(a) (b)

FIGURE 29.4 The product Cp × Cq of odd cycles embedded on the torus.

In Figure 29.3 the edges of the products are colored solid and dashed according to
whether they run horizontally or vertically in the grids. With this coloring, every diamond
has two edges of each color, so any element of Span(B) has an even number of edges of each
color. Now, the even cycle A + B has p (odd) edges of each color, so A + B /∈ Span(B).
Further, A+C and B +C are cycles of odd length q, so they are certainly not in Span(B).
Because A + B = (A + C) + (B + C), it follows that appending to B any two elements of
{A+B,A+ C,B + C} will produce a basis.

Moreover, by Exercise 29.7, any even cycle of length less than 2p = |A + B| is a sum
of diamonds. Given that A + C and B + C are shortest odd cycles in Cp × Cq (they have
length q), and an MCB must contain at least one odd cycle, it follows that we can obtain
an MCB by appending to B the two shortest cycles in {A + B,A + C,B + C}. Therefore
we have proved the following.

Proposition 29.7 Suppose p and q are odd integers, with 3 < p ≤ q.
If q < 2p, then Cp × Cq has an MCB consisting of pq − 1 squares and two q-cycles.
If 2p < q, then Cp×Cq has an MCB consisting of pq− 1 squares, a 2p-cycle and a q-cycle.

Figures 29.3(a) and (b) illustrate this proposition. In Figure 29.3(a), C5 × C9 has an
MCB consisting of forty-four diamonds, and two 9-cycles A + C and B + C. In Figure
29.3(b), C5 × C11 has an MCB consisting of fifty-four diamonds, one 10-cycle A + B, and
one 11-cycle A+ C.

Given such sensitivity to the relative sizes of p and q, one expects that the structure of
a minimum cycle basis of G×H (relative to the factors) to be quite complex in general.
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Exercises

29.1. For a graph G, show that the image of the boundary map δ : E(G) → V(G) is the
set V = {X ∈ V(G) | X has an even number of vertices in each component of G}.
Moreover, show that dim(V ) = |V (G)| − c(G). Deduce Equation (29.1).

29.2. Describe the cycle spaces C(K4) and C(K5).

29.3. Find formulas for β(G2H), β(G �H), β(G×H), and β(G ◦H).

29.4. Prove Proposition 29.1.

29.5. Describe an MCB of Km 2Kn.

29.6. Show that K3 ×K3 has an MCB consisting of six triangles and four squares. Show
that K3 ×K4 has an MCB consisting of twenty-three triangles and two squares.

29.7. Consider the direct product G = Cp × Cq, where 3 < p ≤ q, and p, q are both odd.
If Z ∈ C(G), |Z| even and |Z| < 2p, then Z is a sum of diamonds.

29.8. Consider the direct product G = Cp ×Cq, where p is even and q is odd. Show that
G has an MCB consisting of pq − 1 squares, one p-cycle, and one 2q-cycle.

29.9. Consider the direct product G = Cp × Cq, where p and q are both even. Show
directly that G has an MCB consisting of pq − 2 squares, two p-cycles, and two
q-cycles.
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Chapters 25 through 29 considered in detail the relationships between invariants of graph
products and invariants of their factors. The current chapter collects further results of a
similar nature. It would be impossible to include all known results that in one way or
another relate products to their factors, so our selection is necessarily subjective. However,
we have selected mostly among topics of recent interest.

We begin with classical concepts of one-factorizations and edge-colorings; one of the
highlights of this section is the solution of Kotzig’s problem. We continue with problems
involving Hamilton cycles. Much work has been done in the area, though three central
conjectures are still open. Section 30.3 treats clique minors of Cartesian products, mostly
in connection with the famous Hadwiger conjecture. The subsequent section touches on the
Reconstruction conjecture, topological embedding, and nowhere-zero flows. The chapter
concludes with a recent intriguing application of the direct product to modeling complex
networks.

30.1 One-Factorization and Edge-Coloring

We now present several results about the existence of one-factors (also known as perfect
matchings) in graph products, their extensions to edge-colorings, and k-extendable graphs.

One-factorizations

One-factorizations arise in many branches of discrete mathematics, but also in measure
theory and fields such as the theory of ferromagnetism. See Seshu and M. B. Reed (1961),
Lovász and Plummer (1986), and Wallis (1997). It is a lively area of research, for one-
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factorizations of complete graphs see Pasotti and Pellegrini (2010) and references therein,
including the classical survey paper of Mendelsohn and Rosa (1985).

A one-factor or a perfect matching in a graph is a set of independent edges whose
endpoints cover the graph’s vertices. Clearly, a graph with a one-factor has an even number
of vertices. A one-factorization of a graph is a partition of its edges into one-factors. Thus
for a given one-factorization of a graph, each edge belongs to a unique one-factor. Clearly, a
graph with a one-factorization is regular and has an even number of vertices. The Petersen
graph shows that this condition is not sufficient; see Wallis (1997).

Concerning the Cartesian product, Kotzig (1979) proved the following result:

Theorem 30.1 If G1, . . . , Gk are regular graphs with at least one edge, then the product
G1 2 · · · 2Gk has a one-factorization provided that one of the following conditions holds:

(i) At least one of the graphs Gi has a one-factorization.
(ii) At least two graphs Gi and Gj have a one-factor.

Borowiecki and Szelecka (1993) extended this theorem to so-called generalized Cartesian
products. (A generalized Cartesian product is a product in which layers with respect to a
factor have the same number of vertices but are not necessarily isomorphic.)

Some of the remaining cases are taken care of by another result of Kotzig (1979).

Theorem 30.2 If G is a cubic graph, then G2Cn has a one-factorization whenever n ≥ 4.

This implies that neither condition (i) nor (ii) of Theorem 30.1 is necessary. Indeed,
consider Y 2C5, where Y is the cubic graph in Figure 30.1. Neither Y (Exercise 30.1) nor
C5 has a one-factor, but Y 2C5 has a one-factorization by Theorem 30.2.

FIGURE 30.1 The graph Y .

The simple case G2C3 for a cubic graph G is not covered by Theorem 30.2. If G
contains a bridge (i.e., an edge whose removal yields a graph with more components than
G), then G2C3 cannot have a one-factorization (Exercise 30.2). Kotzig asked whether
G2C3 necessarily has a one-factorization if G is a bridgeless cubic graph, and this question
became known as Kotzig’s problem. It generated many partial results (Wallis and Wang,
1985, 1987) before Horton and Wallis (2002) gave a definitive answer:

Theorem 30.3 If G is a bridgeless cubic graph, then G2C3 has a one-factorization.
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Horton and Wallis’ proof invokes Theorem 20.1 concerning the existence of edge-disjoint
spanning trees in multigraphs.

Partitions of Cartesian products into graphs other than K2 have also been studied.
Notably, Bryant, El-Zanati, and Vanden Eynden (2001, 2007) proved the following result:

Theorem 30.4 If k, n,m ≥ 3, then C�,m
n admits a partition into stars K1,k if and only if

(k + 1)|nm and k|m.

Mohar, Pisanski, and Shawe-Taylor (1981) and Pisanski, Shawe-Taylor, and Mohar
(1983) explored the existence of one-factors for the other standard products. The lexi-
cographic product yielded a result analogous to Theorem 30.1. It was later generalized to
the X-join by Borowiecki and Szelecka (1993).

The following theorem, which is similar to Theorem 30.2, is also due to Mohar, Pisanski,
and Shawe-Taylor (1981).

Theorem 30.5 If G is a cubic graph and Cn a cycle of length greater than 3, then Cn ◦G
has a one-factorization.

Mohar and Pisanski (1983) conjectured that the lexicographic product G ◦ Dm has a
one-factorization if and only if G is regular and |V (G◦Dm)| even. The conjecture was based
on results of Mohar and Pisanski (1983) and earlier results of Laskar and Hare (1972) as
well as Parker (1973). (See Exercise 30.3 for Parker’s result.) Nevertheless, Truszczynski
(1983) disproved the conjecture.

Partitions of lexicographic products into other graphs (notably cycles of uniform length)
have also been explored. In a series of papers, Manikandan and Paulraja (2006, 2007, 2010a)
proved that if p is a prime number that divides the number of edges of Km ◦ Dn, and
5 ≤ p ≤ mn, and (m− 1)n is even, then Km ◦Dn can be decomposed into cycles of length
p. (Interestingly, the direct product turned out to be an indispensable ingredient of the
proof.) Smith (2008) followed by considering decompositions into cycles of length 2p (p
prime) and proved that if mn ≥ 2p, then, under the same conditions as above, Km ◦ Dn

can be decomposed into cycles of length 2p. For products Cn ◦Dm, Smith and Cavenagh
(2010) proved the following theorem, which they then used to deduce additional results on
decompositions of Kn ◦Dm.

Theorem 30.6 The lexicographic product Cn ◦Dm decomposes into cycles of odd length k
if and only if n ≤ k ≤ mn, n is odd, and k|nm2.

For further results on decompositions of lexicographic and direct products into cycles
(and paths) see Muthusamy and Paulraja (1995), Cavenagh (1998), and Billington, Cave-
nagh, and Smith (2010).

Concerning the direct and strong products Mohar, Pisanski, and Shawe-Taylor (1981)
and Pisanski, Shawe-Taylor, and Mohar (1983) proved the following theorem, which was
rediscovered by Zhou (1989).

Theorem 30.7 Suppose G1, . . . , Gk are regular graphs that are not totally disconnected. If
at least one Gi has a one-factorization, then both G1 × · · · × Gk and G1 � · · · � Gk have
one-factorizations.

Alspach and George (1990) also studied one-factorizations of direct products. Among
other results, they proved the following.

Theorem 30.8 If G is p-regular, where p is a prime power, then G × Kp has a one-
factorization.
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One-factorizations and their enumerations in (Cartesian) product graphs have significant
applications, particularly in the Ising model; see Lu, Zhang, and Lin (2010). The Ising model
in ferromagnetism (Kasteleyn, 1963) is related to the statistics of nonoverlapping dimers,
each occupying two neighboring sites of a lattice graph, cylinder, or torus. Yan and F. Zhang
(2006) present additional results on the enumeration of one-factors in Cartesian products.

Edge-colorings

Many of the above results concerning one-factorizations of regular graphs can be extended to
results about edge-colorings of arbitrary graphs. By Vizing’s theorem,1 every graph is either
of Class 1 (if the chromatic index equals the largest degree) or of Class 2 (if the chromatic
index equals the largest degree plus one). A regular graph is of Class 1 if and only if it has
a one-factorization. Thus the following result of Mahmoodian (1981) generalizes part (i) of
Theorem 30.1:

Theorem 30.9 A product G1 2 · · · 2Gk is of Class 1 if at least one of its factors is of
class one and not totally disconnected.

Mohar (1984) generalized several of the above theorems about one-factorizations to
graphs of Class 1. For example, Theorem 30.1 extends as follows:

Theorem 30.10 A product G1 2 · · · 2Gk is of Class 1 if either of the following conditions
holds:

(i) At least one of the graphs Gi is of Class 1 (and not totally disconnected).
(ii) At least two graphs Gi, Gj have a one-factor.

See Jaradat (2005) for results on edge-colorings of other graph products. He proves
among other things that if G or H is of Class 1, then so is G�H .

k-Extendable graphs

A connected graph is called k-extendable if it has a one-factor and every independent set of
k edges can be extended to a one-factor. Győri and Plummer (1992) proved:

Theorem 30.11 If G is k-extendable and H is `-extendable, then their Cartesian product
is (k + `+ 1)-extendable.

Győri and Imrich (2001) deduced a similar theorem for the strong product:

Theorem 30.12 If G is k-extendable and H is `-extendable, then their strong product is
b(k + 1)(` + 1)/2c-extendable.

Limaye and Sarvate (1997) studied k-extendability on hypercubes. They showed that
Qn is k-extendable for every k with 1 ≤ k ≤ n− 1.

1Vizing’s theorem states that the chromatic index of a graph equals either the maximal degree or the
maximal degree plus one.
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30.2 Hamilton Cycles and Hamiltonian Decompositions

A graph is called Hamiltonian if it has a Hamilton cycle, that is, a cycle that contains every
vertex of the graph. A graph is said to be Hamilton decomposable if either (i) it is 2d-regular
and its edge set can be partitioned into d Hamilton cycles, or (ii) it is (2d+ 1)-regular and
its edge set can be partitioned into d Hamilton cycles and a one-factor. Hamilton cycles
and Hamilton decompositions of graph products have been studied extensively. This section
presents a brief survey.

Cartesian products

Three conjectures, all still open, will lead us through this subsection. We begin with a
conjecture of Bermond (1978).

Conjecture 30.13 If G and H decompose into Hamilton cycles, then so does G2H.

Stong (1991) made a major step toward a proof by establishing the validity of the
conjecture under mild restrictions on the factors:

Theorem 30.14 Suppose G and H decompose into m and n Hamilton cycles, respectively,
where m ≤ n. Then G2H decomposes into m+ n Hamilton cycles if one of the following
conditions holds:

(i) n ≤ 3m,
(ii) m ≥ 3,

(iii) G has an even number of vertices, or
(iv) |V (H)| ≥ 6dn/me − 3.

Stong’s approach subsumes many prior results by Kotzig (1973), Foregger (1978), as
well as Aubert and Schneider (1981, 1982). In particular, Theorem 30.14 implies Kotzig’s
theorem that the Cartesian product of two cycles decomposes into two Hamilton cycles, as
well as Foregger’s extension of this to three cycles. Kotzig’s result was generalized to the
Cartesian product of two multicycles (i.e. cycles in which each edge has a fixed multiplicity)
by Mellendorf (1997).

For hypercubes, Alspach, Bermond, and Sotteau (1990) proved:

Theorem 30.15 For n ≥ 2, the hypercube Qn is Hamilton decomposable.

Aubert and Schneider (1981) proved a similar result for products of complete graphs:

Theorem 30.16 If m,n ≥ 2, then Km 2Kn is Hamilton decomposable.

We next consider prisms over 3-connected graphs. Tutte proved that every 4-connected
planar graph G is Hamiltonian. It is then easy to see (Exercise 30.4) that G2K2 is Hamilto-
nian as well. On the other hand, the prism over the complete bipartite graph K2,5 (which is
2-connected and planar) is not Hamiltonian. For the remaining 3-connected case, Rosenfeld
and Barnette (1973) made the following conjecture:

Conjecture 30.17 If G is a 3-connected planar graph, then G2K2 is Hamiltonian.

Alspach and Rosenfeld (1986) followed with the following related conjecture:
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Conjecture 30.18 If G is 3-connected and cubic, then G2K2 is Hamilton decomposable.

Note that, asG2K2 is 4-regular whenG is cubic, Alspach and Rosenfelds’ conjecture asserts
that G2K2 can be decomposed into two Hamilton cycles. Conjectures 30.17 and 30.18 led
to the following investigations.

• If G is planar, cubic, and 2-connected, then G2K2 is Hamiltonian, as proved by Fleis-
chner (1989). He first proved that if G is cubic, then the prism G2K2 is Hamiltonian
if and only if G contains a so-called BEPS-graph. Then he proved that if G is planar
and 2-connected, then G indeed contains such a graph.

• Paulraja (1993) characterized the existence of Hamilton cycles in G2K2 for any G.
We refer the reader to the paper for the exact statement. In fact, no simple character-
ization can be expected because Fleischner (1989)[p.169] observed that the decision
problem of whether the prism over G is Hamiltonian is NP-complete. Paulraja also
proved that G2K2 is Hamiltonian if G is 3-connected and cubic. Balakrishnan and
Paulraja (2005) extended this to a subclass of cubic 2-connected graphs that are not
necessarily planar and conjectured that the prism over every 2-connected cubic graph
is Hamiltonian.

• Goddard and Henning (2001) proved that the prism over a 3-connected cubic graph
G has cycles of every even length. Moreover, if G contains a triangle, then the prism
has cycles of every length.

• Čada, Kaiser, Rosenfeld, and Ryjáček (2004) proved Conjecture 30.18 for the following
cases:

(i) G is a planar bipartite graph (and, of course, 3-connected and cubic); and

(ii) G is the dual of a planar triangulation that can be obtained from K4 by repeat-
edly adding a vertex and joining it to the three vertices of some face.

They also obtained a simple proof of Paulraja’s theorem asserting that G2K2 is
Hamiltonian if G is 3-connected and cubic.

• Biebighauser and Ellingham (2008) proved Conjecture 30.17 for bipartite (3-connected
planar) graphs and for triangulations of the plane, the projective plane, the torus, and
the Klein bottle.

We continue with prisms over specific important classes of graphs.

• The famous middle-levels problem (see Shields, Shields, and Savage (2009) and the
references therein) asks for a Hamilton cycle in the middle levels of the (2d+ 1)-cube,
that is, in the subgraph of Q2d+1 induced by vertices containing d and d+ 1 zeros. In
this respect, Horák, Kaiser, Rosenfeld, and Ryjáček (2005) proved that prisms over
the middle-levels graphs are Hamiltonian.

• Kaiser, Ryjáček, Krá ’l, Rosenfeld, and Voss (2007) deduced that prisms over general-
ized Halin graphs and over 2-connected line graphs are Hamiltonian. They also proved
that the existence of a Hamiltonian prism is a stronger property than having a 2-tree
(that is, a Hamilton path) and a weaker property than having a so-called 2-walk.
Intuitively, this means that graphs with Hamiltonian prisms are close to being Hamil-
tonian, a fact that adds value to the above theorem asserting that the prism over a
middle-levels graph is Hamiltonian.
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• A celebrated result of Fleischner (1974) asserts that the square of any 2-connected
graph is Hamiltonian, where the square of a graph G is obtained from G by adding
edges between vertices at distance 2. Kaiser et al. (2007) also proved that the 2-
connectedness assumption is not needed for prisms, that is, the prism over the square
of any connected graph is Hamiltonian. In fact, they proved a stronger result: For any
nontrivial tree, the prism over its square is Hamiltonian.

• Ozeki (2009) provides a sufficient condition (in terms of the minimum degree sum of
an independent set of three vertices) for a graph to have a Hamiltonian prism.

• Bueno and Horák (2011) proved that Kneser graphs K(2k + 1, k) (also called odd
graphs) have Hamiltonian prisms for even k.

Čada, Flandrin, and Li (2009) studied Cartesian products that generalize prisms. Among
other things, they established the following:

• If G is a connected graph with ∆(G) ≤ n, then G2Cn is Hamiltonian.

• If G is a bridgeless graph and n ≥ 3, then G2Pn is Hamiltonian.

The following particularly nice result in this spirit goes back to Batagelj and Pisanski
(1982).

Theorem 30.19 Let T be a tree on at least three vertices and n ≥ 3. Then T 2Cn is
Hamiltonian if and only if ∆(T ) ≤ n.

Strong and lexicographic products

Conjecture 30.13 becomes a theorem when the strong product replaces the Cartesian prod-
uct.

Theorem 30.20 If G and H have decompositions into Hamilton cycles, then so does G�H.

Zhou (1989) proved this for the case where at least one factor has odd order, and the
remaining case was done by Fan and Liu (1998).

Ramachandran and Parvathy (1996) characterized the existence of Hamilton cycles in
strong products G�K2. They also proved a theorem about pancyclic strong products. (A
graph is pancyclic if its vertices can be labeled v1, v2, . . . , vn such that the subgraph induced
by v1, v2, . . . , vk contains a cycle of length k for each 3 ≤ k ≤ n.)

Theorem 30.21 To every connected graph G on at least two vertices, there exists an integer
m such that the strong product of m copies of G is pancyclic.

Theorem 30.21 extends a result of Bermond, Germa, and Heydemann (1979) asserting
the existence of an integer m to any nontrivial connected graph G such that the strong
product of m copies of G is Hamiltonian. In the same paper it is conjectured that m can
be selected as the maximum degree of G; in other words that G�,∆(G) is Hamiltonian for
any nontrivial connected graph G. Krá ’l, Maxová, Šámal, and Podbrdský (2005) confirmed
this with the following stronger result.

Theorem 30.22 If G1, G2, . . . , G∆ are nontrivial connected graphs with maximum degree
at most ∆ ≥ 2, then G1 �G2 � · · ·�G∆ is Hamiltonian.
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Krá ’l, Maxová, Podbrdský, and Šámal (2004) further proved that for any c > ln 25
12 + 1

64
there exists c′ such that the strong product of at least bc∆c + dlog2 ∆e + c′ connected
graphs of degree at most ∆ is pancyclic for ∆ > 32. This result asymptotically improves
Theorem 30.22 for large values of ∆ and at the same time extends Theorem 30.21. The
result was further improved by Krá ’l and Stacho (2008) as follows:

Theorem 30.23 If ∆ ≥ 1, the strong product of (ln 2)∆+(10+ln 4)
√

∆+0.5 log2 ∆+O(1)
nontrivial connected graphs of maximum degree at most ∆ is pancyclic.

The constant ln 2 in the linear term is best possible because the graph K
�,b(ln 2)∆c
1,∆ is

not Hamiltonian, a result that goes back to Zaks (1974). The reason is that these graphs
contain independent sets of size greater than half their order.

For the lexicographic product, Baranyai and Szasz (1981) proved the following analogue
of Theorem 30.20:

Theorem 30.24 If G and H can be decomposed into g and h Hamilton cycles, respectively,
and |V (H)| = n, then G ◦H can be decomposed into h+ gn Hamilton cycles.

Kriesell (1997) derived sufficient conditions for the existence of Hamilton cycles in lexi-
cographic products. For instance, if a cubic graph G is 2-edge connected and H has at least
two vertices, then G ◦H has a Hamilton cycle.

It is an open question whether G◦H is Hamilton decomposable when G is connected and
Hamilton decomposable; see Alspach, Bermond, and Sotteau (1990). On the other hand,
Kaiser and Kriesell (2006) proved:

Theorem 30.25 If G and H are graphs, each with at least one edge, then G ◦ H has a
cycle of every length between the lengths of its shortest and longest cycle.

Direct products

In the first paper about Hamilton cycles in direct products that we know of, Borowiecki
(1972) gives necessary and sufficient conditions on G and H such that G×H is Hamiltonian.
(For this result as well as for a survey of Hamilton properties of products of graphs and
digraphs, see the book of Schaar, Sonntag, and Teichert (1988).) This is applied to prove
that for every Hamiltonian graph G and n ≥ 3, there is a Hamiltonian graphH on n vertices
such that G×H is Hamiltonian.

Along these lines, Gravier (1997) characterized Hamiltonian products G × H under
the assumption that both G and H have a Hamilton cycle. In addition, Balakrishnan and
Paulraja (1998) give a (rather complicated) characterization of graphs G for which G×K2

has a Hamilton cycle.
As the direct product of two bipartite graphs is disconnected, we do not expect the direct

product of two Hamilton decomposable graphs to be Hamilton decomposable. Moreover, the
direct product of two Hamilton decomposable graphs need not be Hamilton decomposable
even if the product itself is connected, as Balakrishnan and Paulraja (1998) have shown.

Sufficient conditions are due to Zhou (1989), Jha (1992), and Jha, Agnihotri, and Kumar,
(1996). Zhou (1989) proved that if G and H can be decomposed into Hamilton cycles and
at least one of them has an odd number of vertices, then G × H can be decomposed
into Hamilton cycles. Hence direct products of complete graphs of odd order have such
decompositions.

Balakrishnan, Bermond, Paulraja, and Yu (2003) extended this to all complete graphs,
thus proving a result parallel to Theorem 30.16:
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Theorem 30.26 For any m,n ≥ 3, the product Km ×Kn is Hamilton decomposable.

Manikandan and Paulraja (2008) proved that the direct product of two multipartite
graphs, each having at least three partite sets, all of the same order, is Hamilton decom-
posable. Manikandan and Paulraja (2010b) proved:

Theorem 30.27 For any r ≥ 2, m ≥ 3 and n ≥ 1, Kr,r × (Km ◦Dn) is Hamilton decom-
posable.

Paulraja and Sivasankar (2009) obtained also related results for digraphs. Denoting with
G∗ the digraph obtained from G by replacing each edge with a symmetric pair of arcs, they
proved, among others, the following:

Theorem 30.28 (i) Let m,n ≥ 3, n 6= 4, and m /∈ {4, 6}. Then K∗
m × K∗

n is directed
Hamilton decomposable.

(ii) Let r, n ≥ 3, n 6= 4, and r /∈ {4, 6}. Then (Kr ◦ Ds)
∗ × K∗

n is directed Hamilton
decomposable.

Analogous to Batagelj and Pisanski’s work on Hamilton cycles in Cartesian products of
cycles and trees, Jha, Agnihotri, and Kumar (1997) investigated the same question for the
direct product. A typical result asserts that if m and n are both odd, then the length of a
longest cycle in Cm × Cn is m(n − 1), and Cm × Cn can be decomposed into two longest
cycles. See Exercises 30.7 and 30.8.

30.3 Clique Minors in Cartesian Products

A graphH is a minor of a graphG if it can be obtained by contracting edges of a subgraph of
G. In particular, Kk is a minor of G if G contains k connected, pairwise disjoint subgraphs,
any two of which are joined by an edge.

Recall from Section 26.2 that Hadwiger’s conjecture asserts that every n-chromatic graph
has a subgraph that is contractible to Kn. In other words, Hadwiger conjectured that Kn

is a minor of every n-chromatic graph. The Hadwiger number η(G) is the maximum k such
that Kk is a minor of G. Thus Hadwiger’s conjecture can be reformulated as the assertion

η(G) ≥ χ(G)

for every graph G.
Although Hadwiger’s conjecture is open for Cartesian product, several special cases are

settled. In what follows, “Hadwiger’s conjecture holds for G” is abbreviated as HC(G).

• Chandran and Sivadasan (2007) proved that HC(G�,k) for any G and k ≥ 3. The
result was exteneded to k = 2 by Chandran, Kostochka, and Raju (2008). A further
generalization was obtained by Wood (2007) who proved that |χ(G) − χ(H)| ≤ 2
implies HC(G2H). His theorem also implies HC(G2H) when χ(G) = χ(H), a result
first proved in Chandran, Kostochka, and Raju (2008).

• Wood (2007) proved that |χ(G) − χ(H)| ≤ 2 implies HC(G2H). In particular, this
yields HC(G�,k) for any G and k ≥ 2. The latter result was first proved in Chandran,
Kostochka, and Raju (2008), and in turn earlier proved for k ≥ 3 in Chandran and
Sivadasan (2007). Wood’s theorem also implies HC(G2H) when χ(G) = χ(H), a
result first proved in Chandran, Kostochka, and Raju (2008).
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• Chandran, Kostochka, and Raju (2008) proved that there is a constant c′ for which
HC(G) for any connected G with prime factorization G = G1 2G2 2 · · · 2Gk, where
k ≥ 2 log2 log2 χ(G)+c′. This theorem extends an earlier result for k ≥ 2 log2 χ(G)+3
in Chandran and Sivadasan (2007).

• Let χ(G) ≥ χ(H). Wood (2007) proved that HC(G2H) if (i) G has treewidth

tw(G) ≥ 24χ(G)4 or (ii) H has at least χ(G) + 1 vertices. That (i) suffices for

HC(G2H) follows from the more general result asserting that tw(G) ≥ 24`
4

implies
η(G2K2) ≥ `. This exponential bound was greatly improved by B. A. Reed and Wood
(2008) to the following polynomial bound: For some constant c, if tw(G) ≥ c`4

√
log2 `,

then η(G2K2) ≥ `.

There are numerous results giving either bounds or exact values for the Hadwiger number
of Cartesian products. A sample follows.

• One of the earliest results goes back to Miller (1978), though it was stated there
without proof. If T is a tree with at least one edge, and n ≥ 1, then η(T 2Kn) = n+1.
Wood (2007) gives a proof.

• Another early result by Ivančo (1988) states η(K1,m 2K1,n) = m+ 2 for 2 ≤ m ≤ n.

• Exercise 30.9 asks for the Hadwiger number of Cartesian products of two paths.
Archdeacon, Bonnington, Pearson, and Širáň (1997) compute it for the Cartesian
products of two cycles.

• Kotlov (2001) proved that for every bipartite G, the strong product G�K2 is a minor
of G2C4. As a consequence, he deduced that

η(Qd) ≥
{

2(d+1)/2 if d is odd ,

3 · 2(d−2)/2 if d is even .

• Wood (2007) proved that for every bipartite graph G and every connected graph H ,
the lexicographic product G ◦ H is a minor of G2H 2H . This can be viewed as a
generalization of the above result of Kotlov because G�K2 is isomorphic to G ◦K2

(and as G2C4 = G2K2 2K2). Wood also proved that for every graph H ,

η(Kn ◦H) =
⌊n

2
(|V (H)| + ω(H))

⌋
.

• Chandran, Kostochka, and Raju (2008) proved that for m ≤ n,

n
√
m(1 − o(1)) ≤ η(Km 2Kn) ≤ n

√
m+m.

(Exercise 30.11 asks for a related upper bound.) The lower bound implies that
η(G2H) ≥ η(H)

√
η(G)(1 − o(1)) whenever η(G) ≤ η(H). The upper bound can-

not be generalized in this way, that is, η(G2H) ≤ η(H)
√
η(G) + η(G) is generally

false. To see this, recall that η(K1,m2K1,n) = m+ 2 for 2 ≤ m ≤ n. Because no tree

has a K3-minor, η(K1,m) = 2, hence η(K1,n)
√
η(K1,m) + η(K1,m) = 6 < m + 2 for

any m ≥ 5. Wood (2007) obtained the exact values η(K2 2Kn) = n+ 1 (n ≥ 1) and
η(K3 2Kn) = n+ 2 (n ≥ 1), as well as bounds 3bn

2 c ≤ η(K4 2Kn) ≤ 3
2n+ 2 (n ≥ 2).

• Wood (2007) obtained best-known upper and lower bounds for grid graphs and Carte-
sian products of complete graphs (i.e., Hamming graphs). The latter case is as follows.
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Theorem 30.29 If n1 ≥ · · · ≥ nk ≥ 2, then

⌊n1

2

⌋ k∏

i=2

b√nic ≤ η(Kn1
2 · · · 2Knk

) <
√
k n1

k∏

i=2

√
ni + 3 .

In addition to the results listed above, the seminal paper by Wood (2007) also contains a
proof of Exercise 30.12, as well as additional results not mentioned here. More importantly,
it gives a structural characterization of Cartesian products with bounded Hadwiger number.
The characterization is similar to that of Robertson and Seymour (2003) for general graphs
but is more focused due to the special structure of Cartesian products. Informally, Wood’s
characterization says that for connected G and H , η(G2H) is bounded if and only if

(i) One factor has bounded treewidth and the other factor has bounded order, or

(ii) Both factors have bounded hangover.

Here the hangover is defined as follows. A path P in a connected graph G is called clean
if every internal vertex of P has degree two (in G), and every edge of P is disconnecting.
(Thus each vertex of G is a clean path P1.) The hangover of a path or a cycle is defined to
be zero. In general, the hangover of G is the minimum, taken over all clean paths P in G,
of the maximum number of vertices in a component of G− E(P ).

Goldberg (2009) studied the so-called Colin de Verdière number µ of Cartesian products,
and conjectured that µ(G2H) ≥ µ(G) + µ(H) for connected G and H . The conjecture
is closely related to the Hadwiger number of products, because µ(G) ≥ η(G) − 1. Thus
Goldberg’s theorem, asserting that µ(G2H) ≥ µ(G) + η(H)− 1, can be considered a weak
version of his conjecture.

To close the section we add that minors of direct products have been considered to some
extent. Bottreau and Métivier (1998) proved that every connected graph G is a minor of
G × H , where H is an arbitrary connected nonbipartite graph. On the other hand, they
demonstrated that G need not be a minor of G × K2 (Exercise 30.13), thus disproving a
conjecture from Jha and Slutzki (1993).

30.4 Reconstruction, Topological Embeddings, and Flows

In this section we consider three additional topics that are of interest in graph products and
begin with reconstruction.

The set (or multi-set) of vertex-deleted subgraphs of a graph is called its deck. A graph is
said to be reconstructible if it is uniquely determined by its deck. Note that K2 and D2 have
the same deck (consisting of two copies of K1) so K2 and D2 are not reconstructible. On
the other hand, the famous Reconstruction conjecture2 asserts that any simple graph with
at least three vertices is reconstructible. The conjecture is still open, though it is known
to be true for certain classes of graphs. In particular, it is true for Cartesian products, as
proved by Dörfler (1973):

Theorem 30.30 Any nontrivial Cartesian product graph is reconstructible.

2Many authors call it Ulam’s conjecture though it was stated by Kelly in 1942 and by Ulam in 1960.
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Theorem 30.30 also holds for infinite graphs (Imrich and Žerovnik, 1996).
No graph can be reconstructed from a single vertex-deleted subgraph. But, if one knows

that a graph belongs to a certain class of graphs, then one may be able to reconstruct it
from a single vertex-deleted subgraph. For example, this is the case for nontrivial Cartesian
products, which was first proved by Sims and Holton (1978). Independently, Imrich and
Žerovnik (1996) extended Dörfler’s work as follows.

Theorem 30.31 Let G1 and G2 be connected Cartesian product graphs with x ∈ V (G1)
and y ∈ V (G2). If G1 − x and G2 − y are isomorphic, then so are G1 and G2.

Thus a one-vertex-deleted subgraph suffices to reconstruct Cartesian products of at least
two nontrivial factors, this is called weak reconstruction. Hagauer and Žerovnik (1999) de-
signed an algorithm that reconstructs a Cartesian product graph G from any vertex-deleted
subgraph in O(mn(∆(G)2 + m logn)) time. The term m logn comes from the complexity
of factoring a graph over the Cartesian product; hence in view of Section 23.5, it can be
replaced by m.

McAvaney (1980) conjectured that every connected nontrivial Cartesian product graph
is also uniquely determined by each of its two-vertex-deleted subgraphs. This claim turned
out to be false; see Exercise 30.14 for a counterexample. Imrich, Zmazek, and Žerovnik
(2003) extended this to an infinite family of counterexamples where one of the factors is
P3. On the other hand, they proved that a Cartesian product is uniquely determined by
any one of its k-vertex-deleted subgraphs if it has at least k + 1 prime factors, each on at
least k + 1 vertices. They also posed the following problem: Is it true that any connected
Cartesian product graph with k ≥ 2 prime factors, each with more than max{3, k} vertices,
is uniquely determined by each of its k-vertex deleted subgraphs?

For the strong product, Dörfler (1973) proved:

Theorem 30.32 Let X = G�H be a nontrivial strong product. If at least one factor has
two vertices in relation S, then X is reconstructible.

Zmazek and Žerovnik (2007) proved that all nontrivial strong products can be recon-
structed provided that their product structure is assumed. They also proved:

Theorem 30.33 A connected nontrival S-thin strong product graph is weakly recon-
structible. In other words, it is uniquely determined by each of its one-vertex-deleted sub-
graphs.

For the lexicographic product we have the following result, also from Dörfler (1973):

Theorem 30.34 If X = G ◦H is a nontrivial lexicographic product with |V (H)| ≥ 3, then
X is reconstructible.

We note in passing that Feigenbaum and Haddad (1989) considered related problems
for the Cartesian product, namely minimal factorable extensions and maximal factorable
subgraphs. They showed that neither minimal factorable extensions nor maximal factorable
subgraphs are unique and that finding them is NP-hard.

We now turn to the second topic of this section: topological embeddings of product
graphs.

A graph is embeddable into a surface if it can be drawn on the surface such that no two
of its edges intersect, except possibly at endpoints. (See the definition of planar graphs in
Chapter 1, p. 11.) The genus of a graph is the minimum number of handles to be attached
to a sphere so that the graph can be embedded into the resulting surface. For nonorientable
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surfaces, one likewise defines the nonorientable genus of a graph, by adding Möbius bands
(rather than handles).

Embeddings of graph products into surfaces have been studied extensively. Here we
merely give suggestions for further reading.

Ringel (1955) determined the genus of the simplest Cartesian product, the hypercube.
This is now a consequence of the following theorem of Pisanski (1980), which generalizes
results of White (1970).

Theorem 30.35 If G and H are connected, bipartite r-regular graphs, then the genus of
G2H is 1 + |V (G)||V (H)|(r − 2)/4.

Embeddings of Cartesian products were also investigated by Mohar, Pisanski, Škoviera,
and White (1985); Mohar, Pisanski, and White (1990); Craft and Schwenk (1993); and Bon-
nington and Pisanski (2004).

For the work on embeddings of direct and lexicographic products up to 1993, we refer the
reader to Dakić, Nedela, and Pisanski (1995). More recently, Abay-Asmerom published a
series of papers on embeddings of direct products. See, for example, Abay-Asmerom (1998).

We close the section with a brief overview of the research on nowhere-zero flows in
product graphs.

An orientation D of a graph G is obtained from G by turning each edge of G into an
arc. Let f : E(G) → Z be a function with −k < f(e) < k for each edge e. The pair (D, f)
is called a k-flow of G if Kirchhoff’s condition holds at every vertex v of G: The flow into
v is equal to the flow out of v. A k-flow (D, f) is called nowhere-zero if f(e) 6= 0 for every
e ∈ E(G).

The theory of flows in graphs is rich with beatiful theorems and open problems. As an
entry into this area we suggest the book by West (1996). Here we point out the 3-flow
conjecture due to Tutte, asserting that every 4-edge-connected graph has a nowhere-zero
3-flow.

Flows in product graphs seem to have been first considered by Imrich and Škrekovski
(2003) who proved:

Theorem 30.36 If G and H are nontrivial connected graphs, then G2H admits a
nowhere-zero 4-flow. Moreover, if G and H are bipartite, then G2H admits a nowhere-zero
3-flow.

Their work has been extended in two ways. Shu and C.-Q. Zhang (2005) extended the
second part of Theorem 30.36 by proving that the 3-flow conjecture is true for products
G2H unless each block of G is an odd cycle and H has a bridge. On the other hand,
Rollová and Škoviera (2009) extended the first part of Theorem 30.36 by proving that any
nontrivial Cartesian graph bundle admits a nowhere-zero 4-flow. (See Section 33.1 for the
definition of graph bundles.)

For the direct product, Z. Zhang, Y. Zheng, and Mamut (2007) introduced a class of
graphs G containing K2 ∈ G and closed with respect to joining any two of its members by
an edge, and proved:

Theorem 30.37 If G is a graph with δ(G) ≥ 2 and H a graph not in G, then G×H admits
a nowhere-zero 3-flow.

Y. Zheng, Z. Zhang, and Mamut (2009) also considered the lexicographic product and
proved that G ◦H admits a nowhere-zero 3-flow as soon as G is a nontrivial graph and H
a connected graph of order at least 3.

For the strong product, Imrich, Peterin, Špacapan, and C.-Q. Zhang (2010) proved:
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Theorem 30.38 There exists an algorithm that computes a nowhere-zero k-flow in G�H
for any two connected nontrivial graphs G and H, where

(i) k = 2 if G and H are Eulerian graphs,

(ii) k = 3 unless G is a tree and H = K2,

(iii) k = 4 if G is a tree and H = K2.

The complexity of the algorithm of Theorem 30.38 is linear, except in Case (ii), when
G is not a tree. Then the complexity is O

(
|E(G)| + |E(H)| · |V (H)| · ∆H

)
.

30.5 Modeling Complex Networks

Networks arise in many different areas, such as biology, ecology, mathematical chemistry,
software technology, and operations research. Nonetheless, the investigation of very complex
graphs and networks became an important research topic only in the last decade, coincid-
ing with increased interest in the Internet, social networks, citation networks, and neural
networks, to name just a few topics.

Some networks are very large and most of them grow extremely fast. For example, in
2009 the United States had over 383 million Internet hosts,3 up from just four connected
mainframes in 1969. (These four formed ARPANET, the precursor of the present Internet.)

Networks are studied from numerous points of view, ranging from performance, re-
liability, stability, robustness, growth, and self-organization to virus propagation and its
prevention. But all these require that the network first be mapped. This is a formidable
task in itself, and has led to discoveries of several fundamental properties that are shared
by many real-life networks: the power law degree distribution, the small-world property,
self-similarity, and the fact that the eigenvalues of the adjacency matrix also follow a power
law. These are known as static graph properties , and we discuss them in more detail in the
next subsection.

As networks grow, their parameters relative to these properties change. For instance,
as a network becomes denser, its diameter decreases. Such traits, known as temporal graph
properties, were discovered 2005 by Leskovec, Kleinberg, and Faloutsos (2005). They showed
that at any time t, the numbers V (t) of vertices and E(t) of edges follow the densification
power law

E(t) ∝ V (t)a, where 1 ≤ a ≤ 2 . (30.1)

Formerly it was assumed that a was always 1. They observed that the diameter shrinks and
stabilizes over time; previously logarithmic or double logarithmic growth was assumed.

In order to study the properties addressed above, it is necessary to generate realistic
sequences of growing graphs that obey the static and temporal graph patterns.

It has been common to use the random graph model of Erdős and Rényi (1959, 1960)
or that of Barabási, and Albert (1999). But these and other random graph models do not
obey all properties, or it cannot be proved that they obey them. Moreover, it usually takes
much effort and time to generate such random graphs. Hence new methods are needed.

3https://www.cia.gov/library/publications/the-world-factbook/fields/2184.html
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Kronecker graphs

Leskovec, Chakrabarti, Kleinberg, Faloutsos, and Ghahramani (2010) suggested an appeal-
ing step in this direction with a model using the direct product of graphs (or, equivalently,
the Kronecker product of matrices).4

Given a graph G, the adjacency matrix of the direct product G×,k is the kth power
of the adjacency matrix of G with respect to the Kronecker product. We will call such
graphs Kronecker graphs and show first that they obey the above-mentioned static graph
properties.

Static properties. We begin with the small-world property. It states that most real-world
graphs have small diameter. This idea goes back to Milgram (1967), who first addressed the
phenomenon of “six degrees of separation” for residents of the United States. Clearly, direct
powers of nonbipartite graphs satisfy this property, as the diameter of G×,k is bounded by
2 diam(G) + c, where c is the length of a shortest odd cycle of G. (See Exercise 5.14.)

The power law degree distribution (Pareto distribution) says that the probability that a
vertex has degree k is P (k) ' ck−γ , where 2 < γ < 3 in our cases. This causes the variance
of the degrees to be large and makes the graph in a sense scale-free, which is related to the
fractal structure.

We do not show the power law directly, but observe that the degree of a vertex v ∈
V (G×,k) is p1(v)p2(v) · · · pk(v). Hence, if the degrees of the vertices in G are d1, d2, . . . , dn,
then the degrees in G×,k are di11 d

i2
2 · · · dinn , where

∑n
j=1 ij = k. The degree probabilities will

therefore be proportional to
(

k
i1i2...in

)
, that is, we have a multinomial degree distribution.

Now, a careful choice of the degrees of the vertices of G causes the multinomial distribution
to behave like a power law degree distribution; see Bi, Faloutsos, and Korn (2001).

We already mentioned the close connection between the power law for the degree dis-
tribution with so-called scale-freeness and fractal structure. But, as the fractal structure is
obvious in our case, we simply illustrate it with Figure 30.2, which shows a graph G and
the positions of the nonzero elements in the adjacency matrix of G×,4.

1

2

3

4

FIGURE 30.2 A graph G and nonzero elements in A(G×,4).

By the properties of the Kronecker product of matrices the eigenvalues of A(G×,k) are
λi11 λ

i2
2 · · ·λinn , where λ1, λ2, . . . , λn are the eigenvalues of A(G) and

∑n
j=1 ij = k. Hence, the

power law for the distribution of the eigenvalues of A(G×,k) follows by the same arguments
as for the degree distribution.

Temporal properties. Consider a graph G on n vertices and m edges. Then G×,k has nk

4Leskovec et al. (2010) assume that every vertex of the network has a loop; thus they are really working
with the strong product, but it suffices to work with the direct product of connected, nonbipartite graphs.
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vertices and mk edges. Thus, setting V (k) = |V (G×,k)| and E(k) = |E(G×,k)|, we have

E(k) ∝ V (k)a, where a = log(E(1))/ log(V (1)) .

Thus the densification power law 30.1 is satisfied.
Clearly all graphs G×,k have the same diameter for k > 1.

Stochastic Kronecker graphs

Start with a square probability matrix P1 whose i, j-entry represents the probability that
an edge joins vertex i to vertex j, and compute the Kronecker kth power Pk. Then (an
instance of) a stochastic Kronecker graph is obtained from Pk by including an edge between
two vertices with probability as given in Pk. Considering the size of the networks modeled, it
is extremely important that stochastic Kronecker graphs K on N nodes can be generated in
O(E) time, where E is the (expected) number of edges in K (Leskovec et al., 2010). This is
not obvious; naively we would expect O(N2) time, where N is the number of vertices in Pk.

Stochastic Kronecker graphs, if generated appropriately, satisfy the static and temporal
properties described above. We wish to point out, though, that prior construction of the kth
power of a graph with respect to the direct product and subsequent uniform and random
selection of edges would result in a binomial degree distribution.

Because the properties of the direct product of graphs (respectively the Kronecker prod-
uct of matrices) are well understood and generally not difficult to handle, it is not surprising
that they can be studied using analytical tools. This allows us to fit them, by appropriate
choice of P1, to real-world networks. To be more precise, P1 can be chosen to fit such param-
eters as diameter, the densification power law exponent a in Equation (30.1), the constants
c and γ in the degree distribution power law, among others.

Leskovec et al. (2010) show that one can effectively find a stochastic Kronecker graph
that is “similar” to any real-world network. They give examples where, starting from a
random initial matrix, 100 steps of the so-called “gradient descent” produced stochastic
Kronecker graphs with properties surprisingly close to the given network. Of course, this
approach involves several technical details. For instance, the number of vertices of a real-
world network is not likely to be a power of the size of the base graph. One solution is to
pad the adjacency matrix of the generated graph with zeros, but not all such problems are
equally easy to deal with.

To illustrate the applicability of the methods and models outlined in this section, we
close with a result of Leskovec and Faloutsos (2007). They showed that the simple generating
matrix (

.98 .58

.58 .06

)

yields a Kronecker graph that fits the Internet (at the autonomous system level) fairly well.

Random dot product

Another approach to the representation of random graphs with prescribed properties is
the random dot product. It uses vectors to represent the vertices of a graph and a random
function on the inner product (the dot product) to determine adjacency.

Let G ∈ Γ and k ∈ N. Then G is a dot product graph if there is a function x : V (G) → Rk

that assigns to each vertex v a vector xv such that two vertices v, w are adjacent if xv ·xw ≥ 1.
Notice that “·” denotes the standard inner product in Rk.

We have already met the assignment of vectors to vertices in Section 27.1, the section on
the Shannon capacity. On p. 344, following Lovász (1979), we considered an orthonormal
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representation of the vertices of a graph G by vectors in Rk, and then used the tensor prod-
uct, which is the same as the Kronecker product in this case, to construct an orthonormal
representation of the vertices of the strong product of graphs.

The dot product also generalizes the intersection representation of graphs, and the dot
product dimension of a graph G, that is, the smallest possible length of the vectors that
represent the vertices of G is a pendant to the intersection number. To establish the con-
nection, let us mention that an intersection representation of a graph G is an assignment of
a set Sv to each vertex v such that vw ∈ E(G) if Sv ∩ Sw 6= ∅. The intersection number of
a graph is the smallest size of the union of the sets assigned to the vertices in an intersec-
tion representation; see Erdős, Goodman, and Pósa (1966). If one replaces the sets Sv by
characteristic 0, 1-vectors v, then the condition Sv ∩ Sw 6= ∅ can be replaced by v ·w ≥ 1.

For further motivations for the dot product and numerous results, compare Fiduccia,
Scheinerman, Trenk, and Zito (1998).

The model is then generalized as follows. In addition to the mapping x, let f : R → [0, 1]
be a function that maps the dot product of the vectors into probabilities. Then the random
dot product graph G is defined as a graph of a given order, where u, v ∈ V (G) are adjacent
with probability f(xu · xv).

In this model we are given the vectors xv to every v ∈ V (G) a priori; and based on
these vectors, a probability function f is chosen. However, an important variant is to draw
the vectors xv independently from a random distribution and then generate G with an
appropriate choice of f .

If this is done properly, the temporal and static properties of large networks as described
above can be modeled. In other words, if the vectors are taken properly, then the random
graphs exhibit properties akin to those of social and communication networks including
clustering, low diameter, and power-law distribution of degrees. The inverse problem of
how to model a given set of graphs as random dot product graphs also becomes accessible.
For details, see Young, and Scheinerman (2008), and Nickel (2007).

Exercises

30.1. Show that the graph Y of Figure 30.1 contains no one-factor.

30.2. Show that G2C3 has no one-factorization if G is a cubic graph with a bridge.

30.3. (Parker, 1973) Show that Cn ◦Dm has a one-factorization if and only if at least one
of n and m is even.

30.4. Show that G2K2 is Hamiltonian if G has a Hamilton path.

30.5. Show that Pm 2Pn, m,n ≥ 2, has a Hamilton path, and that it has a Hamilton
cycle if and only if m or n is even.

30.6. (Behzad and Mahmoodian, 1969) Show that G2H is Hamiltonian if G and H are
both Hamiltonian.

30.7. (Jha, Agnihotri, and Kumar, 1997) Let T be a tree and m ≥ 3. Show that Cm × T
is Hamiltonian if and only if m is odd and T = K2.

30.8. (Jha, Agnihotri, and Kumar, 1997) Let T be a tree of order n with p pendant
vertices. Show that for m ≥ 3, the length of a longest cycle of Cm × T is at most
mn− p.
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30.9. Show that for any m,n ≥ 3, η(Pm 2Pn) = 4 and that η(P2 2Pn) = 3 for any n ≥ 2.

30.10. Show that if MG is a minor of G and MH is a minor of H , then MG2MH is a
minor of G2H .

30.11. Let 1 ≤ m ≤ n. Show that η(Km2Kn) ≤ n
√

2m.

30.12. (Wood, 2007) Show that Hadwiger’s conjecture holds for any nontrivial product
G2H , where χ(G) ≥ χ(G) if and only if Hadwiger’s conjecture holds for G2K2.

30.13. Find a connected graph G such that G is not a minor of G×K2.

30.14. Find vertices x and y of K1,32P3 and vertices z and w of P4 2P3 such that
K1,3 2P3 − {x, y} and P4 2P3 − {z, w} are isomorphic.

30.15. (Imrich and Žerovnik, 1996) A product square of a Cartesian product is a square in
which the two pairs of opposite edges are in different σ-classes. Suppose that G is a
connected nontrivial Cartesian product and that G− v contains no product square
(of G). Show that G = K1,n2K1,m for some n,m ∈ N.
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Introduction to Part VI

U
ntil now we have dealt almost exclusively with finite undirected graphs, their products,
and structures involving retracts or subgraphs of their products. This ground has been

so abundantly fertile that we have scarcely felt the need to extend it to the domain of
infinite or directed graphs. In this final part of the book we entertain such notions.

Chapter 31 introduces the theory of infinite graphs. Almost immediately we meet a new
concept—the free product—that has no finite analogue. This construction is then employed
in the characterization of certain classes on infinite median graphs. The chapter concludes
with a selection of prime factorization and cancellation properties of infinite graphs over
the four standard products.

The free product of graphs, in particular of rooted graphs, is not new. It has been
extensively studied from the point of view of growth, random walks, spectral properties, and
even applications to quantum probability; see, for example, Pisanski and Tucker (2002), and
Accardi, Lenczewski, and Sa lapata (2007). Definition and notation is not uniform, but for
vertex transitive graphs all definitions of the free product seemingly coincide. In particular,
the free product of Cayley graphs is compatible with the free product of groups; see p. 403.
We chose a definition that suited our investigation of vertex transitive median graphs with
finite blocks.

We also define a generalized free product, which gives rise to the structure Theorem 31.5
of infinite vertex transitive graphs with cut vertices. This simple theorem seems to be new,
as are Theorems 31.20 and 31.21 about the weak direct and the weak strong product. The
latter results depend on Hammack’s nonalgorithmic definition of the Cartesian skeleton.

In Chapter 32 we consider products of digraphs, with an eye toward developing results
parallel to some of our earlier theorems for undirected graphs. We consider connectedness,
prime factoring, and cancellation for the four standard products. For the lexicographic
product, transitive tournaments play a surprising role.

Finally, in Chapter 33, we take up the issue of product-like structures. The first part
treats the notion of graph bundles. These graphs—which need not be products but have
local product structures—are the graph-theoretical analogues of topological fiber bundles.

The second part of the chapter is an overview of the currently developing theory of
approximate graph products, that is, graphs that are very close to being products. We give
brief mention to some of the promising potential applications of this idea and a a brief
account of sophisticated heuristics for the investigation of approximate strong products.
Interestingly, one of the side-products of these investigations is a quasi-linear algorithm for
the factorization of connected S-thin graphs with respect to the strong product.

The chapter ends with remarks about graph spectra, the significance of the second
largest eigenvalue of a graph in many parts of mathematics and computer science, and
the definition of the zig-zag and the replacement product, which were introduced for the
construction of expander graphs.

The reader will find various earlier chapters useful here. For example, the discussion of
median graphs in Chapter 31 presupposes the material from Chapter 12 (on median graphs).
Likewise, full appreciation of the prime factorization of infinite or directed graphs probably
requires a good knowledge of the corresponding material (for finite graphs) in Part II.
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The first part of this chapter pertains to infinite median graphs, the second to infinite
products. In the case of products, both the factors and the number of factors may be infinite.
On the way we introduce the free product of graphs, ends of graphs, and the growth rate
of graphs. There are many similarities with finite graphs, which we will exploit, and many
striking differences, which we will describe.

Infinite graphs are a common concept. Everyone is familiar with the integer lattice in
one, two, or three dimensions. In dimension one, it is the two-sided infinite path PZ defined
on V (PZ) = Z, where each edge is a pair of successive integers. In dimension two, it is
PZ 2PZ , and in dimension three P�,3

Z .
Infinite graphs are defined exactly as are finite graphs, except that the vertex and edge

sets are allowed to be infinite. Concepts such as paths, cycles, connected components, trees,
and bipartiteness carry over immediately to infinite graphs. The same is true for homomor-
phisms, retractions, and automorphisms.

But the situation is different for maximal spanning forests (or spanning trees of connected
graphs), as we need the axiom of choice or transfinite induction to prove their existence.
Interestingly, the axiom of choice is equivalent to the existence of maximal spanning forests
in infinite graphs; see Exercise 31.1. Thus we may as well assume the existence of maximal
spanning forests in infinite graphs as an axiom. It is not worse than accepting the axiom of
choice and makes life easier in graph theory.

Still we face the question of which other properties of finite graphs hold for infinite
graphs. The answer depends very much on how “finite” an infinite graphs is. There are
several restrictions—finiteness conditions—that may be placed on an infinite graph.

Connectedness is one such condition. A connected infinite graph has a spanning tree, and
every vertex can be reached from a given one by a path (of finite length). To appreciate the
restrictions that connectivity implies, it is instructive to consider the infinite hypercube,
whose vertices are infinite sequences of 0’s and 1’s. (As usual, edges join sequences that
differ in exactly one place.) This graph is disconnected, for no path joins the vertex 000 . . .
to any vertex that has infinitely many 1’s.

The vertices of a connected graph can be arranged in BFS-order. If all degrees are finite,
then we do not even need the well-ordering theorem (which is also equivalent to the axiom
of choice) to accomplish this. This leads to another finiteness condition: A graph is locally
finite if every vertex has finite degree. Clearly, a locally finite graph has countably many
vertices if it is connected.

399
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400 Infinite Graphs

31.1 Growth Rate and Ends

Even if a connected graph is locally finite, the number of vertices in the distance levels Li

of a BFS-tree may grow very fast. This motivates the concept of a graph’s growth rate. A
locally finite, connected graph G has polynomial growth if there is a vertex v in G and a
polynomial f such that

|Nn(v)| < f(n)

for all natural numbers n. This property is independent of the choice of v; see Exercise 31.2.
It is clear what linear and quadratic growth mean, and that PZ and PZ 2PZ have linear

and quadratic growth, respectively.
If |Nn(v)| ≥ cn for some constant c > 1, then we say G has exponential growth. If |Nn(v)|

grows faster than any polynomial, but not exponentially, the growth is intermediate. We
consider graphs of polynomial growth to be barely infinite.

It is more than a good pastime to discover properties of finite graphs that carry over to
infinite graphs of polynomial growth. Many deep and new results have been found; we will
mention a few later.

Growth rate was originally defined for groups by Adelson-Velsky and Šrĕıder (1957).
The definition immediately extends from groups to Cayley graphs. For graphs that are not
Cayley graphs, it seems to have been used first by Trofimov (1984).

Restrictions other than the growth rate include properties involving embeddability into
surfaces (such as the plane, or orientable or nonorientable surfaces of finite or infinite genus).
In such cases the number of vertices is bounded by the cardinality of the number of points of
the surface. In all these cases, further natural requirements, such as transitive group action
or fixed-point free action, lead to interesting, intriguing problems and results.

If no limits are placed on the cardinalities of the vertex sets or the degrees, however,
one rapidly moves into the theory of infinite cardinals.

We now define ends of a graph. Our definition follows Halin (1964), but the concept
goes back to Freudenthal (1931). See Diestel and Kühn (2003) for other definitions and the
relationship to topological ends.

In geometry, topology, and function theory, we learn at an early stage how to close a
space by adding objects at infinity. Such objects are often defined as limits of sequences. In
infinite graphs these objects are called ends and are defined in terms of rays.

A ray is a one-sided infinite path PN , defined on N analogously to PZ . Two rays R1 and
R2 of a graph G are equivalent, R1 ∼ R2, if G has a ray R3 that meets both R1 and R2

infinitely often. It is easy to see that ∼ is an equivalence relation. Its equivalence classes are
the ends of G.

As an example, consider PZ . Clearly, it has two ends, as does every Qd2PZ . Contrari-
wise, the regular tree Td (in which every vertex has the same degree d) has infinitely many
ends if d > 2. But the infinite star consisting of three rays originating from a common
vertex has just three ends. For a connection to the growth rate, we mention that infinite
vertex-transitive graphs of linear growth have just two ends; see Imrich and Seifter (1989).

We continue with theorem about infinite trees that indicates that ends can be regarded
as points (or vertices) at infinity. If v is a vertex of a tree, then every end has a representative
ray with endpoint v. We can therefore think of the ends of a tree as the set of rays emanating
from a given vertex v. The fact that every automorphism of a tree stabilizes an edge or fixes
a vertex has the following analogue for automorphisms of infinite trees, as shown by Tits
(1970).
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Proposition 31.1 If α is an automorphism of an infinite tree T , then exactly one of the
following statements holds:

(i) α fixes a vertex.

(ii) α interchanges two adjacent vertices.

(iii) There exists a unique two-sided infinite path PZ in T on which α acts as a trans-
lation, that is, α(PZ) = PZ but α fixes no vertex of G.

Note that only (i) or (ii) is possible if T has no rays. In this case the result is the same
as for finite graphs. If α acts as a proper translation on a PZ , then it fixes the two ends
defined by PZ . One can justly say that α fixes two vertices at infinity.

We conclude the section with some remarks about rayless median graphs. Infinite median
graphs are defined as in the finite case by the condition that every triple of vertices has
a unique median. They are tree-like by their very construction. This should nourish the
suspicion that rayless infinite median graphs share fixed-cube properties with their finite
relatives. This is indeed the case. We state just three examples. The first is by Polat and
Sabidussi (1994).

Proposition 31.2 Every rayless tree has a vertex or an edge that is invariant under every
automorphism.

Note that the simplest infinite rayless tree is a star with ℵ0 edges incident with a central
vertex. Note also that any ray in a tree is isometric, though this need not be true for graphs
in general. For median graphs, Tardif (1996) proved the following theorem:

Theorem 31.3 Every nonexpansive map of a median graph without isometric rays contains
a fixed cube.

For quasi-median graphs we only have the following, slightly weaker result of Chastand
and Polat (1996), as rays, and not just isometric rays, are excluded.

Theorem 31.4 Every nonexpansive map of a quasi-median graph without rays contains a
fixed Hamming graph.

For numerous other results we refer to the insightful survey of Polat (1995).

31.2 Free Product

This section is motivated by the desire to construct vertex-transitive graphs from intransitive
building blocks. Thus, for us the main property of the free product G ∗H of two connected
graphs will be the fact that it is vertex-transitive, even if its factors are not.

Let G and H be connected graphs with k and ` orbits, respectively. Pick a vertex ri
from each of the k orbits of G, and let G(ri) denote the graph G with root ri. Define rooted
graphs H(sj) analogously.

The free product G ∗H is a connected graph made from copies of G and H , where all
cycles of G ∗H are contained in a copy of G or H , and where any two copies of G or H are
either disjoint or meet at a vertex, as follows: All vertices of G ∗H are cut vertices. Given
such a vertex v, consider every copy of G or H that is incident with v as a rooted graph

© 2011 by Taylor & Francis Group, LLC



402 Infinite Graphs

C4 ∗ K2 H ∗ K1

FIGURE 31.1 Free products of graphs.

with root v. Then G ∗H is defined such that v is incident with exactly one copy of G(ri)
and one of H(sj) for all i ∈ {1, 2, . . . , k} and j ∈ {1, 2, . . . , `}.

For a simple example of a free product, note that K2 ∗K2 = PZ . Figure 31.1 (left) shows
the free product C4 ∗K2 of a square with an edge. For yet another example, the right side
of Figure 31.1 shows H ∗K1, where H is a hexagon with one diagonal.

For a more elaborate example, consider the infinite graph G of Figure 31.2 (top). It has
two orbits, so every vertex of G∗K1 is incident with two blocks. A part of G∗K1 is depicted
in the lower part of the figure.

From the definition and examples, it should be evident that the free product is commu-
tative and associative. It does not have a unit, unless we restrict to vertex-transitive graphs,
in which case K1 is a unit.

Moreover, G ∗H has transitive automorphism group, even if G or H is not transitive.
Notice also that the definition easily extends to the case when G and H have infinitely
many orbits. In such a case G ∗H is not locally finite.

We now vary our definition of the free product slightly. As before, suppose G and H
have k and ` orbits, respectively. Define multiplicities mi and nj , where i ∈ {1, 2, . . . , k}
and j ∈ {1, 2, . . . , `} and to each vertex v attach mi copies of G(ri) and nj copies of H(sj).
Again care is taken that all cycles of the new graph are in a copy of G or in a copy of H .
The resulting graph is called a generalized free product.

The above remarks about associativity, etc., apply also to generalized free products.

Theorem 31.5 Any connected, infinite vertex-transitive graph with a cut vertex is a non-
trivial generalized free product.

Proof If such a graph G has a cut vertex, then every vertex is a cut vertex by vertex-
transitivity. Consider the collection of blocks incident with an arbitrary vertex v. We can
partition this collection into sets of pairwise isomorphic blocks. Let Gι, ι ∈ I, be the set of
representatives for these sets of blocks. If a Gι is not vertex-transitive, then we form the
rooted graphs Gι(r), where r is from a set of representatives of the orbits of Gι.
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Let m(Gι(r)) be the number of times Gι(r) occurs as block incident with v. (Notice that
every m(Gι(r)) must be at least 1.) Then G is the generalized free product of the Gι with
the multiplicities m(Gι(r)). 2

G

G ∗ K1

FIGURE 31.2 Infinite median graph G with two orbits (top) and part of G ∗K1 (bottom).

If all factors of a generalized free product are vertex-transitive, and if the multiplicity
m is greater than 1 for one of the factors G, then one can consider the product as a free
product in which G occurs m times as a factor.

In graph theory the free product of graphs is a very underestimated concept, despite its
great potential. The earliest publications (on the free product of rooted graphs) are probably
due to Teh and Gan (1970) and Znŏıko (1975). For recent work, see Accardi, Lenczewski,
and Sa lapata (2007). This paper also treats the comb product, the star product, and the
orthogonal product. The comb product product has the same vertex set as the Cartesian
product, but cannot be described as a binary operation on the set {∆, 1, 0} as the products
treated in Chapter 4. The vertex sets of the other two products are smaller than that of
the comb product.

In combinatorial group theory the free product of groups, and indirectly of graphs, plays
an important role. Usually the factors are Cayley graphs and thus vertex-transitive, and
there is no need for a generalized free product.

Observe that the free product of Cayley graphs is a Cayley graph again. In particular,
if G = Γ(A, SA) and H = Γ(B,SB), then G ∗H is the Cayley graph Γ(A ∗ B,SA ∪ SB) of
the free product A ∗ B of the groups A and B.1 In this setting many important subgroup
theorems can be derived very easily. They include those of Nielsen-Schreier, Kurosh, and
Grushko.

Notice that the homomorphism a1b1a2b2 · · · akbk 7→ (a1a2 · · · ak, b1b2 · · · bk) of A ∗ B
onto the product A×B of groups corresponds to a homomorphism of Γ(A, SA) ∗ Γ(B,SB)
onto Γ(A, SA)2Γ(B,SB).

For an introduction to Combinatorial Group Theory we recommend the reprint of the
classic work of Lyndon and Schupp (2001), originally published in 1977, and the second
edition of the textbook of Stillwell (1993), first edition 1980.

1This allows an alternative definition of the free product of groups.
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31.3 Transitive Median Graphs with Finite Blocks

Observe that every connected infinite graph without rays must have at least one vertex of
infinite degree. This is a consequence of a result of König (1936), known as König’s lemma,
which asserts that every vertex in a locally finite connected infinite graph is contained in
a ray ZN (actually in an isometric ray). Therefore Proposition 31.2 and Theorem 31.4,
which pertain to rayless graphs, are void for locally finite, connected infinite median, or
quasi-median graphs.

Hence, if we wish to consider connected, locally finite infinite graphs, we have to admit
rays. We will show that locally finite, connected infinite median graphs have numerous
intriguing properties. We begin with their characterization under the assumption that they
have only finite blocks. (Recall that a block of a graph is a maximal subgraph without cut
vertices.) If every block of G is a median graph, then G is a median graph too. This is easily
verified; see Exercise 31.3.

In the finite case, the class of regular median graphs is not very rich; it consists of
all hypercubes, by Exercise 12.8. Notice that vertex-transitivity is not even needed as an
assumption, as it follows from regularity. For infinite graphs the situation changes signifi-
cantly.

For instance, any finite or infinite median graph G with largest degree d gives rise to a
d-regular median graph as follows: Let u be an arbitrary vertex of G of degree smaller than
d. Then, at u, attach to G an infinite rooted tree in which the root is of degree d−d(u) and
any other vertex is of degree d. In fact, Bandelt and Mulder (1983) observed that there are
2ℵ0 cubic median graphs. This is the reason that we impose vertex-transitivity.

We thus have to construct transitive graphs form finite blocks, which need not be tran-
sitive. We will take advantage of the free product, but begin with an observation about the
number of orbits in finite median graphs.

First we observe that median graphs of bounded maximum degree have arbitrarily many
orbits if they are sufficiently large. This result is a consequence of the tree-like structure of
median graphs, and in particular of Fixed Cube Theorem 12.21.

Proposition 31.6 Every finite median graph of largest degree k on at least (2k)k vertices
has at least k orbits.

Proof Let G be a finite median graph with ∆(G) ≤ k and Qc a subcube that is invariant
under all automorphisms of G. Then 0 ≤ c ≤ k. Furthermore, no automorphism sends a
vertex of Qc to a vertex in V (G) \V (Qc). Thus, V (Qc) consists of one or more orbits under
the action of the automorphism group of G. This implies that the set L1 of vertices at
distance 1 from Qc consists of one or more orbits too. By induction, the same holds for the
set Lr of vertices of any distance r from Qc.

If G has fewer than k orbits, then we infer from the above that G has at most

|V (Qc)| + |L1| + · · · + |Lk−2|

vertices. Because |V (Qc)| ≤ 2k and |Lr| ≤ |V (Qc)| · (k − 1)r, we obtain the estimate

|V (G)| ≤ 2k [1 + (k − 1) + (k − 1)2 + · · · + (k − 1)k−2] < 2k · kk−1 < (2k)k .

2

Note that this result is not true for general isometric subgraphs of hypercubes, as the
cycle C2r shows. It has degree 2, can be arbitrarily large, but has only one orbit.
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G1 = C4 ∗ K2 ∗ K2 G2 = C4 ∗ C4 G3 = Q3 ∗ K2

FIGURE 31.3 Some 4-regular, vertex-transitive median graphs with finite blocks.

Now we are ready for a characterization of locally finite, connected vertex-transitive
median graphs without infinite blocks.

Theorem 31.7 Every connected vertex-transitive median graph without infinite blocks is
a generalized free product of finite median graphs without cut vertices. This implies that,
for fixed k, there are only finitely many k-regular, vertex-transitive median graphs without
infinite blocks.

Proof Suppose G is a connected vertex-transitive median graph without infinite blocks.
Then all blocks are finite and, as G is a median graph, they are median graphs. Now the
first assertion follows from Theorem 31.5.

If G is k-regular, then no free factor of G can have a vertex of degree larger than k
or more than k orbits. By Proposition 31.6 there are only finitely many median graphs of
maximum degree k with at most k orbits. Thus, the number of ways to represent G as a
generalized free product is finite. 2

As an application we construct the 4-regular, vertex-transitive median graphs with finite
blocks.

Proposition 31.8 The 4-regular, vertex-transitive median graphs with finite blocks are Q4,
the infinite regular tree of degree 4, and the graphs K2 ∗K2 ∗ C4, C4 ∗ C4, and K2 ∗Q3.

Proof We will apply Theorem 31.7. Thus we need all median graphs without cut vertices,
and degree at most 4. The regular ones are the hypercubes Q2, Q3, and Q4.

Any other has a vertex of degree at least 3 and at least two orbits. As its minimum
degree is at least 2, a free product with such a graph as a factor is at least 5-regular (see,
for instance, Figure 31.1, right) and cannot be used in our construction.

Thus the only possibilities are K∗,4
2 = K2∗K2∗K2∗K2, K2∗K2∗C4, C4∗C4, K2∗Q3, and

Q4. Notice that K∗,4
2 is the infinite regular tree of degree 4. The graphs G1 = K2 ∗K2 ∗C4,

G2 = C4 ∗ C4, and G3 = K2 ∗Q3 are shown in Figure 31.3. 2

The next theorem lists all 4-regular, vertex-transitive median graphs. For the proof we
refer to Imrich and Klavžar (2009). It follows the lines of the arguments in this section.

Theorem 31.9 Any vertex-transitive, 4-regular median graph must be one of the following:
Q4, the 4-regular tree, PZ�PZ , or one of the graphs G1, . . . , G10 from Figures 31.3 and 31.4.
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G4 G5

G6
G7

G8 G9

G10

FIGURE 31.4 The 4-regular, vertex-transitive median graphs without finite blocks.
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31.4 Two-Ended Median Graphs

We just considered infinite, vertex-transitive median graphs and proved that there are only
finitely many such graphs of a given finite degree with finite blocks. We also constructed
an infinite family of vertex-transitive median graphs with finite intransitive blocks, and
determined all vertex-transitive median graphs of degree 4.

The latter result extends the work of Bandelt and Mulder (1983), who showed that there
are exactly three cubic vertex-transitive median graphs: the 3-cube, the 3-regular tree, and
the infinite ladder K2 2PZ . By their work, infinite ladders are characterized as two-ended
vertex-transitive cubic median graphs. In this section we prove that the result also holds
without the condition of vertex-transitivity; see Theorem 31.13.

As the infinite ladder is Q1 2PZ , one might ask whether any regular median graph
with two ends must be Qn 2PZ . We will show that this is not the case by constructing
a 4-regular median graph that has a cut vertex. Also, this graph will have cubic growth,
whereas Cartesian products of hypercubes by PZ have only linear growth.

Thus the question arises how the growth rate is reflected in the structure of regular
median graphs. This leads to Theorem 31.14, the main result of this section. It characterizes
two-ended, regular median graphs of linear growth as the class of Cartesian products of finite
hypercubes by PZ . Because vertex-transitive graphs of linear growth are regular and have
only two ends, this also characterizes vertex-transitive graphs of linear growth as Cartesian
products of hypercubes by PZ .

Theorem 31.14 and the other main results of the present section are from Imrich and
Klavžar (2011). We continue with several lemmas needed in the proofs. For brevity, we often
blur the distinction between vertex sets such as Wab and the subgraphs they induce. Thus,
depending on context, Wab, etc. can be either a vertex set or a subgraph.

Lemma 31.10 Let Fab be a Θ-class of a k-regular median graph. If Uab is not peripheral,
then neither is Uba, and both Wab \Uab and Wab \Uab induce subgraphs with isometric rays.

Proof If Uab is not peripheral, there must be a vertex in Wab \ Uab, say c1. By the con-
nectedness of Wab we can assume that c1 is adjacent to a vertex in Uab, say a.

Because dG(a) = k we infer that dUab
(a) ≤ k − 2 and hence, as Uab

∼= Uba, we conclude
that dUba

(b) ≤ k − 2 as well. But then Uba cannot be peripheral either.
Now we consider Fac1 , Uac1 , and Uc1a. Because Uac1 does not contain ab and ac1, it is

clear that Uac1 is not peripheral. By the above, Uc1a is also not peripheral.
Proceeding in this manner we arrive at a sequence of vertices c1, c2, c3, . . . with the

property that neither Ucici+1
nor Uci−1ci is peripheral. It is easily confirmed (by definition

of Wuv, etc.) that any c1c2c3 . . . c` is a shortest path in Wab. Hence Wab contains an isometric
ray. By the same arguments this holds for Wba too. 2

Lemma 31.11 Let G be a finite, connected graph in which all vertices are of degree d or
d− 1. If the vertices of degree d− 1 induce a convex subgraph, then G is not median.

Proof Let v1, v2, . . . , vk be the vertices of degree d− 1 in G. Take an isomorphic copy G′

of G that is disjoint from G and form a new graph H that consists of G ∪G′ together with
the edges viv

′
i, for i = 1, . . . , k.

If G is a median graph, then H is a median graph too and the k edges viv
′
i form a

Θ-class. (This follows from Mulder’s Convex Expansion Theorem 12.8.) By Exercise 12.8,
G is a hypercube. But then edges in every Θ-class meet all vertices, which clearly is not the
case here. 2

We continue with another simple but important fact about median graphs.
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Lemma 31.12 If an edge of a median graph lies on a cycle, then it lies on a square.

Proof Suppose an edge e = uv lies on a cycle C of a median graph. By Lemma 11.3, there
is another edge f = xy on C with eΘf . Say x ∈ Uuv. As Uuv is connected, it has a u, x-path.
Consequently, there is a ladder from e to f . Then e together with the first “rung” of the
ladder after e induce the required square. 2

We begin with the cubic case and prove the following result that extends the classification
of cubic vertex-transitive median graphs.

Theorem 31.13 If G is a 2- or 3-regular median graph with two ends, then either G ∼= PZ

or G ∼= Q1 2PZ .

Proof If G is 2-regular, then clearly G ∼= PZ . Thus assume that G is 3-regular.
Let v be a vertex in some Uab. It is adjacent to a vertex in Uba, and thus its degree in

Uab can only be 1 or 2. As Uab is connected, it must be a finite path, a ray, a PZ , or a cycle.
Now, Uab is a PZ or a cycle if and only if it it 2-regular, if and only if it is peripheral. If

Uab
∼= PZ , then G ∼= Q1 2PZ , and we are done. If Uab is a cycle, then G is a finite regular

median graph and has zero ends.

Thus it remains to investigate the cases in which each Uab is a finite path or a ray and
is not peripheral. In what follows we show that each of these scenarios is impossible.

Suppose some Uab is a ray Ra with origin a. Then Uba is a ray Rb with origin b and
Uab ∪ Fab ∪ Uba is an infinite ladder L with first rung ab. With the exception of a and b,
all vertices of L have degree 3 in L. It follows that any path joining Wab \ Uab to L must
contain a, and any path from Wba \ Uba to L must contain b. By Lemma 31.10, Wab \ Uab

and Wab \ Uab have rays R1 and R2, respectively. Consider the three rays R1, R2, and Ra.
Notice that any path joining two of these rays pass through a or b. It follows that no ray
can meet two of them infinitely often. Thus rays R1, R2, and Ra belong to three distinct
ends. As G has only two ends, we conclude that no Uab is a ray.

Only one case remains: Every Uab is a finite path that is not peripheral. Then Uab ∪
Fab ∪ Uba is a finite ladder L. Let ab be the first rung and xy the last, where x ∈ Uab. By
Lemma 31.10, a, b, x, and y are origins of infinite rays, say Pa, Pb, Px, and Py . Now, Pa and
Px are separated from Pb and Py by the finite sets Uab and Uba. Because we have only two
ends, Pa and Px must be in the same end. Thus there must be a third ray R that meets
both of them infinitely often. Let P be a subpath of R from Pa to Px that does not meet
Uab and let P ′

a and P ′
x be the corresponding starting sections of Pa and Px, respectively.

Then

Uab ∪ P ′
a ∪R ∪ P ′

x

is a closed walk in Wab. Clearly, Uab is contained in a subcycle of this walk. But then every
edge of Uab is in a square in Wab by Lemma 31.12. This is only possible if Uab consists of
a single edge. It follows that Fab (and by the same argument, every Fuv) has exactly two
edges. Thus G is an even cycle, in contradiction to its degree. 2

For degree 4 the situation is quite different; there exist 4-regular, two-ended median
graphs not of the form Q3 2PZ . To construct such an example (Figure 31.5), we begin
with the Cartesian product H of a ray by itself. Clearly this is a median graph. We can
consider its vertices as nonnegative integer lattice points (i, j) on the plane. For brevity put
ui = (i, 0) and vj = (0, j).

For every integer r ≥ 0 we make a copy Hr of H , and introduce the notation ui,r and
vj,r for its vertices ui and vj .

Furthermore, for every r ≥ 0 we identify the path u1,ru2,ru3,r . . . of Hr with the path
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v0,r+1v1,r+1v2,r+1 . . . of Hr+1. Let the new graph be A. We take a copy of A, say A′, and
identify the path v0,0v1,0v2,0 . . . of A with the path v′0,0v

′
1,0v

′
2,0 . . . of A′.

All vertices of the new graph, say B, have degree 4, with the sole exception of the vertex
(0, 0), which has degree 3. Finally, let B′ be a copy of B and M the graph obtained by
joining the vertices (0, 0) of B and (0, 0)′ of B′ by an edge. (See Figure 31.5.) Clearly, M is
4-regular and has two ends.

u0,0

u1,0

u0,2

u3,4

H0

H1

H2

H3

H4

·
·
·

·
·
·

·
·
·

·
·
·

·
·
·

·
·
·

·
·
·

·
·
·

·
·
·

·
·
·

·
·
·

·
·
·

·
·
·

·
·
·

·
·
·

·
·
·

·
·
·

·
·
·

· · ·

· · ·

· · ·

· · ·

FIGURE 31.5 A 4-regular, two-ended median graph M .

One way to see that it is a median graph is as follows. The only isometric cycles of M
are 4-cycles. Moreover, M contains no K2,3, so the convex closure of any C4, that is, the
smallest convex subgraph of M containing the C4, is the C4 itself. Now apply a theorem
of Bandelt (1982) (see also Klavžar and Mulder (1999)), asserting that a connected graph
is median if and only if the convex closure of any isometric cycle is a hypercube. It is not
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difficult to check that M does not have linear growth, its growth rate is cubic, and it is
planar.

The construction of M can be modified so that the resulting 4-regular median graph has
arbitrarily many ends. If we match the ray uk,0uk+1,0uk+2,0 . . . of Hr with v0,1v1,1v2,1 . . . of
H1, and do not change the rest of the construction, then we obtain a graph, say Bk, with
2k− 1 vertices of degree 3. They can be joined by edges to the vertices of degree 3 in 2k− 1
copies of B.

Another easy modification shows that the sets that separate the ends of these examples
can be of arbitrary (finite) cardinality.

We are now ready for the main result of the section:

Theorem 31.14 If G is a two-ended, d-regular, median graph of linear growth, then

G ∼= Qd−2 2PZ .

Proof We induct on d. Theorem 31.13 serves as a basis, so we assume that d ≥ 4 and that
the theorem holds for all (d− 1)-regular two-ended median graphs with linear growth.

Case 1: G has an infinite Θ-class.
Let Fab be an infinite Θ-class. If Uab is peripheral, then Uba must also be peripheral by
Lemma 31.10. But then G = K2 2Uab, where Uab is a (d − 1)-regular two-ended median
graph with linear growth. For such Uab the assertion of the theorem is true, and hence

G = K22Uab = K2 2 (Qd−32PZ) = (K22Qd−3)2PZ = Qd−22PZ .

Therefore assume that Uab is not peripheral. By Lemma 31.10 there is an isometric ray
Pa = ac1c2 . . . cici+1 . . . in Wab \Uab. As Uab is infinite and locally finite, it too must contain
at least one end.

Because Pa is isometric the sets Fci−1ci are mutually disjoint. If they are all infinite,
then the number of edges at distance at most n from a is at least n(n− 1)/2. Because every
vertex is incident with just d edges, the number vertices of distance at most n from a is at
least at n(n− 1)/2d and G has at least quadratic growth, which is not possible.

Hence, one of the Ucici+1
is finite. Because it is finite it cannot be peripheral. Thus the

set Wci+1ci contains a ray, which is separated from Uab by a finite cutset. In other words,
ac1c2 . . . cici+1 . . . is the representative of an end that is different from the representative
of any end in Uab. Similarly, there must be a finite Uc′ic

′
i+1

that separates an end from Uba.
But then G is not two-ended.

Case 2 : All Θ-classes of G are finite.
Let Uab be arbitrarily chosen. Neither Uab nor Uba can be peripheral, otherwise G would be
finite. Using Lemma 31.10 again, there exist two rays Pa and Pb, originating from a, resp.
b, that are separated by the finite set Uab and thus represent the two ends of G.

Suppose a has a neighbor a′ in Uab that is in turn adjacent to a vertex that is neither
in Uab nor in Uba. Then a′ is the origin of a ray Pa′ , which must represent the same end as
Pa. By Lemma 31.12, there is a square aa′c′1c1, where c′1, c1 are not in Uab ∪ Uba.

Now we replace a, a′ by c1, c
′
1. Clearly, both c1 and c′1 have neighbors that are not in

Uc1a ∪ Uac1 . Thus we can find a square c1c
′
1c

′
2c2, where c′2, c2 are not in Uc2c1 ∪ Uc1c2 .

Continuing in this manner we get an infinite ladder whose first rung is aa′. We thus
have an infinite Θ-class. Thus any neighbor of a is adjacent only to vertices in Uab or Uba.

Let a′′ be such a neighbor and consider Faa′′ .
If a vertex v 6= a of Pa meets an edge e of Faa′′ , then there is a ladder L in Wab from

aa′′ to e. It is possible that aa′′ is not the only rung of L that is in Uab. Let xy be the last
rung of L in Uab. Thus both vertices x, y ∈ Uab have neighbors outside of Uab and Uba. But
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then we can use the arguments we used for aa′ for the edge xy to see that L is infinite.
Hence a is the only vertex of Pa that meets Faa′′ .

Analogously we show that b is the only vertex of Pb that meets Faa′′ . This means that
Uaa′′ separates the two ends Pa and Pb from Wa′′a.

Because Ua′′a is finite, it is not peripheral. Hence Wa′′a contains an infinite ray. This
ray is separated from the Pa and Pb by a finite set, which implies that G has at least three
ends, which is not possible. 2

31.5 Cartesian Product

To define products of infinitely many factors, it is convenient to replace the vector of coor-
dinates by a function from an index set for the factors into the vertex sets of the factors.
To be precise, let I be an index set and Gι, ι ∈ I, be a family of graphs. The Cartesian
product

G = �
ι∈I

Gι

is defined on the set of all functions x : ι 7→ xι, xι ∈ V (Gι), where two vertices x, y are
adjacent if there exist a κ ∈ I such that xκyκ ∈ E(Gκ) and xι = yι for ι ∈ I \ κ.

Not to have to change the terminology, we will still speak of the xι as coordinates of x.
For finite I this coincides with the usual definition. For products of infinitely many

nontrivial graphs Gι, we note a fundamental difference to the finite case. If we have only
finitely many factors, then the product is connected if and only if the factors are, whether
they are finite or not. However, if we have infinitely many factors, there are vertices that
differ in infinitely many coordinates. One cannot connect them by paths of finite length,
because the endpoints of every edge differ in just one coordinate.

We call the components of G weak Cartesian products. To identify a component, it
suffices to know a single vertex of it. Thus the weak Cartesian product

G =
a

�
ι∈I

Gι

is the connected component of �ι∈I Gι containing the vertex a. Instead of �
a
ι∈I Gι we

sometimes also write �ι∈I(Gι, aι). Clearly, �
a
ι∈I Gι = �

b
ι∈I Gι if and only if a and b

differ in only finitely many coordinates.

Theorem 31.15 Every connected graph is uniquely representable as a weak Cartesian prod-
uct of connected prime graphs.

We provide two proofs. For the first proof, the results on the Cartesian product form
Part I and II suffice; for the second proof, the product relation σ from Chapter 23 in Part
IV is needed.

First proof We begin with the observation that in a product G1 2G2, every edge is
either contained in a G1-layer or a G2-layer.

Let v0 ∈ V (G). For any edge e that is incident with v0, let Ge be the intersection of
the layers containing e in all decompositions G = G1 2G2. This intersection is not empty,
because it contains e.

We claim that two such subgraphs Ge, Gf are either identical or have just v0 in common.
To see this, assume that there is a decomposition G = G1 2G2 such that e ∈ Gv0

1 and
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f ∈ Gv0
2 . Then Gv0

1 ∩Gv0
2 = v0. Because Ge ⊆ Gv0

1 and Gf ⊆ Gv0
2 we also have Ge∩Gf = v0.

On the other hand, if no such decomposition exists, then e and f are always in the same
layer for any representation G1 2G2 of G. In other words, e and f are either both in Gv0

1

or both in Gv0
2 , and thus Ge = Gf .

Let Gι, ι ∈ I, be the set of all distinct Ge’s. We wish to show that

G =
v0

�
ι∈I

Gι .

We show first that every Ge is a factor of G. If Ge 6= G, then there exists a vertex
v 6∈ V (Ge). To such a vertex there is a factorization G1 2G2 of G where Ge ⊆ Gv0

1 6= Gv
1 .

As G is connected, we can even assume that v is adjacent to a vertex of Ge. Notice that the
edges between Gv0

1 and Gv
1 induce an isomorphism between them. Hence, these edges also

induce an isomorphism between Ge and its neighbors in Gv
1 . We denote this copy by Gv

e

and call it a layer. Let e′ be the image of e in Gv
e under this isomorphism. We leave it to the

reader to show that Gv
e is the intersection of all layers with respect to any decomposition

of G with respect to 2 that contain e′.
Notice that Ge and Ge′ are intersections of convex subgraphs and thus convex too. It is

easily seen that the subgraph of G induced by these two layers is also convex.
Continuing in this way, we cover all vertices of G with Ge-layers.
Now we define the projections pι(v) for the vertices of G. Recall that to any vertex v

in G and any layer Gu
1 in a representation G = G1 2G2, there is a unique vertex z in Gu

1

of shortest distance from v. Moreover, if x is any vertex in Gu
1 , then z is on a shortest

v, x-path. (Compare Exercise 4.6.)
For any ι ∈ I, we will define pι(v) to be the vertex x ∈ Gι of shortest distance from

v. Such a vertex exists, because G is connected, so we only have to show that it is unique.
Suppose there is another vertex y with this property. But then there exists a vertex w of
maximal distance from v that is on shortest v, x- and v, y-paths. If we can show that w ∈ Gι,
then x = w = y. Suppose w 6∈ Gι. Then there is a decomposition G = G1 2G2 such that
Gι ⊆ Gv0

1 , but w 6∈ Gv0
1 . By convexity of the layers, v cannot be in Gv0

1 . Hence the unique
vertex z ∈ Gv0

1 of shortest distance from w is on shortest paths from x and y to w, and
hence also to v, contrary to the definition of w. Thus x = y.

For any vertex u of Ge and every layer Gv
e , there thus exists a unique vertex yv of

shortest distance from u in Gv
e . Let Hu

e be the subgraph induced by these vertices. It is
easily seen that any two Hx

e , Hy
e are disjoint or identical.

Notice that we can use the square property for any two incident edges a,b, where one
edge is in a Gv

e and the other in Hv
e , because there must be a decomposition G1 2G2 of G,

where a and b have different product colors. With this property it is easily seen that all Hw
e

are isomorphic and that G ∼= Ge 2H
v0
e .

Given an edge f incident with v0, but not in Ge, we infer by the same arguments that
Gf factors Hv0

e , and therefore Ge 2Gf factors G by associativity. By induction, this holds
for all products Ge2Ge1 2Ge2 2 · · · 2Gek , where the ei are incident with v0.

Proceeding by induction again, it is now easy to show that for every vertex v of distance
k there are edges e1, . . . , ek′ , k′ ≤ k, that are incident with v0, such that v is in the v0-layer
of Ge2Ge1 2Ge2 2 · · · 2Gek′ .

Hence the union of these products is G and G = �
v0
ι∈I Gι because all edges incident

with v0 are needed. 2

This result is due to Miller (1970b) and Imrich (1971). The above proof has similarities
with the one of Imrich, whereas Miller extends the methods of Sabidussi (1960).

Second proof By the second proof of Theorem 23.2 and Corollary 23.3, σ is a product
relation. Furthermore, there is an isomorphism α from G onto a connected component of
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G∗. In our language, α is an isomorphism from G onto a weak Cartesian product whose
factors are components of the graphs induced by the σ-classes of G, one component from
each class.

Notice that σ = Θ ∪ τ∗ as in the finite case, and that Equation (23.1) also holds. That
is, if G = G1 2 · · · 2Gk, then σ ⊆ c(G1 2 · · · 2Gk). This means that σ is finer than any
product relation of G with respect to any factorization of G. Hence the components of the
graphs induced by the σ-classes of G are prime.

Uniqueness is shown as in the proof of Theorem 23.4, with the sole exception that the
cardinals s and k can be infinite, and that the connected components of the graph induced by
F1 are isomorphic to a connected component of the Cartesian product G∗

1 2G
∗
2 2 · · · 2G∗

s ,
and not to the product, if s is infinite. 2

We continue with the connection between prime factorization and the refinement prop-
erty for products. We say that two factorizations A2B = C 2D of a graph G have a com-
mon refinement if there are graphs A1, A2, B1, B2 such that A = A1 2A2, B = B1 2B2,
C = A1 2B1, and D = A2 2B2, and hence

A2B = (A1 2A2)2 (B1 2B2) = (A1 2B1)2 (A2 2B2) = C 2D .

Such refinements need not always exist. For example, N × ∆ = K2 × A on p. 90 have
no common refinement in Γ with respect to the direct product, but have one in Γ0. For
arbitrarily many factors we must be more precise. We say the refinement property holds if,
for any two factorizations

�
ι∈I

Aι = �
κ∈K

Bκ

of G, there exist graphs Cι,κ for which

Aι = �
κ∈K

Cι,κ and Bκ = �
ι∈I

Cι,κ .

If I or K are infinite, then these formulas have entirely different meanings for the Cartesian
and the weak Cartesian product. But, if a graph is connected, then it has the refinement
property with respect to both the Cartesian product and the weak Cartesian product. This
is a consequence of the fact that there exists a finest product relation, namely σ.

Clearly, the refinement property implies unique factorization for finite graphs. For infinite
graphs this is not the case. For example, the weak hypercube Q

n
of any infinite dimension n,

although uniquely factorable into prime graphs with respect to the weak Cartesian product,
is not representable as a Cartesian product of prime graphs. Nonetheless, it satisfies the
refinement property with respect to the Cartesian product.

It is an interesting exercise though to show that the Cartesian product G = �ι∈I K2,
where |I| = ℵ0, has no other representations as a product of prime graphs. Notice that G
has uncountably many connected components. See Exercises 31.12 and 31.13.

We conclude the section with the connection between the automorphism group of G and
the groups of the prime factors. As such, it is same as in the finite case; see Theorem 6.10.
This was observed by Miller (1970a) and Imrich (1971). Some precautions are appropriate
though. For infinite graphs it is not true that they have transitive automorphism group if
and only if each prime factor has transitive group. To see this, let the graphs Pi, i ∈ Z, be
isomorphic to the path xyz and set

G = �
i

(Pi, ai) , (31.1)

where ai = x when i is even and ai = y otherwise. Evidently the path xyz is not vertex-
transitive. Nevertheless, G is. Note first that every vertex b of G differs from a in only
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finitely many coordinates; thus all three coordinates x, y and z occur infinitely often in b.
With this in mind, it is not hard to find an automorphism of G that maps a into b; see
Exercise 31.14.

This construction is due to Imrich (1989). Notice the similarity with the construction of
infinite, vertex-transitive graphs from finite, intransitive blocks in Section 31.2.

The factorization results in this section imply cancellation properties for the weak Carte-
sian product and describe the structure of the automorphism groups of infinite Hamming
graphs (if we define them as weak Cartesian products of complete graphs).

The canonical isometric embedding of a connected graph G into a Cartesian product also
extends to the infinite case. Thus infinite connected graphs can be canonically embedded
into weak Cartesian products. Theorem 13.8 holds without restrictions, but we have a
slightly different version of Theorem 13.9.

Theorem 31.16 Let G be a connected graph with transitive automorphism group and α
the canonical isometric embedding of G into the weak Cartesian product G∗ = �

a
ι∈I G

∗
ι .

Suppose that to every G∗
ι there are at most finitely many G∗

κ that are isomorphic to G∗
ι .

Then G∗ has transitive automorphism group.

For a proof see Imrich (1989). Even Theorem 2.8 holds for graphs with arbitrary cardi-
nality if infinite cubes are understood to be weak Cartesian products; see Imrich (1969b).

Distinguishing number

We now turn to the distinguishing number of infinite products and of infinite graphs of
general interest. The definition of the distinguishing number in Section 6.2 naturally extends
to the infinite case. Many results are similar, but there are some exceptions when it comes
to large cardinalities.

Watkins and Zhou (2007) showed that all infinite, locally finite trees without vertices of
degree 1 have distinguishing number 2, unless they are asymmetric (then their distinguishing
number is 1). Imrich, Klavžar, and Trofimov (2007) extended the result to tree-like graphs
of cardinality not greater than c, but the result is no longer true for larger cardinalities.

Imrich et al. (2007) also show that the countable random graph has distinguishing num-

ber 2, and that D(K
n
2K
n
) = D(K

n
2K

2n
) = 2 for any infinite cardinal n. But if 2n < m,

then

D(K
n
2K
m

) > n .

For the weak infinite cube Q
n

of any dimension n, it is shown that D(Q
n
) = 2, as in

the finite case. However, the proof is rather tricky. It proceeds by transfinite induction, and
limit cardinals turn out to be a big hindrance.

31.6 Strong and Direct Product

In this section we begin with general results about the strong and direct product. Then we
introduce the weak direct product and illustrate some of its surprising features.

For the definition of the direct product we assume that our graphs are in Γ0. The vertex
set of the direct product

G =×
ι∈I

Gι
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is the same as that of the Cartesian one. Two vertices x, y are adjacent if xιyι ∈ E(Gι) for
every ι ∈ I. If all factors Gι are in Γ, then xy can be an edge of G only if x and y differ in
all coordinates.

The strong product is then defined as

�
ι∈I

Gι = N (×
ι∈I

L(Gι)) ,

where the Gι are in Γ, and where N is an operator that removes all loops. (See Exercise 8.7
for its definition.) In this case it is not necessary that x and y differ in all coordinates if
they are adjacent.

As in the finite case, the projections pι of G into the factors are homomorphisms for the
direct product and weak homomorphisms for the strong product.

We note in passing that neither the direct nor the strong product of finite graphs is
connected if there is no finite bound on the diameter of the factors. To see this, let G =×∞

i=1 Pi, and consider the vertices x, y, where xi = 1 and yi = i for all i ∈ N. If there
exists an x, y-path P of finite length k, then the projection pi(P ) of P into the ith factor
must have length at most k. However, if k + 1 < i, then k < d

(
pi(x), pi(y)

)
≤ |P | = k,

which is not possible.
We continue with several deep results from McKenzie (1971), who is still the most

authoritative source for the infinite case. The main topics of the paper are refinement, ab-
sorption, and cancellation results, where refinement is defined as for the Cartesian product;
see Section 31.5. From our point of view, the main decomposition result is the following
theorem:

Theorem 31.17 (Refinement Theorem) Every connected, nonbipartite thin graph G
has the refinement property. The requirement that G is thin can be dropped if G is finite or
if it has a vertex that is not in relation R to any other vertex of G.

Note that the R-equivalence class of a vertex u is trivial if and only if uRv implies
u = v. For finite graphs this theorem implies Theorem 8.17, the uniqueness of the prime
factorizations of connected, nonbipartite graphs with respect to the direct product.

The main problems with infinite direct products are the extraction of complete factors
and the factorization of complete graphs (with loops at every vertex). For example, if n is an

infinite cardinal, then
(
L(K2)

)n ∼=
(
L(K3)

)n
, but there is no common refinement. However,

L(Kℵ0
)

has the refinement property.
If the common refinement property holds, one does not know a priori whether it can

be continued indefinitely. If it stops, that is, if there is a prime factorization of the graph
in question, then, as McKenzie (1971) shows, it is unique for thin, connected graphs with
a loop at every vertex. In other words, connected, simple thin graphs that allow a prime
factor decomposition with respect to the strong product have unique prime factorizations.

Another important result is the following absorption theorem:

Theorem 31.18 If A ∼= B×C ×A, where A is countable and B finite, then A ∼= B×A ∼=
C ×A.

The implication A×B ∼= A×C =⇒ B ∼= C is a cancellation law. It is a consequence of
unique prime factorization but it may also hold in a more general situation.

Theorem 31.19 Let A,B,C ∈ Γ. If A is finite and connected, then A�B ∼= A�C implies
that B ∼= C.
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These compare with the renowned Proposition 9.7 and Theorem 9.10 due to Lovász
(1967).

One of the problems left open by McKenzie (1971) was the existence of countable graphs
G with the property that G ∼= G3 but G 6∼= G2. This was solved affirmatively by Trnková
(1976) for, roughly speaking, the strong product, and (1984) for connected simple graphs
with respect to the direct product. With Koubek, Trnková also considered representations
of countable commutative semigroups by Cartesian, strong, or direct products. See Trnková
and Koubek (1978). Later she generalized these results to products of metric, uniform, and
topological spaces; see, for example, Trnková (1990).

Weak direct and weak strong product

We first introduce the weak direct product and present conditions that ensure unique prime
factorization of graphs with respect to it.

The fact that the Cartesian product G = �ι∈I Gι of infinitely many nontrivial con-
nected factors is disconnected was the motivation to call the connected components of G
weak Cartesian products. The vertex set of such a component is then easily characterized
as the set of all vertices that differ in only finitely many coordinates from any given vertex
in that component.

If we use this without safeguards to define the vertex set of the weak direct product,
we run into connectedness problems again. In addition to bipartiteness, we have already
encountered two other obstacles to the connectedness of the weak direct product: The first
is a lack of loops in the factors, and the other the lack of a finite upper bound on the
diameter of the factors.

Therefore we define the weak direct product

G =
a×

ι∈I

Gι

only if at most finitely many of the factors do not have loops at every vertex, and if there
exists a bound N such that diam(Gι) < N for all ι ∈ I. It is the subgraph of ×ι∈I Gι

induced by all vertices that differ from a ∈ V (G) in only finitely many coordinates. Clearly,
G is disconnected if more than one factor is bipartite.

The key to the prime factorization is the Cartesian skeleton. We define it as in the finite
case. In analogy to Proposition 8.10 in the finite case, we have

S(×
ι∈I

Gι) =×
ι∈I

S(Gι) ,

if ×ι∈I Gι has no isolated vertices. (And under the usual assumption of R-thinness.) Con-
nectedness is crucial again; unfortunately, we have no good general criteria to decide whether
S(G) is connected. However, suppose the Cartesian skeleton S(G) of an infinite, thin graph
G is connected. Then S(G) has unique prime factorization with respect to the weak Carte-
sian product. We show below how it can be used to obtain the (unique) prime factorization
of G with respect to the weak direct product:

Theorem 31.20 Let G ∈ Γ0 be a connected, R-thin, infinite graph with connected Carte-
sian skeleton S(G). Then G is uniquely representable as a weak direct product of prime
graphs.

Proof Slightly modifying the arguments from the second proof of Theorem 31.15, we
choose a vertex v0 and a Cartesian pair v0v. Because v0v is an edge in S(G), we set e = v0v.
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Given any factorization G = G1 × G2, e is an edge in an S(G1)- or an S(G2)-layer of
S(G) = S(G1)2S(G2). Let e ∈ S(G1)v0 , and given another decomposition G = H1 2H2,
let e ∈ S(H1)v0 . By the Refinement Theorem 31.17, the vertex set of S(G1)v0 ∩ S(H1)v0 is
(the vertex set of) a layer of a direct factor of G.

Let Ge denote the intersection of all such layers. It has more than one vertex because
it contains e, and one can show, just as in the case of the weak Cartesian product, that
its vertex set is the vertex set of a layer of a prime factor of G with respect to the direct
product. 2

The relationship between the automorphism groups of the factors and that of the product
is the same as for weak Cartesian products.

As an example, consider G =×a

ι∈I Gι, where Gι = L(Q3) for each index and where a is

an arbitrary vertex of×ι∈I Gι. Clearly Q3 = S(L(Q3)) and S(G) = �ι∈I K2 for infinite I.
Notice that S(G) depends only on G and not on the representation used to define it. Because
L(Q3) is prime with respect to the direct product, it is not hard to infer with the refinement
property that the factorization G = ×ι∈I Gι is the only prime factor decomposition of G
with respect to the weak direct product; see Exercises 31.17 and 31.18.

Notice that G = G×,k for any k, and that any presentation of G as a product of finitely
many factors has a refinement. The example shows again that indefinite continuation of the
refinement process and uniquely defined prime factors are no contradiction.

We should like to remark that the Cartesian skeleton of×ι∈I Q3 consists of uncountably
many components, each of which is isomorphic to the infinite weak hypercube of dimension
|I|, and that each component induces an edgeless subgraph of×ι∈I Q3. See Exercise 31.19.

From the above it should be clear how to define the weak strong product �
a
ι∈I Gι. It is

connected if all factors are connected and if maxι∈I(diam(Gι)) is finite.

As we have already mentioned in Section 15.1, the weak strong product is used by Bon-
ato, Hahn, and Tardif (2010) for the construction of infinite k-cop-win graphs, that is, of

graphs G with c(G) = k. For every infinite cardinal n, they construct 2n nonisomorphic
k-cop-win graphs satisfying additional properties, such as vertex-transitivity, or having uni-
versal endomorphism monoid and automorphism group. Vertex-transitivity is achieved by
the method proposed by Imrich (1989) for the weak Cartesian product; see also Equa-
tion (31.1). The paper also makes use of the X-join, a generalization of the lexicographic
product due to Sabidussi. (See p. 128 for the definition.) For some of its properties, see the
remarks after Theorem 31.22 in Section 31.7.

We conclude with the analogue to Theorem 31.20.

Theorem 31.21 Let G be a connected, infinite graph with connected strong Cartesian skele-
ton S[G]. Then G is uniquely representable as a weak strong product of prime graphs.

Again the relationship between the automorphism groups of the factors and that of the
product is the same as for weak Cartesian products.

31.7 Lexicographic Product

The investigation of the lexicographic product of infinite relational structures goes back to
Chang and Morel (1960). The following theorem states one of their results in the language
of graphs.
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418 Infinite Graphs

Theorem 31.22 If A,B,C, and D are graphs, each with at least one edge, and A ◦ B ∼=
C ◦D, then the following assertions hold:

(i) If |V (B)| = |V (D)| < ℵ0, then A ∼= C.

(ii) If A and C are finite, then one of the graphs B or D is isomorphic to a subgraph
of the other.

Of course, Theorem 31.22 (i) implies Theorem 10.8. Part (ii) is important, because it
already pinpoints a possibility that allows the automorphism group of a lexicographic prod-
uct to properly contain the wreath product of its factors, even if the conditions of Theorem
10.13 are satisfied. This was treated by Hemminger (1968), who gave a complete charac-
terization of the situation in which the automorphism group of a lexicographic product is
the wreath product of the groups of the factors, respectively, when an X-join of graphs has
only “natural” automorphisms.

Note that in the result above, the number of factors is finite, although the factors, or at
least some of them, are allowed to be infinite. To allow infinitely many factors, it is natural
to order them and to define a weak lexicographic product. For steps in that direction, see
Sabidussi (1959). The concept dates back to Birkhoff (1940).

Corollary 10.17, which asserts that vertex-transitive graphs G are retracts of Cayley
graphs, still holds in the infinite case. This is so because Theorem 10.16 remains valid for
infinite graphs; one only has to replace the natural number n of the statement by the order
of the stabilizer of a vertex of G. This approach is not very satisfactory if the order is
infinite, because one may view the smallest n for which G ◦ Dn admits a regular group
of automorphisms as a measure of how close G is to a Cayley graph. In the attempt to
find out how close vertex-transitive graphs are to Cayley graphs, does there exist a general
procedure for finding a smaller n, say a finite one, such that the assertion is true? Or some
other method to show that they are close?

One answer is due to Trofimov (1984), whose result we provide below.
Let us recall first that a system of imprimitivity with respect to the action of a permu-

tation group on a set V is a partition of V into disjoint sets called blocks such that every
element of the group induces a permutation of these blocks. Moreover, a group is finitely
generated if there exists a finite set S such that every element of A can be written as a
product of elements in S. The set S is called a set of generators. If A is infinite, then arbi-
trarily long—but finite—words in the elements of S must be admitted. Also, A is countable
in this case.

Now the result of Trofimov (1984):

Theorem 31.23 Let G be an infinite, vertex-transitive, connected locally finite graph. Then
G has polynomial growth if and only if there exists an imprimitivity system γ of Aut(G)
on V (G) with finite blocks such that Aut(G/γ) is finitely generated and the stabilizer in
Aut(G/γ) of every vertex in the graph G/γ is finite.

Together with Theorem 10.16 of Sabidussi, this theorem shows that vertex-transitive
graphs of polynomial growth are closely related to Cayley graphs.

Theorem 31.23 actually states that Aut(G/γ) also has polynomial growth, where the
growth rate of a finitely generated group is defined as the growth rate of any of its Cay-
ley graphs with respect to a finite generating set. Moreover, Gromov (1981) characterized
groups of polynomial growth as finitely generated groups with a nilpotent2 subgroup of fi-
nite index. One can view Gromov’s theorem as the fundamental result about Cayley graphs
of polynomial growth and Trofimov’s theorem as the extension to vertex-transitive graphs.

2Nilpotent groups include all Abelian groups and are solvable. See Hall (1976).
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Trofimov’s proof is deep in itself; it is not an easy consequence of Gromov’s characterization
of groups of polynomial growth.

Exercises

31.1. Prove that the existence of a maximal spanning forest in an infinite graph is equiv-
alent to the axiom of choice.

31.2. Show that the growth rate of a locally finite, connected graph is independent of the
choice of the base point.

31.3. Suppose all blocks of a connected graph G are median graphs. Show that G is a
median graph.

31.4. Show that every tree in which all vertices have the same degree d > 2 has exponential
growth.

31.5. What is the growth rate of the integer lattice of dimension k?

31.6. For a given natural number k, find a tree with growth rate nk. Is this still possible
for real k?

31.7. Let v be a vertex of an infinite tree T . For two rays P,Q emanating from v, set
d(P,Q) = 1/(|E(P ) ∩ E(Q)| + 1). Show that d is a metric on the set of ends of T .

31.8. Let T be a tree in which every vertex has the same finite degree. Show that the
metric space consisting of the set of ends E(T ) of T and the metric from Exercise 31.7
is compact.

31.9. Prove Proposition 31.1.

31.10. Give an example of a median graph that contains rays but no isometric ones.

31.11. Let G be a connected graph. If σG = (ΘG ∪ τG)∗ has infinitely many equivalence
classes, then G has infinitely many prime factors Gι, ι ∈ I. How does one identify
the component of �ι∈I Gι to which G is isomorphic?

31.12. Show that the graph G = �ι∈I K2 , where |I| = ℵ0, has uncountably many con-
nected components.

31.13. Show that the graphG of Exercise 31.12 has unique prime factorization with respect
to the Cartesian product if one admits only connected factors.

31.14. Show that the graph G in Equation (31.1) has transitive automorphism group.

31.15. Show that a connected infinite graph can have transitive automorphism group even
if all prime factors with respect to the Cartesian product have trivial groups.

31.16. Prove or disprove: The Cartesian product of infinitely many connected prime graphs
has transitive group if and only if every factor has transitive automorphism group.

31.17. Show that Q3 = S(L(Q3)).
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31.18. Prove that G =×ι∈I Gι is the only prime factor decomposition of G with respect
to the weak direct product.

31.19. Let G = ×ι∈I Q3. Show that S(G) consists of uncountably many components,
each of which is isomorphic to the infinite weak hypercube of dimension |I|, and
that each component of S(G) induces an edgeless subgraph of ×ι∈I Q3

31.20. Show that every bipartite graph G is a zero-divisor.
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Our choice of topics in this chapter is governed by an interest in extending to digraphs
some of the themes of earlier chapters. We first note that the four standard products can be
interpreted as products on digraphs. Then we develop properties of connectedness, prime
factorization, and cancellation. For the lexicographic product, these issues (as well as that
of commutativity) are intimately tied to transitive tournaments, and one section is devoted
to this.

32.1 Definitions

Recall from Chapter 1 that a digraph G is a pair G = (V (G), A(G)), where A(G) ⊆
V (G) × V (G). An arc (x, y) ∈ A(G) is abbreviated as xy and is visualized as an arrow
pointing from x to y. As usual, a reflexive arc xx is called a loop.

For example, the directed cycle
−→
C n is the digraph with vertices {0, 1, 2, . . . , n− 1} and

arcs {01, 12, 23, . . . , (n− 1)0}. In particular,
−→
C 1 consists of a single vertex with a loop. The

directed path
−→
P n is

−→
C n with one arc removed. (Note

−→
P 1 = K1.)

Any graph G can be identified as a symmetric digraph, that is, one for which xy ∈ A(G)

if and only if yx ∈ A(G). (For example,
−→
C 2 = K2.) In this sense, the entire theory of graphs

falls under the umbrella of the theory of digraphs. Consequently, many notions involving
graphs apply equally well to digraphs. For instance, a homomorphism ϕ : G → H between
digraphs is a map V (G) → V (H) for which ϕ(x)ϕ(y) ∈ A(H) whenever xy ∈ A(G).
Similarly, the notions of weak homomorphism and isomorphism—which we defined earlier
for graphs—are formulated for digraphs exactly as they were for graphs.

In this vein, the four standard products can be understood as products on digraphs; we
simply interpret pairs such as xy and (x, u)(y, v) as arcs rather than edges. For example,
the direct product G×H of digraphs has vertex set V (G)×V (H), and (x, u)(y, v) is an arc
in the product precisely if xy and uv are arcs in G and H , respectively. Figure 32.1 shows
examples of the Cartesian, direct, and strong products of digraphs.

In Figure 32.1, some edges of the direct product are dotted to emphasize the fact that−→
C 4 ×

−→
C 6 is two copies of

−→
C 12. This illustrates the general formula

−→
C p ×

−→
C q

∼= gcd(p, q)
−→
C lcm(p,q), (32.1)

whose proof is Exercise 32.1.

421
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−→

C 42
−→

C 6

−→

C 4 ×

−→

C 6

−→

P 4 �
−→

C 6

FIGURE 32.1 Products of digraphs.

As in the case for graphs, the four products of digraphs are associative and (except for
the lexicographic product) commutative, and have the usual units.

A remark is in order. When dealing with the Cartesian, strong, or lexicographic products,
we often assume tacitly that the digraphs involved have no loops. The reason is that if we
admit loops, then the projections may not be weak homomorphisms, and layers may not
be isomorphic to factors. (Consider K12C1.) This can lead to theoretical difficulties. By
contrast, the direct product poses no such obstacles, so we may admit loops in that case.

32.2 Connectedness

Digraphs have several notions of connectedness. To review them, we first recall the notion
of walks. A sequence of vertices x1, x2, . . . , xn in a digraph is called a directed walk if xixi+1

is an arc for each 1 ≤ i < n. On the other hand, if xixi+1 or xi+1xi is an arc for 1 ≤ i < n,
we say there is a walk from x to y. If x1 = xn, the walk (or directed walk) is closed. (Notice
that a walk may not be uniquely determined by its vertex sequence, as the sequence gives
no information on orientation of arcs. This causes no difficulty in what follows.)

A digraph is said to be strongly connected provided that for each pair x, y of its vertices,
there is a directed walk from x to y and a directed walk from y to x. The maximal strongly
connected sub-digraphs of a digraph are called its strong components.

A digraph is unilaterally connected if for each pair x, y of its vertices, it has a directed
walk from x to y or a directed walk from y to x. (Because this relation on vertices is not
generally symmetric, there is no notion of unilateral components.) Finally, a digraph is
connected if for any two vertices x, y there is a walk from x to y. A maximal connected
sub-digraph is called a component of the digraph.

The straightforward proofs of the following propositions are left as exercises.

Proposition 32.1 If G =
∏k

i=iGi denotes the Cartesian or strong product of digraphs Gi,
then G is strongly connected (respectively connected) if and only if each factor Gi is strongly
connected (respectively connected).
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Proposition 32.2 A lexicographic product G1◦G2◦· · ·◦Gk of nontrivial digraphs is strongly
connected (respectively connected) if and only if the first factor G1 is strongly connected
(respectively connected).

See Exercise 32.4 for a characterization of unilaterally connected Cartesian and strong
products, and Exercise 32.5 for the lexicographic product.

Connectedness for the direct product is a much more delicate issue. For a digraph G,
let d(G) be the greatest common divisor of the lengths of all the closed directed walks in
G. (Any such walk has a decomposition into directed cycles, so d(G) is also the gcd of
the lengths of all directed cycles in G.) See McAndrew (1963) for a proof of the following
theorem.

Theorem 32.3 If G1, G2, . . . , Gk are strongly connected digraphs, then the direct product
G1 ×G2 × · · · ×Gk has

d(G1) · d(G2) · · ·d(Gk)

lcm
(
d(G1), d(G2), . . . , d(Gk)

)

strong components.

Notice how this theorem agrees with the number of components in Equation (32.1).
Any directed walk from (x1, x2, . . . , xk) to (y1, y2, . . . , yk) in G = G1 × G2 × · · · × Gk

projects to each Gi as a directed walk from xi to yi. It follows that if G is strongly connected,
then so is each factor. Combining this with Theorem 32.3, we get:

Corollary 32.4 A direct product G1 × G2 × · · · × Gk is strongly connected if and only if
each Gi is strongly connected and the numbers d(G1), d(G2), . . . , d(Gk) are relatively prime.

We conclude this section with a characterization of unilaterally connected direct prod-
ucts, due to Harary and Trauth (1966).

Theorem 32.5 A product G1 ×G2 × · · · ×Gk is unilaterally connected if and only if

(i) At most one factor, say G1, is unilaterally connected but not strongly connected,
(ii) G′ = G2 ×G3 × · · · ×Gk is strongly connected, and

(iii) For each strong component C of G1, C ×G′ is strongly connected.

32.3 Tournaments and the Lexicographic Product

Recall that a tournament is an orientation of Kn—in other words, a directed graph with
no loops, and such that any two distinct vertices are connected by exactly one arc. A
tournament is transitive if whenever xy and yz are arcs, then xz is an arc too. For each
positive integer n, there is (up to isomorphism) exactly one transitive tournament on n
vertices, and we denote it as Tn.

The Cartesian, strong, or direct product of two nontrivial tournaments is not a tour-
nament. (Consider the product of T2 with itself.) But the lexicographic product of two
tournaments is again a tournament; moreover, the product is transitive if and only if each
factor is transitive (Exercise 32.7). Thus

Tm ◦ Tn ∼= Tmn .
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In particular, Tm ◦ Tn ∼= Tn ◦ Tm. This suggests that the commutativity properties for the
lexicographic product of digraphs are richer than those laid out for graphs in Theorem 10.9.
In fact, Dörfler and Imrich (1972) prove the following:

Theorem 32.6 Two digraphs commute with respect to the lexicographic product if and only
if both are powers of one and the same digraph, or both are complete graphs, or both are
completely disconnected graphs, or both are transitive tournaments.

We now summarize other results from Dörfler and Imrich (1972) that lead to theorems
concerning prime factorization and cancellation. We use the notation and definitions of
Chapter 10, suitably adapted to digraphs (without loops). For example, the join of two

digraphs is defined as X ⊕ Y = X + Y . The following equations hold not just for graphs,
but also for digraphs:

Dn ◦ (X + Y ) = Dn ◦X +Dn ◦ Y ,
Kn ◦ (X ⊕ Y ) = Kn ◦X ⊕Kn ◦ Y .

Theorem 32.7 Suppose there is an isomorphism ϕ : X ◦Y → A◦B, where |V (Y )| - |V (B)|
and |V (B)| - |V (Y )|. If Y is indecomposable with respect to + and ⊕, then there exist a
digraph G and transitive tournaments Tn and Tm such that X ∼= G ◦ Tn, and A ∼= G ◦ Tm,
and ϕ maps the (Tn ◦ Y )-layers of G ◦ (Tn ◦ Y ) onto the (Tm ◦ B)-layers of G ◦ (Tm ◦ B).
Furthermore,

n =
|V (B)|

gcd(|V (Y )|, |V (B)| and m =
|V (Y )| · |V (B)|

gcd
(
|V (Y )|, |V (B)|

)
· |V (A)| .

This leads to a prime factorization theorem, and we now introduce several ideas that
are necessary for its statement. If q is prime and if Dq ◦X +Dm is prime, then

(Dq ◦X +Dm) ◦Dq = Dq ◦ (X ◦Dq +Dm)

are two different prime factorizations of the same graph. We say they are related by a
transposition of a totally disconnected graph. Analogously,

(Kq ◦X ⊕Km) ◦Kq = Kq ◦ (X ◦Kq ⊕Km)

are two different prime factorizations of the same graph, and we say they are related by a
transposition of a complete graph. Also, we call the transition from Tm ◦ Tn to Tn ◦ Tm a
transposition of transitive tournaments.

Here is the main theorem concerning prime factorings over the lexicographic product.

Theorem 32.8 Any prime factorization of a digraph over the lexicographic product can
be transformed into any other prime factorization by transpositions of totally disconnected
graphs, transpositions of complete graphs, and transpositions of transitive tournaments.

Parallel with Chapter 10, development along these lines gives the following particularly
strong cancellation property for the lexicographic product of digraphs, which is completely
analogous to the corresponding results for graphs (Proposition 10.7 and Theorem 10.8).

Theorem 32.9 If X ◦ Y ∼= A ◦B and |V (Y )| divides |V (B)|, then Y is right divisor of B.
If |V (Y )| = |V (B)|, then Y ∼= B and X ∼= A.
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32.4 Prime Factorings

Theorem 32.8 describes prime factorings of digraphs over the lexicographic product: Any
two prime factorings differ by transpositions of Kn’s, Dn’s and Tn’s. We now examine the
corresponding problem for the other products.

For the Cartesian product, we have the following analogue of our Theorem 6.6, due to
Feigenbaum (1986), who also describes a polynomial algorithm for finding the prime factors.

Theorem 32.10 Every finite connected digraph has a unique representation as a Cartesian
product of prime digraphs, up to isomorphism and order of factors.

The proof uses the observation that any Cartesian-prime factoring of a digraph induces
a factoring (not necessarily prime) of the underlying graph. It is then possible to use the
unique prime factorization of the underlying graph to complete the proof.

For the direct product, a special kind of connectedness is required. An anti-walk is a
walk for which any two successive arcs have opposite orientations. Anti-walks of even length
are divided into two types: those whose first and last arcs are directed toward the endpoints,
and those whose first and last arcs are directed away from the endpoints. See Figure 32.2.

x1

x1

x3

x3

x5

x5

x2

x2

x4

x4

x = x0

x = x0

x6 = y

x6 = y

FIGURE 32.2 The two types of anti-walks.

For the purposes of this section, let us say that a digraph is anti-connected if any pair
of its vertices is joined by even anti-walk of both types.1

The fundamental work of McKenzie (1971) on relational structures yields the following
as a corollary.

Theorem 32.11 Every finite anti-connected digraph has a unique representation as a direct
product of prime digraphs (with loops allowed), up to isomorphism and order of factors.

To see that prime factorization may fail if the hypotheses of this theorem are not met,
let G be the closed even anti-walk on six vertices, which is not anti-connected. Indeed, we
have the nonunique prime factorization

G ∼= −→
P 2 ×K3

∼= −→
P 2 ×H ,

where H is the path of length two with loops at each end.
Theorem 32.11 leads almost immediately to a parallel theorem for the strong product.

For a digraph G, let L(G) be the digraph obtained from G by adding a loop to each vertex.

1This differs from standard usage, which requires only that every two vertices be joined by some anti-
walk.
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Notice that if G is connected, then L(G) is automatically anti-connected, and it has neither
sources nor sinks. Mimicking the alternative proof of Theorem 7.14 from Section 8.7 (which
uses the operator L), we get the following:

Theorem 32.12 Every finite connected digraph (without loops) has a unique representation
as a strong product of prime digraphs, up to isomorphism and order of the factors.

There is no general polynomial algorithm that decomposes a finite, anti-connected thin
graph into its prime factors with respect to the direct product. A step in this direction was
taken by Imrich and Klöckl (2007).

They consider graphs where any two vertices are connected by a path of the type depicted
at the top of Figure 32.2 and call such graphs N+-connected. If no two vertices have the
same out-neighborhood, then such a graph is R+-thin in their terminology. They show that
the prime factor decomposition of every finite N+-connected, R+-thin graph is unique, and
that it can be computed in polynomial time.

Notice that this class encompasses some graphs that are not anti-connected and R-thin.
In other words, graphs that do not satisfy the conditions of Theorem 32.11. Imrich and
Klöckl relax connectivity, but strengthen the thinness condition.

32.5 Cancellation

We now extend the investigations of Chapter 9 to digraphs. Given that A ∗ C ∼= B ∗ C for
some product ∗, we seek conditions on the digraphs A,B, and C that guarantee A ∼= B.

For the lexicographic product, Theorem 32.9 gives a complete and satisfactory answer.
Cancellation for the Cartesian product of connected digraphs is an immediate consequence
of the uniqueness of prime factorization; for the disconnected case, we need only apply the
argument from Section 6.4 to see that cancellation holds in general.

By contrast, cancellation fails for the direct product. A digraph C is said to be a zero
divisor if there exist nonisomorphic digraphs A and B for which A × C ∼= B × C. For

example, Figure 32.3 shows that
−→
C3 is a zero divisor: If A =

−→
C3 and B = 3

−→
C1, then A 6∼= B,

yet A×−→
C3

∼= B ×−→
C3. (Both products are isomorphic to 3

−→
C3.)

A B

−→

C3

−→

C3A ×

−→

C3 B ×

−→

C3

FIGURE 32.3 Example of a zero divisor.

In the category of graphs, C is a zero divisor if and only if it is bipartite. This follows
from Theorem 9.10 and the discussion preceding it. As the above example indicates, the
situation for digraphs is more complex. The following characterization is due to Lovász
(1971).
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Theorem 32.13 A digraph C is a zero divisor if and only if there is a homomorphism

C → −→
C p1

+
−→
C p2

+
−→
C p3

+ · · · +
−→
C pk

for prime numbers p1, p2, . . . , pk.

Thus
−→
C n is a zero divisor if n > 1, as there is a homomorphism

−→
C n → −→

C p for any prime

divisor p of n. Also, each
−→
P n is a zero divisor, as there are homomorphisms

−→
P n → −→

C p.

Given a digraph A and a zero divisor C, a natural problem is to determine all digraphs
B for which A×C ∼= B ×C. Hammack and Toman (2010) give some partial results in this
direction. Let Perm(V (A)) be the set of permutations of V (A). For α ∈ Perm(V (A)), let
Aα be the digraph with V (Aα) = V (A), and with an arc xα(y), for each arc xy of A. If
A×C ∼= B×C, then B = Aα for some α ∈ Perm(V (A)). This condition is also sufficient if

there is a homomorphism C → −→
P 2. For more general zero divisors, more stringent conditions

must be placed on the permutation α. (For an indication of this, see Exercises 32.8, 32.9,
and 32.10.) A complete solution to this problem has yet to be realized.

We now turn to the strong product. Here cancellation fails in general; indeed,
−→
C 1�

−→
C 1

∼=
K1 �

−→
C 1. However, if we disallow loops, then Theorem 32.13 yields a positive result.

Theorem 32.14 If A � C ∼= B � C for digraphs A,B, and C without loops, and C is
nonempty, then A ∼= B.

Proof Exactly as for graphs in Section 8.7, it is immediate that L(G�H) ∼= L(G)×L(H)
for any digraphs G and H . Then from A�C ∼= B�C, we get L(A)×L(C) ∼= L(B)×L(C).
By Theorem 32.13, L(C) is not a zero divisor, so L(A) ∼= L(B), whence A ∼= B. 2

For another proof, see Culp and Hammack (2010).

Exercises

32.1. Prove (32.1) directly, without the aid of Theorem 32.3.

32.2. Prove Proposition 32.1.

32.3. Prove Proposition 32.2.

32.4. Show that a Cartesian product of digraphs is unilaterally connected if and only if
one factor is unilaterally connected and the others are strongly connected. Show
that this is also true for the strong product.

32.5. Prove that a lexicographic product of digraphs is unilaterally connected but not
strongly connected if and only if each factor is unilaterally connected, and the first
factor is not strongly connected.

32.6. Prove that each strong component in a Cartesian product of digraphs is a Cartesian
product of strong components of the factors. Do the same for the strong product.

32.7. Prove that a lexicographic product of two digraphs is a tournament if and only if
each factor is a tournament. Moreover, the product is transitive if and only if both
factors are.
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32.8. The notion of a graph factorial (Section 9.3) can also be defined for digraphs. Given
any digraph G, there is a corresponding digraph G! whose vertices are the permu-
tations of V (G). There is an arc from a permutation α to a permutation β provided
that α(x)β(y) ∈ A(G) ⇐⇒ xy ∈ A(G), for all pairs x, y ∈ V (G).

For a permutation α, define Gα as V (Gα) = V (G) and A(Gα) = {xα(y) : xy ∈
A(G)}.

Show that if α, β are in the same connected component of G!, then Gα ∼= Gβ .

32.9. Prove that A×−→
P n

∼= B×−→
P n if and only if B = Aα, where α is on a directed walk

of length n− 2 in the factorial of A.

32.10. Suppose a digraph C is homomorphically equivalent to
−→
C 2. Prove that A × C ∼=

B × C if and only if B = Aα, where α has the property that xy is an arc of A if
and only if α(x)α−1(y) is an arc of A. (This is the anti-automorphism property of
Section 9.3.)
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Several constructions that extend the utility of product graphs to graphs with a product-like
structure have been proposed. This chapter introduces three meaningful examples: graph
bundles, approximate graph products, and the zig-zag product. It also contains a brief
account of spectra and their relationship to graph products, approximate graph products
and the zig-zag product.

33.1 Graph Bundles

Graph bundles were first introduced as generalizations of the Cartesian product. We begin
this section with two equivalent formulations of the original definition, and we remark how
this idea can be extended to generalize products other than the Cartesian product. Then we
briefly overview results concerning invariants, recognition, and characteristic polynomials
of graph bundles.

Graph bundles were introduced in an unpublished manuscript by Pisanski and Vrabec
(1982) and first appeared in print in Pisanski, Shawe-Taylor, and Vrabec (1983).

Let B and F be arbitrary graphs. A graph G is a graph bundle with base B and fiber F
if there exists a weak homomorphism p : G→ B for which

(i) For any u ∈ V (B), the subgraph p−1(u) is isomorphic to F , and
(ii) For any e ∈ E(B), the subgraph p−1(e) is isomorphic to K2 2F .

(Here we interpret p−1(u) topologically, as the preimage of the point u, so p−1(u) is identified
with the subgraph 〈p−1(u)〉. A similar remark applies to p−1(e), the preimage of an edge.)
The triple (G, p,B) is called a representation of G as a graph bundle, and the map p is
called the (natural) projection of the bundle G onto its base B. The edges of G that are
mapped by p to vertices are called degenerate; the other edges are nondegenerate. In other
words, the degenerate edges of G are those belonging to the copies of F .

Note that if G is a graph bundle with base B and fiber F , then V (G) = V (B) × V (F ).
Observe also that the Cartesian product G = B2F is a graph bundle. If F has no edges,
then G is an instance of the so-called covering graph. Hence, graph bundles at the same
time generalize Cartesian products and covering graphs. The graph K3,3 as presented in
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Figure 33.1 (with dotted lines indicating p) is the standard example of a bundle that is
neither a product nor a covering graph.

B

F

FIGURE 33.1 K3,3 as a graph bundle with base C3 and fiber K2.

It is clear that if C is a connected component of B, then p−1(C) is a graph bundle with
base C and fiber F . Thus we will assume henceforth that the base graphs are connected.

Graph bundles can be equivalently described in the following, more algebraic way. A
graph G is a graph bundle with (connected) base B and fiber F if the following hold:

(i) V (G) = V (B) × V (F ).
(ii) (u, x) and (u, y) are adjacent in G if and only if x and y are adjacent in F .

(iii) For each edge e = uv ∈ E(G), there is an orientation, say from u to v, and an
automorphism ϕe ∈ Aut(F ) for which (u, x)(v, ϕe(x)) ∈ E(G) for all x ∈ V (F ).

The automorphisms ϕe are called the voltages of the bundle. This algebraic representation
of G as a graph bundle is denoted by G = B2

ϕF . The projection G→ B is denoted as pϕ.
Note that the edge orientations are used only implicitly: If the orientation from v to u

were selected, the voltage ϕ−1
e would yield the same graph bundle. If all voltages are the

identity, then G = B2F . Moreover, it is easy to show that any bundle is isomorphic to
one constructed by selecting a spanning tree T of B, setting ϕe = id for any e ∈ E(T ), and
assigning the remaining voltages as appropriate. It follows that if B is a tree or Aut(F ) =
{id}, then every bundle with base B and fiber F is just the Cartesian product B2F .

As we know, any connected graph has a unique prime factorization with respect to the
Cartesian product. On the other hand, there can be different representations of a given graph
G as a bundle with base B and fiber F . To make this more precise, we say that graph bundles
B2

ϕF and B2
ϕ′

F are isomorphic if there exists an isomorphism F : B2
ϕF → B2

ϕ′

F
and f ∈ Aut(B) such that the diagram

B2
ϕF

F−−−−→ B2
ϕ′

F
ypϕ

ypϕ′

B
f−−−−→ B

commutes. Kwak and Lee (1990) gave a characterization of when two bundles (with the
same base and fiber) are isomorphic and derived counting formulas for the number of noni-
somorphic bundles. This line of research has been extended by Hong, Kwak, and Lee (1999),
where bipartite graph bundles with connected fibers are studied, in particular the number
of nonisomorphic bundles is computed for the case where the fiber is a path or a cycle.

Graph bundles as defined above generalize the Cartesian product operation, but we will
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shortly modify the definition to obtain similar structures that generalize other products.
Hence as we have defined them, graph bundles would be more precisely named Cartesian
graph bundles; but because the majority of research was done from the Cartesian point of
view, it seems appropriate to call then simply graph bundles.

The definition of graph bundles with respect to other products is analogous to that of
graph bundles. For instance, strong graph bundles are defined just as graph bundles except
that (in the first of the two definitions given) we require that f−1(e) is isomorphic to K2�F .
Figure 33.2 shows a strong graph bundle with base C5 and fiber P3 that is not isomorphic
to C5 � P3.

FIGURE 33.2 A strong graph bundle with base C5 and fiber P3.

Invariants of graph bundles

The first paper on graph bundles (Pisanski, Shawe-Taylor, and Vrabec (1983)) examined
the problem of edge-colorings. The main result is the following extension of Theorem 30.10.

Theorem 33.1 Let G be a graph bundle with base B and fiber F . Then G is of class 1 if
at least one of the following conditions is satisfied:

(i) B is of class 1 and not totally disconnected.
(ii) F is of class 1 and not totally disconnected.

(iii) B and F both contain a one-factor.

The chromatic number of graph bundles, strong graph bundles, and direct graph bundles
was considered by Klavžar and Mohar (1995b). The chromatic number of bundles is much
different from the chromatic number of products. For instance, the following result stands
in stark contrast to Theorem 26.1.

Theorem 33.2 For any m, k ≥ 1, there is a graph Bk with χ(Bk) = k and voltages ϕ such
that

χ(Bk 2
ϕKm) = km .

Klavžar and Mohar (1995a) determined the chromatic numbers of (strong, direct) graph
bundles whose base and fiber are cycles. Concerning direct graph bundles, we also remark
that Exercise 33.2 shows that Hedetniemi’s conjecture 26.25 cannot be extended to bundles.
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The domination number of graph bundles was considered by Zmazek and Žerovnik
(2006). If Gk it the corona of Kk (i.e., the graph obtained from Kk by attaching a pendant
edge to each of its vertices), then the following holds:

Theorem 33.3 For any k ≥ 1 there exist voltages ϕ such that

χ(C4 2
ϕG3k+4) = γ(C4)γ(G3k+4) − 2k .

Hence also, Vizing’s conjecture 28.2 cannot be extended to graph bundles.

Several other graph invariants of bundles have been considered: Mohar, Pisanski, and
Škoviera (1988) studied maximum genus of graph bundles, Kwak, Lee, and Sohn (1996)
their isoperimetric numbers; Banič and Žerovnik (2006) their fault-diameter; and Banič,
Erveš, and Žerovnik (2009) their edge fault-diameter. We also point out that the result of
Theorem 30.19 has been extended to graph bundles by Pisanski and Žerovnik (2009).

Recognizing graph bundles

The recognition of covering graphs, that is, of bundles with totally disconnected fibers, is
difficult. (See Abello, Fellows, and Stillwell (1991).) Hence in order to be able to efficiently
recognize graph bundles, it makes sense to restrict to connected fibers. There are two main
recognition algorithms for such graphs.

• Imrich, Pisanski, and Žerovnik (1997) proved that it is possible to recognize in poly-
nomial time whether a given graph is a graph bundle with a triangle-free base and a
connected fiber. Pisanski, Zmazek, and Žerovnik (2001) showed that the complexity
of this algorithm is O(mn), and, moreover, that all such representations can be deter-
mined in O(mn2) time. The main idea of the algorithm is that the transitive closure
δ∗ of the relation δ separetes degenerate and nondegenerate edges, provided that the
base of a bundle is triangle-free. That this approach cannot be applied in general is
addressed in Exercise 33.5.

• Zmazek and Žerovnik (2002) extended the above algorithm by proving that it is
possible to recognize in polynomial time whether a given graph is a graph bundle
with a (K4 − e)-free base and a connected fiber.

Žerovnik (2000) also designed an algorithm for recognizing strong graph bundles with
connected fiber over a triangle-free base. In general, it is not polynomial but becomes such
for graphs with small clique number. It applies the above algorithm for graph bundles with
connected fiber over a triangle-free base.

Characteristic polynomials of graph bundles

Chae, Kwak, and Lee (1993) and Kwak and Lee (1992) initiated a series of papers on
characteristic polynomials (that is, characteristic polynomials of adjacency matrices) of
graph bundles. In the first paper characteristic polynomials are computed for graph bundles
with fibers K2 and K2. The second paper considers the case where the voltages belong to
an Abelian subgroup of Aut(F ). The latter line of research was continued in Sohn and
Lee (1995) and in H. K. Kim and J. Y. Kim (1996). Kwak and Kwon (2001) computes
characteristic polynomials of graph bundles whose fibers are circulant graphs. We note that
the Laplacian spectra of graph bundles has also been considered: See J. Y. Kim (1996) and
D. Kim, H. K. Kim, and J. Lee (2008).
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33.2 Approximate Graph Products

Certain applications require that observable phenomena be organized and modeled by a
graph G. Typically the collected data is incomplete or prone to error, and we may thus
regard G as being an approximation to some ideal graph H .

Such is the case, for example, in theoretical biology, where the set of phenotypes of
an organism may be represented by a vector X of characters, such as color, presence of
certain bones, etc. Typically, certain pairs of instantiations of X are known or expected to
be interconvertible, and this endows X with a graph structure. Figure 33.3, which is adapted
from Stadler, and Stadler (2004), is a schematic (if somewhat simplified) representation of
this idea. A key biological question is whether the various characters can vary independently
of each other; if this is the case, then we would expect the system of observable phenotypes
X to have the structure of a product graph, or, more realistically, an approximation of
a product graph. It is therefore becomes imperative to determine the extent to which X
resembles a product graph.

FIGURE 33.3 Phenotype graph as a product of character graphs for faces and bodies.

This type of investigation has instigated a theory of approximate graph products, and
we now briefly introduce the rudiments of this subject.

Of fundamental importance is the idea of the “distance” between two graphs. Let ∆
denote the symmetric difference of sets, that is X∆Y = (X ∪ Y ) \ (X ∩ Y ). Given two
graphs G and H , the distance d(G,H) between them is the smallest number k such that G
and H have representations G′ and H ′ for which

|V (G′)∆V (H ′)| + |E(G′)∆E(H ′)| ≤ k .

Thus, for example, d(G,H) = 0 if and only if G ∼= H . If G and H both have n vertices,
their distance is bounded by

(
n
2

)
. By Exercise 33.6, the number of graphs at distance at

most k from G is O(|V (G)|2k).
A graph G is a k-approximate product if there is a product graph H for which d(G,H) ≤

k. For computational purposes, we assume tacitly thatH is a nontrivial product of connected
factors.
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Figure 33.4 shows a 3-approximate Cartesian product; it differs from P4 2P3 by one
missing edge, one extraneous edge, and one extraneous vertex. (It is also a 7-approximate
Cartesian product relative to P5 2P3.) Clearly, we can also consider approximate strong,
direct, or lexicographic products. Currently only the strong and Cartesian cases have been
considered in the literature.

FIGURE 33.4 An approximate Cartesian product.

It is perhaps surprising that it is decidable in polynomial time whether a given graph is
a k-approximate strong or Cartesian product. To see how this can be done, let G = (V,E)
be a graph on n vertices. As noted above, there are O(n2k) graphs H within distance k from
G. These can be easily computed (possibly with some redundancy) as H = (V∆V ′, E∆E′),
where |V ′|+ |E′| is bounded by k. (Some care must be taken that V ′ and E′ are chosen such
that H is actually a graph, but these details are easily disposed of. See Hellmuth, Imrich,
Klöckl, and Stadler (2009a) for details.) Those H that are connected can now be factored
in polynomial time.

If the value of k is not fixed, then the problem for the Cartesian product is NP-complete,
as shown by Feigenbaum, and Haddad (1989). However, polynomial algorithms can be
attained under mild restrictions on the graphs. We now outline a simple approach for the
strong product by Hellmuth et al. (2009a).

The key idea is that subgraphs induced on closed neighborhoods of strong products are
strong products of subgraphs induced on neighborhoods of the factors, that is,

〈NG�H [(x, y)] 〉 = 〈NG[x]〉 � 〈NH [y]〉.

Thus, because the product structure of a graph is reflected locally, one might reasonably
expect to approximate a graph with a product if enough of its neighborhoods have nontrivial
factorizations that “fit together” in a manner that suggests a global product.

To glean an idea of how this might work, consider the graph in Figure 33.5. The la-
bels v1, v2, . . . , v6 mark the vertices whose neighborhoods are S-thin and have nontrivial
factorings. Each such neighborhood can be factored quickly (and uniquely), and its Carte-
sian edges are independent of the factoring. We then give the Cartesian edges of such a
neighborhood a product coloring induced by its factoring.

Now, we can obtain a partial product-like coloring of the entire graph as follows. Begin
with the coloring of one neighborhood, say X = 〈N [v1]〉. If some neighborhood (say 〈N [v2]〉)
shares a Cartesian edge with X , then we recolor the edges of 〈N [v2]〉 to match the coloring
of X , and set X := X∪〈N [v2]〉. This process is continued until no additional neighborhoods
N [vi] can be absorbed into X . In Figure 33.5, we obtain the 2-coloring indicated by bold
and dashed lines.

At this point there is enough information to reconstruct the factors P7 and P5 of an
approximate product: We can (at least in this example), extract the largest components
form each color class (e.g., the layers through v3), and the given graph is approximated by
the strong product of these components.

However, a glance at Figure 33.6 reveals that this method runs into difficulties when
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v1 v2

v3 v4

v5

v6

FIGURE 33.5 Simple approximate strong product.

the vertex neighborhoods are not thin. This is possible, even when the entire graph is a
thin strong product. To deal with such situations Hellmuth, Imrich, Klöckl, and Stadler
(2009b) introduced the backbone of a graph, and a so-called S1-condition under which
Cartesian edges in a neighborhood can be detected, even when the neighborhood is not thin.
Using these concepts together with edge-neighborhoods and enlarged edge-neighborhoods,
Hellmuth (2011) presented a local, quasi-linear algorithm for the prime factorization of
connected graphs with respect to the strong product.

It is not our aim to present the technical details of this approach, but we will say a few
explanatory words about what we mean by a local approach, quasi-linearity, the backbone,
and the significance of this result for the recognition of approximate strong products.

First of all, it must be said that a method that is capable of recognizing approximate
graph products must also recognize products. But then we are also interested in its complex-
ity. The complexity of Hellmuth’s algorithm for the factorization of a thin graph of order
n and maximal degree ∆ is O(n∆6). If one considers only graphs whose maximal degree
is bounded by a predetermined constant k, then the complexity of the algorithm is linear.
(Such algorithms are called quasi-linear.) Let us compare its complexity with that of Algo-
rithm 24.6 for the factorization of thin graphs over the strong product. By Theorem 24.9 it
has complexity O(mn log n+m2) unless several special conditions are met. Hence, for given
∆ and large n, the new algorithm outperforms Algorithm 24.6.

The approach is local in the sense that at a given time, only neighborhoods, edge-
neighborhoods, or enlarged edge neighborhoods are factored. It is reasonable to use it for
the recognition of approximate graph products, as shown by the above example. However,
the search for k-approximate graph products can produce many different, nonisomorphic
solutions, even with different numbers of factors. Thus, in general, one has to understand
the approach as a heuristic that needs additional information for the selection of a solution.

Computer experiments show that the proposed heuristics delivers excellent results, even
for approximate products that were obtained from given products by random deletion of a
proportionally large number of vertices and edges; see Hellmuth (2010).

The backbone of a graph is the set of vertices v with strictly maximal N [v]. In a thin
graph the backbone vertices are a dominating set and they play special role in the recognition
of products and strong products. For example, consider Figure 33.6. Its backbone vertices
are marked 0, 1, . . . , 5 and x. The subgraphs induced by the neighborhoods of the vertices
marked by an x are prime, but the other neighborhoods suffice to construct Cartesian edges
(indicated by bold and broken lines in the figure) by the methods of Hellmuth (2011). The
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bold and broken lines suggest an edge-coloring of the Cartesian edges of the suspected
original product.

0 1

2 3

5

4

x

x

x x

x

x

x

x

x x

FIGURE 33.6 Approximate strong product.

One of the potential applications of approximate graph products is visualization. If a
graph is a product, its regular structure lends itself for visualization, be it of the graph as
it is, or of its factors. To describe an approximate graph product, it may then suffice and
be instructive to mark just those places where the product structure is disturbed. For an
intriguing step in this direction, see Jänicke, Heine, Hellmuth, Stadler, and Scheuermann
(2010).

In addition to applications in visualization and the problems in theoretical biology that
motivated our investigations, approximate graph products are helpful in engineering and
structural mechanics. For results in this direction, we mention Kaveh (2006).

33.3 Graph Spectra

The spectrum of a graph G is the spectrum of its adjacency matrix A(G). It is a link between
the discrete and the continuous. Although it does not completely define a graph, it reveals
many surprising properties.

In this short section we mention basic results, establish a connection to graph prod-
ucts, and say just enough about the relevance of the gap between the first and the second
eigenvalue to motivate the zig-zag product.

We have met the adjacency matrix several times. Its formal definition and its main
properties were the topic of Section 17.4. It was a useful tool in the recognition of triangle-
free graphs and median graphs. In Section 5.3 we saw that A(G × H) is the Kronecker
product A(G)⊗A(H) and that adjacency matrices of bipartite graphs have block structure.

We begin with a simple observation about spectra and show first that the maximum
degree of a graph is an upper bound for its eigenvalues. To fix ideas, let G be a graph on n
vertices {v1, v2, . . . , vn}, and x = (x1, x2, . . . , xn)T an eigenvector with eigenvalue λ. That
is,

A(G)x = λx ,
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or equivalently,

λxj =
∑

vivj∈E(G)

xi, where j ∈ {1, 2, . . . , n} .

Lemma 33.4 If a graph has maximum degree ∆, then |λ| ≤ ∆ for each eigenvalue λ.

Proof Suppose A(G)x = λx. Select j so that |xj | = max(|x1|, |x2|, . . . , |xn|). Then

|λ| |xj | ≤
∑

vivj∈E(G)

|xi| ≤ ∆ |xj | ,

and thus |λ| ≤ ∆, because xj 6= 0. 2

Another useful observation is that the vector 1 = (1, 1, . . . , 1)T is an eigenvector (with
eigenvalue d) of G if and only if G is regular (of degree d).

To describe the relationship between the adjacency matrix of a product and that of its
factors we introduce the notation In for the identity matrix of order n.

Theorem 33.5 The adjacency matrices of the Cartesian, the strong, and the direct product
of two graphs G, H are as follows:

A(G2H) = A(G) ⊗ I|V (H)| + I|V (G)| ⊗ A(H) ,

A(G�H) = A(G) ⊗ I|V (H)| + I|V (G)| ⊗ A(H) + A(G) ⊗ A(H) ,

A(G×H) = A(G) ⊗ A(H) .

The straightforward proof is omitted. Of course these relations allow the computation of
the eigenvalues of the product from those of the factors. However, the relationship is better
described by means of the eigenvalues of the Laplacian of G. The Laplacian L(G) of a graph
G is defined as

D(G) − A(G) ,

where D(G) is a diagonal matrix of the same order as G, with the entries dii = d(vi). Notice
that loops have no influence on L(G). The Laplacian has the advantage that the unit vector
1 always is an eigenvector, even when G is not regular. Clearly the corresponding eigenvalue
is zero, it is the smallest eigenvalue, and its multiplicity is the number of components of G.

If G is regular of degree d with eigenvalues λ1 ≥ λ2 ≥ · · · ≥ λn, then the Laplacian has
eigenvalues d−λ1 ≤ d−λ2 ≤ · · · ≤ d−λn. We call them the Laplacian eigenvalues and set
νi = d− λi.

The relationship between the Laplacian of a product and that of the factors is the same
as for the adjacency matrix. We shall not explore this further, but wish to point out a result
of Fiedler (1973) about the Cartesian product and some of its consequences.

Proposition 33.6 The Laplacian eigenvalues of G2H are of the form ν(G)+ν(H), where
ν(G) and ν(H) are Laplacian eigenvalues of G and H, respectively. Furthermore, if x(G)
and x(H) are Laplacian eigenvectors to ν(G) and ν(H), respectively, then

x(G) ⊗ x(H)

is a Laplacian eigenvector of G2H to the eigenvalue ν(G) + ν(H).

For illustration, consider the case where the smallest nonzero eigenvalue of H , say ν,
is smaller than that of G. Suppose it is simple and x is an eigenvector to ν. Then ν is
the smallest eigenvalue of G2H ; it is simple if H is connected, and y = 1|V (G)| ⊗ x is an
eigenvector.
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FIGURE 33.7 Product and Fiedler vector.

Figure 33.7 provides an example for P3 2P4. In this case, ν = .5858, and

y/|y| = (−.577, −.577, −.577)T ⊗ (+.653, +.270, −.270, −.653)T .

The right side of the figure plots the values of yi over vi. Clearly one can easily recover
the layers of the second factor from the eigenvector y. Even if an edge is removed from the
graph we can recover the layer structure of the original product; see Figure 33.8.

This indicates that a wealth of information is contained not only in the spectrum, but
also in the eigenvectors. In particular, this holds for the eigenvector to the second-smallest
eigenvalue of the Laplacian. It is also known as a Fiedler vector, in recognition of the fact
that Fiedler was the first to realize its significance in graph partitioning.

The influence of the second-smallest eigenvalue of the Laplacian on the shape of a graph
seems to have been first documented by Bussemaker, Čobeljić, Cvetković, and Seidel (1976).

Since then, its significance and relation to numerous graph invariants has been exten-
sively investigated. These invariants include connectivity, expanding properties, isoperimet-
ric number, maximum cut, independence number, genus, diameter, mean distance, and
bandwidth-type parameters. For surveys, see Mohar (1991) and the book by Chung (1997).

There are also numerous publications on load balancing and diffusion schemes in prod-
ucts of graphs that make use of spectral methods. They are beyond the scope of this book.
Let us mention Elsässer, Monien, Preis, and Frommer (2004) for at least one contribution
to this topic.

v10 v11 v12

v7 v8 v9

v4 v5 v6

v1 v2 v3
v1 v4 v7 v10

−0.4

−0.2

0

0.2

0.4

FIGURE 33.8 Approximate product and Fiedler vector.
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33.4 Zig-Zag Product

In this section we consider regular graphs again and normalize the adjacency matrix. That
is, given a d-regular graph G, then we consider A(G)/d. This matrix has largest eigenvalue
1, and the second-largest eigenvalue, which we will simply denote λ(G), plays the role of
the second-smallest eigenvalue of the Laplacian. Clearly

λ(G) = max
|v|=1,v⊥1

{
1

d
|A(G)v|

}
,

and λ(G) ∈ [0, 1].
A family G of graphs is then called an expander family if there is an α < 1 such that

λ(G) ≤ α for all G ∈ G.
There is enormous interest in the construction of large expanders of small degree be-

cause of their applicability in computer science and pure mathematics. In computer science,
expanders are applied in the areas of circuit complexity, error correcting codes, and com-
munication networks. In pure mathematics, they have been used in topology, group theory,
measure theory, and number theory. To this quite arbitrarily assembled list one has to add,
of course, graph theory and combinatorics.

Until the seminal paper of Reingold, Vadhan, and Wigderson (2002), most construction
relied on Cayley graphs, but this paper introduced a new construction. Upon a suggestion
of Peter Winkler, it is now called zig-zag product. We will briefly describe it and show how
a variant can be used to define semidirect products.
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FIGURE 33.9 Zig-zag product Q3 z©K3.

First a definition. A graph G is an [n, d ]-graph if it has order n and degree d. It is called
an [n, d, α ]-graph if λ(G) ≤ α. Given an [n,m, α ]-graph G and an [m, d, β]-graph H , we
will construct an [nm, d2, γ ]-graph G z©H , the zig-zag product of G and H .

Let G be an [n,m, α ]-graph and H an [m, d, β ]-graph. Then G z©H is a graph whose
vertex set is V (G) × V (H) and whose edge set is defined as follows:
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440 Near Products

Set Q = Dn 2H and let M be a complete matching of G ◦ Dm with the property
that contraction of each Dm-layer to a single vertex produces no double edges, that is, the
contraction produces an isomorphic copy of G. Then

E(G z©H) =
⋃

ab∈M

(NQ(a) ⊕NQ(b)) ,

where ⊕ denotes the join of graphs. Notice that the product depends on the choice of M .
Figure 33.9 shows an example of Q3 z©K3. Notice that the numbers on the edges identify
the matching edges. For example, the edge from a to b corresponds to the matching edge
(a, 1)(b, 2).

That G z©H has mn vertices and degree d2 is easily seen. Concerning its expanding
property, Reingold, Vadhan, and Wigderson (2002) showed that G z©H is an [nm, d2, γ ]-
graph, where γ ≤ α+ β + β2 and that γ < 1 if α, β < 1.

We shall exploit a variant, the replacement product G R©H . It has the same vertex set
as the zig-zag product, but its edge set is defined as

E(G R©H) = M
⋃
E(Q) .

Then G R©H is an [nm, d + 1, f(α, β) ]-graph, where f(α, β) < 1 if α, β < 1; see Kelley,
Sridhara, and Rosenthal (2008). Figure 33.10 shows Q3 R©K3.
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FIGURE 33.10 Replacement product Q3 R©K3.

We cannot pursue the enormous range of applications of the zig-zag and the replacement
product, but conclude with an observation pertaining to the semidirect product of groups.
Let A, B be groups and let B act on A as a group of automorphisms. Let ab denote the
action of b on a. Assume that S, T are generating sets of A, B and that S = sB; in other
words, S is a single B-orbit. Then

Γ(A, S) R©Γ(B, T )

is a Cayley graph of a group C with generating set {s} ∪ T . As shown by Alon, Lubotzky,
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Exercises 441

and Wigderson (2001), this group C is the semidirect product A o B. (The construction
can be extended to more than one orbit.)

For a graph theorist, this means that the semidirect product can be defined via groups
acting on replacement product graphs, just as one can define the free product of groups by
groups acting on the free product of graphs.

Exercises

33.1. Determine all nonisomorphic graph bundles with base K3 and fiber K3.

33.2. Show that for direct graph bundles, χ(B ×ϕ F ) need not equal min{χ(B), χ(F )}.

33.3. Show that χ(B �ϕ F ) ≤ χ(B)χ(F ).

33.4. Show that γ(B �ϕ F ) ≤ γ(B)γ(F ).

33.5. Find an example of a graph bundle with a nontrivial base and a nontrivial fiber
such that δ∗ has a single equivalence class.

33.6. If G is a graph on n vertices, then there are O(n2k) graphs whose distance from G
is at most k.
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Appendix

Hints and Solutions to Exercises

Part I

Chapter 1

Exercise 1.1 Apply Theorem 1.1.

Exercise 1.2 Routine.

Exercise 1.3 Routine.

Exercise 1.4 SupposeG is disconnected. Then
it has a component X with at most n

2
vertices.

Any vertex in this component has a degree of at
most n

2
− 1 < 1

2
(n− 1).

Exercise 1.5 Hint: Show that the homomor-
phic image of an odd cycle is a closed walk that
contains an odd cycle.

Exercise 1.6 Every cubic graph has an even
number of vertices. To construct such a graph on
2k vertices, take a disjoint union of two copies
of Ck and connect the corresponding vertices by
an edge. (As we will see later, this graph is the
Cartesian product Ck 2K2.)

Exercise 1.7
(

m
2

)

·
(

n
2

)

.

Exercise 1.8 Such a graph is clearly a com-
plete bipartite graph, and hence it must be of
the form Kx,n−x for some 1 ≤ x ≤ n − 1. This
graph has x(n− x) edges by Theorem 1.1. As a
real-valued function, x(n − x) has a maximum
at x = n/2. Thus the answer to the question is
bn/2c · dn/2e.

Exercise 1.9 The number of vertices of degree
1 exceeds that of degree 3 by 2.

Exercise 1.10 Hint: Treat the case |L| = 1
first. For |L| > 1, consider two vertices x, y with
d(v, x) = d(v, y) for all v ∈ L. Next, choose two
elements u, v ∈ L such that d(x, u) + d(x, v) is
minimum. Show then that x = y by considering
the paths between u, v, x, and y in T .

Actually Kel′mans showed that the vertices
of a tree with s vertices of degree 1 are uniquely
characterized by the distances from any s− 1 of
them.

Exercise 1.11 If a graph G is not a forest,
then it has a cycle C. Let e be an edge of C.
Notice that C − e is a connected subgraph of G
that is not induced.

Conversely, suppose a graph G has a con-
nected subgraph H that is not induced. This

means H has two vertices x and y for which
xy ∈ E(G) but xy /∈ E(H). Let P be an x, y-
path in H . By appending the edge xy to P , we
get a cycle in G, so G is not a forest.

Exercise 1.12 Hint: Find a subdivision ofK3,3

in the Petersen graph.

Chapter 2

Exercise 2.1 Hint: Use the idea of the proof
of Theorem 2.5.

Exercise 2.2 Routine.

Exercise 2.3 Hint: Automorphisms preserve
distances.

Exercise 2.4 Routine.

Exercise 2.5 Because Qr is vertex-transitive,
we may assume that ϕ fixes v0 = (0, 0, . . . , 0)
and all of its neighbors ui, 1 ≤ i ≤ r. Let the
notation be chosen such that the all coordinates
of the ui are zero, except the ith. Consider the
neighbors of u1. They are v0 and the vertices
w1,j that differ from u1 in the jth coordinate,
2 ≤ j ≤ r. It is routine to show that w1,j is the
only vertex of Qr that is adjacent to u1 and uj .
Hence it must also be fixed by ϕ. Thus ϕ fixes all
vertices in N(u1). By the connectedness of Qr,
the proof can now be completed by induction.

Exercise 2.6 Let ϕ ∈ Aut(Qr) and set v =
ϕ(v0), where v0 = (0, 0, . . . , 0). Suppose v differs
from v0 in the coordinates i1, i2, . . . , ij . Then
ψ = ψi1ψi2 . . . ψij maps v into v0 and ψϕ is
an automorphism that fixes v0 and permutes
the neighbors of v0. Let π be this permutation.
Clearly there is a product, say β, of the ψi,j that
produces the same permutation π of the neigh-
bors of v0 as ψϕ. Thus β−1ψϕ fixes v0 and all
its neighbors. By Exercise 2.5 it is the identity
mapping, and thus ϕ = ψβ.

Exercise 2.7 Hint: Use Exercise 2.6.

Exercise 2.8 Hint: By Theorem 2.8 every such
graph G consists of a Qk, where k = 2 or 3, and
additional edges. For k = 2 it is easily seen by
inspection that no matter how additional edges

443
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are inserted, Aut(G) has nontrivial vertex stabi-
lizers.

For k = 3 we invoke Exercise 2.6 and note
that the group of G must be generated by
the ψi, 1 ≤ i ≤ 3, and that with every edge
e ∈ E(G), the edges in Aut(G)(e), that is,
the edges in the orbit of Aut(G), also are in
E(G). For example, if (0, 0, 0)(1, 1, 0) ∈ E(G),
then the edges (1, 0, 0)(0, 1, 0), (0, 0, 1)(1, 1, 1),
and (1, 0, 1)(0, 1, 1) will also be in G. Use
this to show that the orbit of any edge
of G contains one or two edges whose
endpoints are vertices of the hexagon
(1, 0, 0)(1, 1, 0)(0, 1, 0)(0, 1, 1)(0, 0, 1)(1, 0, 1).

Now show that the subgraph of G induced
by these six vertices has at least one nontrivial
automorphism and that this extends to an auto-
morphism of G.

Exercise 2.9 Hint: Keep deleting vertices that
do not decrease the chromatic number until the
desired subgraph is obtained.

Exercise 2.10 Hint: Show that any such group
must have an element of order 2, and that every
automorphism of the Petersen graph that has
order 2 fixes a vertex.

Exercise 2.11 Hint: Use the No-
Homomorphism Lemma and the fact that
α(G) ≥ |V (G)|/2.

Exercise 2.12 Hint: For K = K1 this is the
No-Homomorphism Lemma; mimic the proof of
the No-Homomorphism Lemma.

Chapter 3

Exercise 3.1 Routine.

Exercise 3.2 Hint: It suffices to verify if for
r = 4.

Exercise 3.3 We may without loss of gener-
ality assume that v = 11 . . . 1. If a shortest x, y-
path in Qr passes v, then v can be replaced by
an appropriate vertex to obtain an x, y-path in
Qr−v of the same length. ThusQr−v is a partial
cube. To see that Qr − v is not median, consider
the vertices 0111 . . . 1, 1011 . . . 1, and 1101 . . . 1.

Exercise 3.4 Hint: Label two antipodal ver-
tices of C2r with 00 . . . 0 and 11 . . . 1. Proceed
accordingly.

Exercise 3.5 Apply Proposition 3.11 and The-
orem 3.7.

Exercise 3.6 Let ϕ : G → H be a retrac-
tion. Because H is a subgraph of G, we have
ω(H) ≤ ω(G). On the other hand, consider a
complete subgraph K in G. Because any two of

its vertices are adjacent, their images under the
homomorphism ϕmust be unequal and adjacent.
Thus the image ϕ(K) is a complete subgraph of
H with the same number of vertices as K. Hence
ω(H) ≥ ω(G).

Next, let C be the shortest odd cycle in G.
The image ϕ(C) must be a nonbipartite sub-
graph of H . The shortest odd cycle in this im-
age cannot be shorter than C, so we infer that
C and ϕ(C) are cycles of the same length. Thus
H has a cycle whose length equals that of the
shortest odd cycle of G. Conversely, as H ⊆ G,
the shortest odd cycle in H is also in G. The
assertion follows.

Exercise 3.7 Suppose χ(G) = ω(G) = n. Take
a coloring ϕ : V (G) → {1, 2, . . . , n}. Let Kn be
a clique in G. Its vertices must be colored with
n distinct colors, so label the vertices by their
colors, that is V (Kn) = {1, 2, . . . , n}. Now the
map ϕ : G → Kn satisfies ϕ2 = ϕ. Also it is
a homomorphism, for if xy ∈ E(G), we have
ϕ(x) 6= ϕ(y), so ϕ(x)ϕ(y) ∈ E(Kn). Thus Kn is
a retract of G.

Conversely, suppose Kn is a retract of G. In
particular, this means Kn is a subgraph of G, so
χ(G) = n ≤ ω(G). But obviously χ(G) ≥ ω(G),
so we are done.

Exercise 3.8 Consider a retraction ϕ : G→ H
of a χ-critical graph G. If ϕ is not the identity,
then H is a subgraph of any vertex deleted sub-
graph G − v, where v is not in the image of ϕ.
Thus χ(H) ≤ χ(G − v) < χ(G). But Proposi-
tion 3.10 says χ(H) = χ(G), so ϕ is the identity.
Hence G itself is the only retract of G.

Exercise 3.9 Suppose G is not a core, so there
is a retraction ϕ : G → H , where H is a proper
subgraph of G. Then ϕ is a homomorphism of G
that is not an automorphism.

Conversely, suppose it is not the case that
every homomorphism of G is an automorphism,
and let ϕ be such a homomorphism. Then ϕ(G)
is a proper subgraph of G. Now for each x ∈
V (G), there is an integer kx for which either
ϕkx (x) = x, or ϕm(x) = ϕkx(x) for all m ≥ kx.
(That is, either the sequence x, ϕ(x), ϕ2(x), . . . is
periodic, with period kx, or it stabilizes after kx
terms.) Let ` be the least common multiple of the
kx, over all x ∈ V (G). Then ϕ` is a nonidentity
homomorphism of G that satisfies (ϕ`)2 = ϕ`.
Hence G has a proper retract and is not a core.

Exercise 3.10 Consider a nonexpansive map
f : Qr → Qr that fixes each of u, v, and w. Now,
f is a weak homomorphism by Proposition 3.8.
Let the median x lie on shortest u, v-, u,w-, and
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v, w-paths P , Q, and R. Because f is a weak
homomorphism the subgraphs f(P ), f(Q), and
f(R) are connected. Also, f(P ) contains u and
v and has at most |P | = d(u, v) edges, so it is a
shortest u, v-path. Similarly, f(Q) is a shortest
u,w-path, and f(R) is a shortest v, w-path. Be-
cause f(x) lies on each of these paths, we infer
that it is a median of u, v, w. But Qr is a median
graph, so f(x) = x.

Exercise 3.11 Suppose z = z1z2 . . . zr = (u ∨
v)∧(u∨w)∧(v∨w). Then for each i we have zi =
min

{

max{ui, vi},max{ui, wi},max{vi, wi}
}

.
Now, if any two of ui, vi, wi are 0, then one
of the maximums is 0, and zi = 0. If any two
of ui, vi, wi are 1, then all of the maximums
are 1, and zi = 1. Thus, in the language of
the proof of Proposition 3.7, zi is determined
by “majority rule.” Following the proof of that
proposition, we see that z is a median of u, v, w.
Argue similarly for (u ∧ v) ∨ (u ∧ w) ∨ (v ∧ w).

Chapter 4

Exercise 4.1 Routine.

Exercise 4.2 |E(G×H)| = 2 · |E(G)| · |E(H)|,
|E(G2H)| = |V (G)| · |E(H)|+ |V (H)| · |E(G)|,
|E(G�H)| = |E(G2H)|+ |E(G×H)|,
|E(G ◦H)| = |V (G)| · |E(H)|+ |E(G)| · |V (G)|2.

Exercise 4.3 Hint: Consider two cases: a cubic
graph with no triangle and a cubic graph with a
triangle.

Exercise 4.4 Hint: First count the number of
triangles in K3 ×K3.

Exercise 4.5 This is an easy consequence of
definitions of the direct product and open neigh-
borhoods.

Exercise 4.6 Proof is an easy consequence
of definitions of the strong product and closed
neighborhoods.

Exercise 4.7 Routine. One approach uses Ex-
ercise 4.6.

Exercise 4.8 Routine.

Exercise 4.9 Hint: Let V (K3) = Z3. Show
that the bijection V (K3 2K3) → V (K3 2K3)
defined as (i, j) 7→ (i + j, i − j) is an isomor-
phism.

Exercise 4.10 Because the factors are com-
plete, we can argue as follows:

(x, y)(x′, y′) ∈ E(Km 2Kn) ⇐⇒

(x, y)(x′, y′) /∈ E(Km 2Kn) ⇐⇒

x 6= x′ and y 6= y′ ⇐⇒

(x, y)(x′, y′) ∈ E(Km ×Kn) .

Exercise 4.11 Use Exercises 4.9 and 4.10.

Exercise 4.12 Use Exercises 4.9 and 4.11.

Exercise 4.13 Routine.

Exercise 4.14 Routine.

Exercise 4.15 Consider products (G ∗H) ∗K
and G ∗ (H ∗K). We make the following obser-
vations:

δ
(

((g, h), k), ((g′, h′), k′)
)

=

δ
(

(g, h), (g′, h′)
)

∗ δ(k, k′) =
[

δ(g, g′) ∗ δ(h, h′)
]

∗ δ(k, k′),

δ
(

(g, (h, k)), (g′, (h′, k′))
)

=

δ(g, g′) ∗ δ
(

(h, k), (h′, k′)
)

=

δ(g, g′) ∗
[

δ(h, h′) ∗ δ(k, k′)
]

.

Suppose the table for ∗ is associative. The above
implies δ

(

((g, h), k), ((g′, h′), k′)
)

= 1 if and only
if δ

(

(g, (h, k)), (g′, (h′, k′))
)

= 1. This means
((g, h), k)((g′, h′), k′) is an edge of (G ∗ H) ∗ K
if and only if (g, (h, k))(g′, (h′, k′)) is an edge of
G∗(H∗K). Thus the map ((g, h), k) 7→ (g, (h, k))
is an isomorphism, so the graph product ∗ is as-
sociative.

Conversely, if the graph product ∗ is asso-
ciative, then the above chain of reasoning can
be reversed.

Exercise 4.16 Hint: Show that both
(G ∗H) ∗K and G ∗ (H ∗K) are equal to

G ∗H ∗K.
For the second statement, begin with G ∗H .

Define ∗ from ∗ and ∗ from ∗.

Exercise 4.17 One possible approach is as fol-
lows. Consider the product G ∗′ H = G ∗H . Ar-
gue that the table for ∗′ is the table for ∗ with
the second and third rows (and columns) inter-
changed. Now note G ∗H = G ∗′ H.

Exercise 4.18 Hint: One approach is to use
Exercise 4.17.

Exercise 4.19 Outline: Use Exercise 4.17 and
the hypothesis about the projections to argue
that the table for ∗ must have at least one 0 in
the second row (and column), and at least one 1
in the third row (and column).

In turn, reason that the following table en-
tries are forced:

∗ ∆ 1 0

∆ ∆ 1 0
1 1
0 0

Now show the assumption 12 = 1 forces the ta-
ble for the modular product; and 12 = 0 forces
the table for its complementary product.
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Exercise 4.20 It is easy to see that the condi-
tions are sufficient and that the assertion is true
if one factor is trivial.

Suppose the modular product G♦H of the
nontrivial graphs G,H is disconnected. Notice
that E(G♦H) = E(G2H)∪E(G×H)∪E(G×
H).

Because the edge set of G♦H contains
E(G2H), at least one of the factors G,H must
be disconnected.

Case 1. Only one factor is disconnected.
Without loss of generality, let H be con-
nected and G = G1 + G2 + · · · + Gk, where
the Gi are the connected components of G.
Then the connected components of G2H are
G1 2H,G2 2H, . . . , Gk 2H .

Clearly there are no edges between any two
connected components of G2H in G ×H .

Also, because E(G♦H) contains E(G ×H),
any two connected components of G2H will be
adjacent in G♦H unless H is complete.

Case 2. Both G and H are disconnected.
Let the disconnected components of H be
H1,H2, . . . ,H`. Notice that the components of
G2H are Gi 2Hj . If one of the components of
G, say G1, is not complete, then there are edges
between G1 2H1 and every G1 2Hj in G × H
for j > 1. Because G×H contains edges between
Gi 2Hj and Gi′ 2Hj′ for i 6= i′ and j 6= j′, all
components of G and H must be complete.

Finally, again considering G ×H, it is clear
that G♦H is connected if G or H has more than
two (complete) connected components.

Exercise 4.21 From the definition of the mod-
ular product, we have E(G♦H) = E(G �H) ∪
E(G × H). If H = Kn, then E(G × H) = ∅, so
G♦H = G �H . As G ◦Kn = G �Kn, we have
G ◦H ∼= G♦H .

Conversely, suppose G ◦H ∼= G♦H . Sugges-
tion: Count the edges of G ◦ H and G♦H . The
resulting equation yields

(

|V (H)|
2

)

= E(H).

Exercise 4.22 K2♦K2 = K2♦K2.

Exercise 4.23 No. Observe that (1∇∆)∇0 6=
1∇(∆∇0).

Exercise 4.24 If G ∼= H , it is imme-
diate that the set {(x, x)|x ∈ V (G)} in-
duces a clique on n vertices. Conversely, let
{(x1, y1), (x2, y2), . . . , (xn, yn)} be the vertices of
an n-vertex clique in G∇H . One easily estab-
lishes that the first (respectively, second) coor-
dinates are distinct. Thus there is a bijection
f : xi 7→ yi from V (G) to V (H). Now, be-
cause (xi, yi)(xj , yj) ∈ E(G∇H) for any indices
i and j, it follows that either xixj ∈ E(G) and

yiyj ∈ E(H), or xixj /∈ E(G) and yiyj /∈ E(H).
Therefore f is an isomorphism.

Exercise 4.25 Hint: It is not difficult to ex-
clude all other possibilities by considering the
example where both factors are an orientation
of K2.

Exercise 4.26 Hint: In this case, a 2× 2 mul-
tiplication table suffices.

Exercise 4.27 Hint: Expand the multiplica-
tion table.

Exercise 4.28 Hint: Distinguish the direction
of an edge with the use of +1 and −1.

Chapter 5

Exercise 5.1 Hint: Let V (C2k+1) = Z2k+1 and
E(C2k+1) = {i(i+ 1) | i ∈ Z2k+1}. Next, define
ϕ : V (C2k+1 2C2k+1) → V (C2k+1 × C2k+1),
where ϕ((i, j)) = (i + j, i − j). Now verify that
ϕ is an isomorphism.

The result does not hold for even cycles. For
instance, C2k 2C2k is connected but the corre-
sponding direct product is not. (In this case ϕ is
not injective.)

Exercise 5.2 The proof is identical to the
proof of Proposition 5.3, except that we con-
struct two internally disjoint (u, v), (x, y)-paths
rather than one.

Exercise 5.3 Hint: Adapt argument in the
proof of Theorem 5.9.

Exercise 5.4 Hint: First show that
IG2H((u, v), (x, y)) = IG((u, x))× IH((v, y)).

Exercise 5.5 Hint: For u ∈ V (Gi), let u be a
vertex of G with pi(u) = u. Let v be an antipode
of u in G. Then show that pi(v) is an antipode
of u in Gi.

Exercise 5.6 Set x to be the unique vertex of
Gu with pG(v) = pG(x) and apply the Distance
Formula (Corollary 5.2).

Exercise 5.7 It is easy to see that Pm 2Pn

and Pm 2Cn are planar for any m,n ≥ 3. To see
that Cm 2Cn is not planar for m,n ≥ 3, find a
subdivision of K3,3 in Cm 2Cn. This takes care
of the case involving factors G with ∆(G) = 2.

Suppose ∆(G) ≥ 3. Then G2H contains
K1,3 2P3 as a subgraph. Again find a subdivi-
sion of K3,3 in K1,3 2P3 to conclude that G2H
is not planar.

Exercise 5.8 Hint: Consider an outerplanar
embedding of G with exterior cycle C. Observe
that C 2K2 can be embedded in R3 as a cylin-
der. Now put copies of the outerplanar embed-
ding of G on the top and bottom of the cylinder.
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Exercise 5.9 Hint: Using Kuratowski’s theo-
rem, one can show that a graph is outerplanar
if and only if it has no subgraph that is a sub-
division of K4 or K2,3. Now proceed as in Exer-
cise 4.7.

Exercise 5.10 Hint: First deal with the case
when G is disconnected.

Exercise 5.11 Consider �
k

i=1Gi. For
each i, choose xi, yi ∈ V (Gi) with
dGi(xi, yi) = diam(Gi). Apply Corol-
lary 5.5 to get d((x1, . . . , xk), (y1, . . . , yk)) =
max1≤i≤k diam(Gi). Hence the diameter of the
product is at least the maximum of the diame-
ters of the factors. Conversely, if xi and yi are
arbitrary, then d((x1, . . . , xk), (y1, . . . , yk)) =
max1≤i≤k dGi(xi, yi) ≤ max1≤i≤k diam(Gi).

Exercise 5.12 Hint: It suffices to consider
strong products of two factors.

Exercise 5.13 Hint: Notice that Pn �K2 can
be embedded on a tube (or annulus), as shown
in Figure A.1. This tube can be capped at one

or both ends to get an embedding on the disk or
sphere. Thus Pn � K2 is planar. Use induction
to show that T �K2 is planar for any tree T .

Finding a planar embedding of P3 � P3 is
trivial.

Conversely, consider a product G�H of con-
nected graphs. If this is not one of the graphs
mentioned above, then G � H has a subgraph
with one of the following forms: P3 � P4, or
P3 � K1,3, or K2 � Ck. Use Kuratowski’s the-
orem to show that G�H is not planar.

Exercise 5.14 Hint: Show that between any
two vertices of G there is a path of arbitrary
parity of length at most 2 diam(G) + c.

Exercise 5.15 Show first that the direct prod-
uct of two cycles is not planar.

Exercise 5.16 The solution is not difficult but
involves many cases.

Exercise 5.17 Let V (K2) = {0, 1}. Plane
drawings of G × K2 and H × K2 are shown in
Figure A.2.

FIGURE A.1 K2 � Pn is planar.
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FIGURE A.2 Solution to Exercise 5.17.
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Part II

Chapter 6

Exercise 6.1 For the converse, let W =
U1 2 · · · 2Uk, where each Ui is convex in
Gi. Take vertices a = (a1, . . . , ak) and b =
(b1, . . . , bk) in W , and let x = (x1, . . . , xk) be
on a shortest a, b-path in G. We must show x
belongs to W . By Corollary 5.1 and the triangle
inequality, we have

dG(a, b) = dG(a, x) + dG(x, b)

=

k
∑

i=1

dGi(ai, xi) +

k
∑

i=1

dGi(xi, bi)

≥
k

∑

i=1

dGi(ai, bi) = dG(a, b) .

Thus all terms in the above expression are equal,
so dGi(ai, xi) + dGi(xi, bi) = dGi(ai, bi) for each
i. Therefore each xi is on a shortest path between
ai, bi ∈ V (Ui), so xi ∈ Ui. Thus x = (x1, . . . , xk)
belongs to U1 2 . . . 2Uk =W , so W is convex.

Exercise 6.2 If G is not prime, then it has a
nontrivial factoring G = H 2K, with H and K
connected. For any vertex (h, k) of G, there are
edges hh′ ∈ E(H) and kk′ ∈ E(K). Then (h, k)
belongs to the square hh′

2 kk′ in G.
To show that the converse is not true, con-

sider the 7-vertex graph G obtained by joining
two squares at a common vertex. Then every
vertex of G is on a square, but G is prime.

Exercise 6.3 Hint: Consider the minimum de-
gree of a vertex in complement of a Cartesian
product of two graphs and observe that the de-
gree of a vertex in a Cartesian product G2H is
at most |V (G)|+ |V (H)| − 2.

Exercise 6.4 Hint: Apply Theorem 6.13.

Exercise 6.5 Hint: Use Theorem 6.13.

Exercise 6.6 Hint: Consider G2G and ob-
serve that at least one of the factors is prime by
Exercise 6.3.

Exercise 6.7 Hint: Use the No-
Homomorphism Lemma 2.13.

Exercise 6.8 Let T (G) denote the tree graph
on G. List the blocks of G as B1, B2, . . . , Bk. We
first make several easily confirmed observations.
(1) If T is a tree in G, then each subgraph T ∩Bi

is a tree in Bi. (2) If Ti is a tree in Bi for each i,
then T1 ∪ · · · ∪ Tk is a tree in G. (3) If TS is an
edge of T (G), and T = (S − e) ∪ f , then e and
f are on a cycle in G, and therefore belong to a
common block of G.

Define ϕ : V (T (G)) → V (T (B1)) × · · · ×
V (T (Bk)) as ϕ(T ) = (T ∩B1, . . . , T ∩Bk). This
is well-defined by (1) and surjective by (2). It is
obviously injective.

Now, if ST is an edge of T (G), and T =
(S − e) ∪ f , then (3) implies that e and f are
in the same block, say Bi. Moreover, T ∩ Bj =
S ∩ Bj for any j 6= i. From this it follows that
ϕ(T )ϕ(S) is an edge of T (B1)2 · · · 2 T (Bk).
Therefore ϕ is a homomorphism from G to
T (B1)2 · · · 2 T (Bk).

Finally, suppose (T1, . . . , Tk)(S1, . . . , Sk) is
an edge of T (B1)2 · · · 2 T (Bk). Then Tj = Sj

for all but a single index i, and Ti = (Si − e)∪ f
for some edges e and f of Bi. Let T = T1∪· · ·∪Tk

and S = S1 ∪ · · · ∪ Sk. Then T = (S − e) ∪
f , so TS is an edge of T (G) that maps to
(T1, . . . , Tk)(S1, . . . , Sk). We have now verified
that ϕ is an isomorphism.

Exercise 6.9 Hint: Show that T (G) is com-
plete if G is a cycle.

Exercise 6.10 Hint: First, note that the ho-
momorphic image of a triangle is a triangle. Now
consider a retraction ϕ : G2H → G2H . Any
triangle of G2H lies in a G-layer, so its image
lies in a G-layer. Because G is connected and ev-
ery edge is on a triangle, it follows that ϕ maps
G-layers to G-layers.

Exercise 6.11 Suppose G has p connected
components and is not prime, say G = A2B;
then one factor, say A, must be connected and
the other one must have p connected compo-
nents, say B = B1 + B2 + · · · + Bp. But then
the A2Bi are the connected components of G,
and A is a common divisor.

Clearly G is not prime when its connected
components have a common nontrivial factor.

Exercise 6.12 Let G1, G2, . . . , Gp be the con-
nected components of G. If G is not prime,
then the Gi must have one or more common
factors. Because the prime factorization of the
Gi is unique, the common prime factors of the
Gi are uniquely determined. Let Z be their
product, and set Gi = Z 2Hi. Then G ∼=
Z 2 (H1 + H2 + · · · + Hp). By Theorem 6.21,
H = H1 +H2 + · · ·+Hp is also uniquely deter-
mined, and because the Hi are relatively prime,
their sum H is prime by Exercise 6.11.

Exercise 6.13 By Exercise 6.12 it suffices to
treat the case in which G has four components.

If all prime factorizations of G have a prime
factor with four connected components, then the
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prime factorization is unique by the solution to
Exercise 6.12. (In that exercise we used the fact
that the number of components of G was prime
to ensure that one factor had as many compo-
nents as G, and all other factors just one. But
here we already assume that we always have a
factor with the same number of components as
G.)

Hence, there must be a prime factor with two
connected components, which is only possible if
there is a second factor with two components.
Suppose

G = (A+B)2 (C +D)

= A2C + A2D +B2C +B2D

= G1 +G2 +G3 +G4 .

If the Gi have a common, nontrivial prime fac-
tor, say H , then H must either be a factor of A
and B or of C and D. This is easy to see, because
every connected graph has unique prime factor-
ization with respect to the Cartesian product.
On the other hand, if either A and B or C and
D have a common factor, then the Gi are not
relatively prime.

We can thus assume that the Gi are rela-
tively prime. If G, that is, their disjoint union,
is prime, there is nothing to show. Thus let

(A+B)2 (C +D) and (A′ +B′)2 (C′ +D′)

be two prime factorizations of G. Then a compo-
nent of the first product must be isomorphic to a
component of the second, say A2C ∼= A′

2C′.
Let A = A1 2A2, where A1 is the product of
the prime factors of A that are prime factors of
A′, and C = C1 2C2, where C1 is the product
of the prime factors of C that are prime factors
of C′. Then A2C = A′

2C′ implies that

A1 2A2 2C1 2C2 = A1 2A
′
2 2C1 2C

′
2 .

Hence, A2 2C2 = A′
2 2C

′
2. Because A2 and A′

2

are relatively prime, we infer A′
2 = C2. But then

we also have C′
2 = A2. Therefore

(A+B)2 (C +D)

= (A1 2A2 +B)2 (C1 2C2 +D)

= A2C + A1 2A2 2D +

C1 2C2 2B +B2D,

and

(A′ +B′)2 (C′ +D′)

= (A1 2C2 +B′)2 (A2 2C1 +D′)

= A2C +A1 2C2 2D
′ +

A2 2C1 2B
′ +B′

2D′.

Because A and B are relatively prime,
A1 2C2 2D

′ ∼= A1 2A2 2D. Then C2 must be
a divisor of A2; and because A22C1 2B

′ ∼=
C1 2C2 2B

′, we infer that A2 is a divisor of C2.
But then A2

∼= C2, and D
′ ∼= D, B′ ∼= B. So the

two decompositions are the same.

Exercise 6.14 These graphs are clearly �-S-
prime and ◦-S-prime. On the other hand, any
graph on n ≥ 3 vertices is a nontrivial subgraph
of K2 �Kn−1 = K2 ◦Kn−1 = K2n−2.

Exercise 6.15 Suppose G is a nontrivial sub-
graph of G2H . Then G is also a nontrivial sub-
graph of K|V (G)| 2K|V (H)|. The other implica-
tion is clear.

Chapter 7

Exercise 7.1 It is routine to check that S is an
equivalence relation. If x and y are in the same
equivalence class, then xSy, so N [x] = N [y].
Hence x and y are adjacent (or equal), so equiv-
alence classes induce complete subgraphs.

Consider distinct classes U and V . Suppose
there is an edge uv with u ∈ U and v ∈ V .
We now show any x ∈ U is adjacent to any
y ∈ V . Because xSu we have N [x] = N [u],
but also v ∈ N [u] = N [x], so xv ∈ E(G). Thus
x ∈ N [v] = N [y], so xy ∈ E(G).

Exercise 7.2 Obviously, P1 is S-thin, as it
has only one vertex. Clearly P2 is not S-thin, as
each of its vertices has the same closed neigh-
borhood. Consider Pk for k > 2, and list its
vertices as 1, 2, 3, . . . , k. Then N [1] = {1, 2},
N [k] = {k − 1, k} and N [i] = {i − 1, i, i + 1}
whenever 1 < i < k. These sets are pairwise
distinct, so Pk is S-thin.

Exercise 7.3 Let G be a triangle with an ex-
tra edge appended to one of its vertices. The
only nontrivial automorphism of G interchanges
the two vertices of degree 2, which form an S-
class. This induces the trivial automorphism of
G/S. Consequently, Aut(G)/S is trivial. But
G/S ∼= P3, which has a nontrivial automor-
phism. Therefore Aut(G)/S is a proper sub-
group of Aut(G/S).

Exercise 7.4 If m = n = 2, then the automor-
phism group of Pm � Pn = K4 is the symmetric
group S4 and has twelve elements. The group of
Pm 2Pn = C4 is the dihedral group D4, with
eight automorphisms.

If m,n are both larger than 2, then the fac-
tors of Pm �Pn are S-thin. Hence any automor-
phism is induced by automorphisms of the fac-
tors and the transposition of isomorphic factors
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(possible if m = n), by Theorem 7.17. Hence
there are four automorphisms ifm 6= n and eight
if m = n, the same number as for Pm 2Pn.

It remains to consider the case K2 � Pn,
with n > 2. This has n S-classes, each of form
{(0, x), (1, x)} with x ∈ Pn. Any automorphism
must preserve S-classes and also induce an auto-
morphism of (K2 � Pn)/S ∼= Pn. It follows that
any automorphism of K2 � Pn is a composition
of an automorphism induced by Pn, followed by
an arbitrary permutation of the vertices in each
S-class. Thus |Aut(K2 � Pn)| = 2n+1. By con-
trast, K2 2Pn has just four automorphisms.

Exercise 7.5 Hint: Compare the proof of
Corollary 6.18.

Exercise 7.6 Hint: Observe that a square
without diagonals must always be contained in
a layer with respect to the strong product, and
that a K4 must always be contained in a layer
with respect to the Cartesian product.

Exercise 7.7 Take P3 �P3, which is of course
composite. Let x be one of its vertices of degree
three. Form a new graph G as follows. Remove
x and replace it with a copy of K3. Add edges
running from each vertex of K3 to the former
neighbors of x. Then G is prime because it has
eleven vertices. But also G/S = P3 � P3, which
is composite.

Exercise 7.8 Straightforward.

Chapter 8

Exercise 8.1 A vertex of a direct product has a
loop if and only if all its projections carry loops.

Exercise 8.2 Hint: Show that any bijection
{1, 2, . . . , p}×{1, 2, . . . , p} → {1, 2, . . . , pq} is an
isomorphism Ks

p ×Ks
q → Ks

pq.

Exercise 8.3 The factor Ks
1 + Ks

2 + (Ks
2)

×,2

is prime because it has a prime number of ver-
tices (seven). Now consider the factor G = Ks

1 +
(Ks

2)
×,3. Because it has nine vertices, it could

only factor nontrivially as G = H × K, where
H and K each have three vertices. Moreover,
because G has loops at each vertex, H and K
would have loops at each vertex. Because G is
nonbipartite and disconnected, Weichsel’s theo-
rem implies one of H or K is disconnected (say
H) and the other (say K) is connected. We infer
that each K-layer of H ×K is isomorphic to K,
and thus each component of G has at least three
vertices, a contradiction. The other factors can
be treated similarly.

Exercise 8.4 Routine.

Exercise 8.5 Suppose two R-classes
X,Y ∈ V (G/R) have the same neighbor-
hoods {U1, U2, . . . , Uk} in G/R. Let x ∈ X
and y ∈ Y . By Lemma 8.2, NG(x) = NG(y) =
U1∪U2∪· · ·∪Uk. Thus xRGy, so X = Y . Hence
G/R is R-thin.

Exercise 8.6 SupposeG is connected and non-
bipartite. Then argue that each pair of vertices
u and v in G is connected by a u, v-walk of even
length. Therefore Gs has a u, v-walk as well and
is thus connected. Because the Boolean square of
an odd cycle is an odd cycle (of the same length),
Gs is nonbipartite.

For the converse, use contrapositive.

Exercise 8.7 Every Kn, n ≥ 3, does the job.

Exercise 8.8 Hint: Every vertex of a 4-regular
graph of order 6 is nonadjacent to exactly one
vertex.

Exercise 8.9 Label the vertices of the C4-
layers of C3 ×C4 with 1, 2, 3, 4, with 1′, 2′, 3′, 4′,
and with 1′′, 2′′, 3′′, 4′′, respectively. Assume
that the vertices of K3×2 are ordered such that
there is no edge between the first two ver-
tices, the third and the fourth vertices, and be-
tween the last two vertices, and label the cor-
responding K3×2-layers with a, b, c, d, e, f and
a′, b′, c′, d′, e′, f ′, respectively. Then 1 7→ a, 2 7→
a′, 3 7→ b, 4 7→ b′, 1′ 7→ c, 2′ 7→ c′, 3′ 7→ d, 4′ 7→
d′, 1′′ 7→ e, 2′′ 7→ e′, 3′′ 7→ f, 4′′ 7→ f ′ is an iso-
morphism C3 × C4 → K2 ×K3×2.

Exercise 8.10 H is 4-regular and has twelve
vertices. Hence as a direct product it must be a
product of two regular graphs, say G1 and G2.
By the commutativity, we only need to consider
two possibilities: |V (G1)| = 2 and |V (G2)| = 6,
or |V (G1)| = 3 and |V (G2)| = 4. In the first
case, G2 must be a 4-regular graph (on six ver-
tices). By Exercise 8.8, G2 = K3×2. In the sec-
ond case, G1 and G2 must be 2-regular graphs,
that is, G1 = C3 and G2 = C4. Hence, using
Exercise 8.9, if H is a direct product of simple
graphs, we must have H = C3 ×C4.

To show that H = C3 ×C4 indeed holds, se-
lect an arbitrary vertex a of H . It has exactly
two vertices, say b and c, at distance 3 from a.
Then a, b, c must be in the same C4-layer. The
fourth vertex of this layer is then a vertex d 6= a
at distance 3 from c (or, equivalently, at distance
3 from b). See Figure A.3.

Exercise 8.11 Suppose, say, that G is bipar-
tite with bipartition V (G) = G0 ∪G1. Then the
definition of the direct product implies that G×
H has no edge (g, h)(g′, h′) with both endpoints
in G0 × V (H) or both endpoints in G1 × V (H).
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It follows that G0 × V (H) and G1 × V (H) form
a bipartition of G×H , so G×H is bipartite.

Exercise 8.12 Hint: Confirm that one com-
ponent of G1 of G × G is induced on the ver-
tices (x, y) for which x and y are in differ-
ent partite sets of G. Then show that the map
(x, y) 7→ (y, x) is the desired involution.

Exercise 8.13 Take odd cycles CG =
g0g1g2 . . . gmg0 and CH = h0h1h2 . . . hnh0 in
G and H , respectively. Let P = g0g1 . . . g0
be a closed walk that travels lcm(m,n)/m
times around CG. Likewise let Q = h0h1 . . . h0

be a closed walk that travels lcm(m,n)/n
times around CH . Then we have a cycle
(g0, h0)(g1, h1) . . . (g0, h0) in G×H of odd length
lcm(m,n).

Exercise 8.14 Hint: Write an explicit isomor-
phism from G×K2 to G+G.

Exercise 8.15 Write K2 × · · · × K2 × K4 as
(K2 × · · · ×K2) ×K4. By a simple induction it
follows that K2 × · · · ×K2 is the disjoint union
of 2n−1 copies of K2. Because K2×K4 = Q3 (cf.
Exercise 20), it follows that K2 × · · · ×K2 ×K4

consists of 2n−1 connected components each iso-
morphic to Q3.

Exercise 8.16 Suppose G = H1 ×H2, where
H1 and H2 are nontrivial graphs. As |V (G)| is

odd, so are |V (H1)| and |V (H2)| and thus each of
H1 andH2 has at least three vertices. Being con-
nected, each of them contains a vertex of degree
at least 2. But then ∆(G) ≥ 4, a contradiction.

Exercise 8.17 Apply Exercise 8.16.

Exercise 8.18 Hint: The graph H must be
2-regular.

Exercise 8.19 Note P2n+1 is prime by Exer-
cise 8.16. Also P2n = K2×P

∗
n , where P

∗
n denotes

the path on n vertices with a loop added to one
endpoint.

Exercise 8.20 Hints: Note first that H must
be 3-regular. Observe next that Q3 can be repre-
sented as K4,4 with a perfect matching removed.

Exercise 8.21 K2×K3×2 = K2× (K×K3) =
(K2 ×K)×K3 = C4 ×K3 = C3 ×C4.

Exercise 8.22 Suppose G ×H ∼= G2H . Be-
cause ∆(G×H) = ∆(G)∆(H) and ∆(G2H) =
∆(G) + ∆(H) we infer that ∆(G) = ∆(H) = 2.
Similarly we get that δ(G) = δ(H) = 2. It fol-
lows that G and H must be cycles. If at least
one of them is of even length, then G×H is bi-
partite but G2H is not. So G and H are both
odd cycles. Finally note that the products would
have different lengths of shortest odd cycles if G
and H were of different lengths.

The converse is proved in Exercise 4.1.

a
b

c

d

FIGURE A.3 Graph H .

Chapter 9

Exercise 9.1 Hint: This is probably most eas-
ily done without the aid of Theorem 9.15. Use
Proposition 9.7 to reduce to the case C10×K2

∼=
B ×K2.

Exercise 9.2 Any homomorphism f : X →
A× C has component form f = (pAf, pCf). As
the projections pA and pC are homomorphisms

on A × C, the compositions PAf : X → A and
PCf : X → C are homomorphisms. Thus each
f : X → A×C corresponds to a pair (pAf, pCf).

Conversely, to any pair (fA, fC) of homomor-
phism fA : X → A and fC : X → C there
is a homomorphism f : X → A × C, where
x 7→ (fA(x), fC(x)), and (fA, fC) = (pAf, pCf).
Hence, hom(X,A×C) = hom(X,A)·hom(X,C).
Because projections pA and pC are weak ho-
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momorphisms on A � C, the same argument
gives the companion formula homw(X,A×C) =
homw(X,A) · homw(X,C).

Exercise 9.3 The hypothesis implies
hom(X,A) · hom(X,C) = hom(X,B) ·
hom(X,C). If hom(X,C) 6= 0, we get
hom(X,A) · hom(X,D) = hom(X,B) ·
hom(X,D), and hence hom(X,A × D) =
hom(X,B × D). On the other hand, if
hom(X,C) = 0, then also hom(X,D) = 0,
for otherwise there is a homomorphism X →
D → C. Again, hom(X,A) · hom(X,D) =
hom(X,B) · hom(X,D), and hence hom(X,A×
D) = hom(X,B × D). Theorem 9.3 now gives
A×D ∼= B ×D.

Exercise 9.4 We first prove by induction that
given any odd walk (µ1)(µ2)(µ3) . . . (µ2p) in A!,
the pair (µ1)(µ2p) is an edge of A!. This is trivial
if p = 1. If p > 1, the induction hypothesis guar-
antees (µ3)(µ2p) ∈ E(A!), so (µ1)(µ2)(µ3)(µ2p)
is a walk in E(A!). Using the fact that the edges
of this walk are edges in A!, we get

aa′ ∈ E(A) ⇐⇒

µ1(a)µ2(a
′) ∈ E(A) ⇐⇒

µ−1
3 µ1(a)µ

−1
2 µ2(a

′) ∈ E(A) ⇐⇒

µ3µ
−1
3 µ1(a)µ2pµ

−1
2 µ2(a

′) ∈ E(A) ⇐⇒

µ1(a)µ2p(a
′) ∈ E(A) .

Therefore (µ1)(µ2p) ∈ E(A!).
Now, if C is a component of A! that happens

to be bipartite, then there is an odd path be-
tween any vertices α and β that are in different
partite sets of C. Thus (α)(β) ∈ E(A!), so C is a
complete bipartite graph. On the other hand, if
C has an odd cycle (possibly just a loop), then
there is an odd walk joining any pair of its ver-
tices, so all pairs of vertices in C are adjacent,
and thus C ∼= Ks

p.

Exercise 9.5 This is reflexive because α =
idα id−1. It is symmetric, for given that α ' β,
we have α = λβµ−1 for (λ)(µ) ∈ E(A!). But
then β = λ−1αµ, and (λ−1)(µ−1) ∈ E(A!), so
β ' α. To check transitivity, suppose α ' β
and β ' γ. Then α = λβµ−1 and β = νγξ−1

for edges (λ)(µ) and (ν)(ξ) in E(A!), so α =
λν γ ξ−1µ−1 = (λν) γ (µξ)−1. But (λν)(µξ) ∈
E(A!) because xy ∈ E(A) ⇔ ν(x)ξ(y) ∈ E(A)
⇔ λν(x)µξ(y) ∈ E(A). Therefore α ' γ.

Exercise 9.6 Hint: Apply Theorem 9.15.

Exercise 9.7 Hint: For the first law, con-
sider the map f 7→ (f |A, f |B). For the second,
consider f 7→ (pAf, pBf). For the third, use
f 7→ [c 7→ f(·, c)].

Chapter 10

Exercise 10.1 Let d = gcd(m,n) > 1. Then
for m = rd and n = sd,

Dn ◦G+Dm = Dsd ◦G+Drd

= (sd)G+ (rd)K1

= d(sG+ rK1)

= Kd ◦ (sG+ rK1) .

Proceed similarly for G ◦Dn +Dm.

Exercise 10.2 If G has a proper retraction
f : G→ G, then any lexicographic productH◦G
has a proper retraction (a, x) 7→ (a, f(x)).

Conversely, consider a proper retraction f :
Kn ◦ G → Kn ◦ G. We claim that f preserves
G-layers, that is, f(a, x) = (a, ϕ(a, x)). Indeed,
suppose f(a, x) = (b, y), where a 6= b. Then,
(a, x)(b, y) is an edge of Kn ◦ G, but f(a, x) =
f(b, y), violating the homomorphism property of
f .

Now fix a and check that x 7→ ϕ(a, x) is a
proper retraction of G.

Adapt this argument for C2n+1 ◦G.

Exercise 10.3 Let H ⊆ G be the smallest sub-
graph for which there is a retraction g : G → H .
(Possibly H = G.) Now, given a retraction
f : H → H ′, the composition fg is a retrac-
tion of G to H ′, so H ′ = H by choice of H .
Therefore H is a core of G.

Next, take two cores H and H ′ of G, and re-
tractions g : G → H and g′ : G → H ′. Consider
the restrictions g : H ′ → H and g′ : H → H ′.
By Exercise 3.9, their compositions gg′ and g′g
are automorphisms of H and H ′, respectively. It
follows that the homomorphisms g : H ′ → H
and g′ : H → H ′ are bijective, hence H ∼= H ′.

Exercise 10.4 Let G′ be the core of G and let
r : G → G′ be a retraction (where G′ is now a
subgraph of G). Let f : G → H and g : H → G
be homomorphisms. Then the composition rgf
is a homomorphism and maps G′ onto G′. As G′

is a core, rgf : G′ → G′ is an automorphism.
Then rg : H → G′ is a retraction, so G′ is also
the core of H .

Exercise 10.5 Identify the core of H with a
subgraph H ′ of H . There exist homomorphisms
G ◦ H → G ◦ H ′ and G ◦ H ′ → G ◦ H . Hence
by Exercise 10.4 it suffices to show that the core
of G ◦ H ′ has the asserted representation. Let
(G ◦ H ′)′ be the core of G ◦ H ′ and identify it
with its subgraph. Let r : G◦H ′ → (G◦H ′)′ be a
retraction. Then show that r maps each H ′-layer
into itself. Because H ′ is a core we conclude that
(G ◦H ′)′ = G′ ◦H ′ for some subgraph G′ of G.
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Exercise 10.6 Note that Cn = Γ(Zn, {1}) and
Kn = Γ(Zn,Zn \ {0}).

Exercise 10.7 Hint: According to the defini-
tions, G × G′ and Γ(A × A′, S × S′) both have
vertex set A × A′. Show that the identity map
on A× A′ is the required isomorphism.

Exercise 10.8 Hint: Let S =
{(1, 0, . . . , 0), (0, 1, . . . , 0), . . . , (0, 0, . . . , 1)} ⊆
Zn

2 . Show Qn = Γ(Zn
2 , S).

Exercise 10.9 Hint: The graphs are in fact
equal. Both graphs have vertex set A× A′. Fol-
lowing the definitions, any edge of G◦G′ has one
of the following forms:

(i) [(a, b), (as, c)] = [(a, b), (a, b)(s, b−1c)],
with (s, b−1c) ∈ S ×A′ ,

(ii) [(a, b), (a, bs)] = [(a, b), (a, b)(1, s)],
with (1, s) ∈ {1} × A′ .

In either case we have an edge of Γ(A×A′, ({1}×
S′) ∪ (S × A′)). Conversely, any edge of Γ(A ×
A′, ({1} × S′) ∪ (S × A′)) also has one of these
forms.

Exercise 10.10 Fix a vertex v ∈ V (G) and let
Γv be its stabilizer. For each x ∈ V (G), choose
an αx ∈ A = Aut(G) for which αx(v) = x. De-

fine a map ϕ : V (G)×Γv → A as ϕ(x, γ) = αxγ.
It is not hard to check that this is a bijection.

Let S = {α ∈ A | α(v) ∈ NG[v], α 6= id}.
Identify the vertex set of Kn with Γv. Now ϕ is
a bijection G ◦Kn → Γ(A,S). We claim that it
is an isomorphism.

Suppose [(x, γ), (y, δ)] ∈ E(G ◦ Kn), so
[x, y] ∈ E(G), or x = y and γ 6= δ. Applying
ϕ to this edge, we get

[αxγ, αyδ] = [αxγ, (αxγ)
(

(αxγ)
−1αyδ

)

] ,

and to show this is an edge of Γ(A,S), we must
check that (αxγ)

−1αyδ ∈ S. If x = y and γ 6= δ,
then (αxγ)

−1αyδ = γ−1δ is a nonidentity ele-
ment of Γv, so it is in S. If [x, y] ∈ E(G), then
[x, y] = [αxγ(v), αyδ(v)]. Applying the automor-
phism (αxγ)

−1 to this edge produces an edge
[v, (αxγ)

−1αyδ(v)], so (αxγ)
−1αyδ(v) ∈ NG(v),

hence (αxγ)
−1αyδ ∈ S. Therefore ϕ is a bijective

homomorphism.
Conversely, suppose [α, αs] ∈ E(Γ(A,S)).

Treat the cases s ∈ Γv and s ∈ A \ Γv sep-
arately. In the first case, [α, αs] is the image
of an edge of form [(x, γ), (x, δ)]. In the second
case, it is an image of an edge [(x, γ), (y, δ)] with
[x, y] ∈ E(G). The details are left to the reader.

Part III

Chapter 11

Exercise 11.1 Hint: Write down the distances
from the endpoints of f and f ′ to the endpoints
of e.

Exercise 11.2 Hint: Consider the subgraph
H = P4 ⊆ C4.

Exercise 11.3 Hint: If vertices u and v of G
belong to two different components, then show
that every shortest u, v-path passes through a
cut vertex of a block in which u lies (and through
a cut vertex of a block in which v lies).

Exercise 11.4 Let G be a connected, bipar-
tite graph in which every edge is contained in at
most one cycle. Then the blocks of G are even
cycles and edges. Hence G is a partial cube by
Exercise 11.3.

Exercise 11.5 Hint: Consider a coordinatiza-
tion of the vertices of H by 0-1 vectors and re-
move the coordinate corresponding to the edge
ab, that is, the coordinate in which a and b differ.

Exercise 11.6 Hint: Add a new coordinate to
the coordinates of the isometric embedding of

G into a hypercube Qr. Set the new coordinate
equal to zero for the vertices in V1 \ V2 and for
every vertex v1 created from v ∈ V1 ∩ V2 by (i).
For all other vertices let the new coordinate be
equal to 1. Show that this coordinatization gives
rise to an isometric embedding of H into Qr+1.

Exercise 11.7 Hint: By Exercise 11.5 and Ex-
ercise 11.6, an expansion is the inverse of a con-
traction. It thus suffices to show that every par-
tial cube can be reduced to K1 by a sequence of
contractions.

Exercise 11.8 Hint: Apply Theorem 11.8 one
way or another.

Exercise 11.9 Suppose G and H isometrically
embedd into Qd and Qd′ , respectively. Then find
a natural isometric embedding of G2H into
Qd+d′ .

Exercise 11.10 Hint: Consider the degrees in
factors of a possible factorization of G.

Exercise 11.11 First observe that intervals
in hypercubes are subcubes and hence convex.
Then use the definition of partial cubes.

Exercise 11.12 Let A = {H1, . . . ,Hr}. The
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main idea is to (naturally) embed GA into Qr

as follows. Let H ′
i and H ′′

i be the open half
spaces separated by Hi. For a vertex u of GA,
set `(u) = b1b2 . . . br, where bi = 0 if the region
of u lies in X ′

i, and bi = 1 if it lies in X ′′
i .

Observe first that if u and v are vertices of
the regions that meet along a (d−1)-dimensional
face, then `(u) and `(v) differ in exactly
one coordinate. Therefore, dQr (`(u), `(v)) ≤
dGA(u, v). To prove the reverse inequality, select
vertices pu and pv in the regions of u and v such
that every point on the straight line connecting
pu with pv lies on at most one hyperplane of A.
(Such points exist because for any point p of the
region of u, the set of points p′ that do not sat-
isfy the condition forms a subset of measure zero
of the region of v.) Because this line crosses only
those hyperplanes Hi for which `(u) 6= `(v), we
get dGA(u, v) ≤ dQr (`(u), `(v)).

Exercise 11.13 For each 1 ≤ i ≤ n, let
ei = (0, 0, . . . , 1, . . . , 0) be the vertex of Qn with
a 1 only in the ith position. Any two ei, ej are
the endpoints of a length-2 path in Qn whose
intermediate vertex ei,j has 1’s only in the ith
and jth positions. It is straightforward to check
that the vertices ei together with the ei,j induce
an isometric subdivided Kn. In other words, the
graph obtained from Kn by subdividing each of
its edges exactly once is isomorphic to the (iso-
metric) subgraph of Qn induced by the vertices
containing exactly one or two 1’s.

Exercise 11.14 Let G be 5-gonal and as-
sume that 〈Wuv〉 is not convex for some edge
uv of G. Select vertices x, y from Wuv such that
there exists a shortest x, y-path containing a ver-
tex z /∈ Wuv. Consider {u, z} and {v, x, y} and
compute: d(u, x) + d(x, z) + d(u, v) + d(v, z) +
d(u, y) + d(y, z) ≤ (d(v, x) − 1) + (d(x, y) −
d(y, z)) + 1+ (d(u, z)) + (d(v, y)− 1) + d(y, z) <
d(v, x)+d(x, y)+d(u, z)+d(v, y). Hence the sets
{u, z} and {v, x, y} violate the condition.

Exercise 11.15 Combining Exercise 11.14
with Theorem 11.8 (ii), we infer that bipartite 5-
gonal graphs are partial cubes. For the converse,
verify that hypercubes (as Cartesian products of
K2’s) are 5-gonal and hence are their isometric
subgraphs.

Exercise 11.16 Hint: All vertices of G (em-
bedded in Qd) lie in the same bipartition set of
Qd.

Chapter 12

Exercise 12.1 Routine.

Exercise 12.2 Suppose G is median and let
e = uv lie on 4-cycles uvwz and uvz′w′. Then
z 6= z′ and w 6= w′ because G is bipartite. Be-
cause G contains no K2,3, we have z 6= w′ and
w 6= z′. Similarly, z is not adjacent to z′ and w is
not adjacent to w′. Assume that G−e is also me-
dian. Then take the median of v, w′, z and find
a K2,3 in G, a contradiction.

Argue similarly that if G− e is median, then
G cannot be such.

Exercise 12.3 For one direction assume that
G is a connected subgraph of the Cartesian prod-
uct of two paths with n vertices, m edges, and
m−n+1 squares. If m−n+1 = 0, then G is a
tree and hence median. Let m − n + 1 > 0 and
e an edge of G in a square S of G. If e lies in
two squares, select the opposite edge on S and
continue until an edge f of G is found that lies
in exactly one square. By induction, G − f is
median. Deduce now that G is also median.

The other direction follows by Proposi-
tion 12.14.

Exercise 12.4 Combine Corollary 12.13 with
Proposition 12.14 to deduce that G has 2n −
m−2 Θ-classes. Then prove by induction on the
number of 4-cycles of G that the length of the
outer face is twice this number.

Exercise 12.5 Hint: Use Lemma 12.20.

Exercise 12.6 Let G be a median graph. By
Proposition 12.4 we may consider G as an iso-
metric subgraph of some hypercube, say Qd. Let
u, v ∈ V (G) and assume without loss of gener-
ality that they differ in coordinates 1, 2, . . . , k,
where k = dG(u, v). Let x, y, z ∈ I(u, v), then
xi = yi = zi = ui = vi for any i > k. Then
the median w of x, y, z in G also has the same
coordinates wi for i > k because it is obtained
by the majority rule in each coordinate. Now de-
duce that w ∈ I(u, v).

Alternatively, by Exercise 11.11 intervals of
median graphs are convex, so they must be me-
dian.

Exercise 12.7 Hint: Use arguments similar to
those from the proof of Theorem 12.7.

Exercise 12.8 Clearly the n-cube is an n-
regular median graph.

In the other direction we proceed by induc-
tion on n. Clearly the assertion is true for n = 1.
Let it be true for n− 1 ≥ 1 and let G be an n-
regular median graph. By Lemma 12.16 it has
a peripheral Wab, and by Theorem 12.7 Fab in-
duces an isomorphism between 〈Wab〉 = 〈Uab〉
and 〈Uba〉. Clearly 〈Uab〉 and 〈Uab〉 are (n − 1)-
regular, so 〈Wba〉 must be peripheral not to vi-
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olate regularity. Hence G ∼= K2�〈Wab〉. The as-
sertion follows, because 〈Wab〉 ∼= Qn−1 by the
induction hypothesis.

Exercise 12.9 For instance, even cycles of
length at least 6 will do.

Exercise 12.10 Hint: Apply Mulder’s Convex
Expansion Theorem 12.8 and induction.

Exercise 12.11 Hint: Show that all convex
cycles of median graphs have length 4.

Exercise 12.12 Let H be a median subgraph
of a median graph G. By Theorem 12.18, G is
a retract of some Qd and H a retract of some
Qd′ , where d ≥ d′. Because Qd′ is a retract of
Qd, H is also a retract of Qd. Let f : Qd → H
be a retraction; then the restriction of f to G is
a retraction G → H .

Exercise 12.13 Let H be a convex subgraph
of a median graph G. Let V (K2) = {0, 1} and
consider the Cartesian productX = G2K2. Let
G′ be the subgraph of X induced by {(u, 0) | u ∈
V (G)}∪{(u, 1) | u ∈ V (H)}. Note that G′ is iso-
morphic to the peripheral expansion of G over
H , hence G′ is a median subgraph of X. Be-
cause X is median (being the Cartesian prod-
uct of median graphs), there exists a retraction
r : X → G′ by Exercise 12.12. Define f : G→ G
with f(u) = pG(r(u, 1)). Now verify that f has
the required properties.

Chapter 13

Exercise 13.1 Routine.

Exercise 13.2 If G has more than one Θ∗-
class, then the canonical embedding of G has
more than one factor. Hence G is not irreducible
by Theorem 13.3 (i).

Suppose that there exists an irredundant iso-
metric embedding of G into a Cartesian prod-
uct of more than one factor. Then by Theo-
rem 13.3 (ii), the canonical embedding has at
least two factors and hence Θ∗ has that many
classes.

Exercise 13.3 Combine Exercise 13.2 with the
fact that edges from different blocks of a graph
are not in relation Θ.

Exercise 13.4 For instance, odd cycles.

Exercise 13.5 By Exercise 13.2 it suffices to
show that almost all graphs have a single Θ∗-
class.

Let G be a random graph on n vertices and
let u, v and u′, v′ be disjoint pairs of vertices.
Let x, y be an arbitrary additional pair of ver-
tices. We say that X = {u, v, u′, v′, x, y} form

an H-graph provided that they are connected
precisely with the edges ux, vy, xy, xu′, yv′, and
the edges uv and u′v′ may be present or not.
Note that if uv and u′v′ ∈ E(G), then uvΘu′v′

when X forms an H-graph. Because there are
fifteen edges (and non-edges) to be fixed in an
H-graph, the probability that X does not form
an H-graph is at most 1− 2−15. For n > 9 there
are at least n disjoint possibilities to select the
pair x, y once u, v and u′, v′ have been chosen,
hence the probability that none of them gives
an H-graph is at most (1 − 2−15)n. There are
less that n4 possibilities for the selection of the
pairs u, v and u′, v′. Therefore, the probability
that for some pair we find no H-graph is at most
n4(1 − 2−15)n, which tends to 0 when n → ∞.
We conclude that the probability that we find an
H-graph for all disjoint pairs of vertices tends to
1. Hence almost all graphs are irreducible.

Exercise 13.6 Routine.

Chapter 14

Exercise 14.1 Routine.

Exercise 14.2 Let x = (x1, . . . , xr) and y =

(y1, . . . , yr) be vertices of G = �
r

i=1Kki . Let
xj 6= yj for j = i1, . . . , is. Then dG(x, y) = s.
Moreover, z ∈ I(x, y) if and only if zj , j =
i1, . . . , is, either equals xj or yj , and zj = xj =
yj for the other indices j. It is now straightfor-
ward that I(x, y) induces Qs.

Exercise 14.3 The assertion is clear for com-
plete graphs. It transfers to their Cartesian prod-
ucts and to isometric subgraphs of such prod-
ucts.

Exercise 14.4 Let u, v, w be vertices of a
median graph G with d(u,w) = d(v, w) and
d(u, v) = 2. Then the median of u, v, w yields
the required vertex.

Note that C6 is a partial cube that does not
satisfy the quadrangle property.

Exercise 14.5 Hint: Let u1, u2, . . . , u6 be ver-
tices of C6 in natural order. Set s0 = r0 = u1 and
consider the request sequence u3u5u3u5u3u5 . . .

Exercise 14.6 Gated sets are convex and
clearly ∆-closed. For the converse, argue that if
H is convex and ∆-closed, then to every vertex
u /∈ H there is a unique vertex in H closest to
u.

Exercise 14.7 A Hamming graph is quasi-
median and it is easy to see that it contains no
convex P3.

Let G be a quasi-median graph with no con-
vex P3 and assume that it is not a Hamming
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graph. Then by Theorem 14.11 it is a gated
amalgamation of H1 and H2. Consider a vertex
from H1 \H2 and a vertex from H2 \H1 that are
as close as possible to find a convex P3.

Exercise 14.8 Use the three conditions of
Mulder (1980a) for the characterization of quasi-
median graphs as listed on p. 173.

Exercise 14.9 x1 = imp(u2, u3; u1), x2 =
imp(u1, u3;u2), x3 = imp(u1, u2;u3).

Exercise 14.10 Hint: Apply theorems of this
chapter.

Chapter 15

Exercise 15.1 Select a diametrical path P of
G. Then proceed as in the proof of Theorem 15.1
but disregard the coordinates that correspond to
all the vertices of P except one of its endpoints.

Exercise 15.2 Hint: The largest complete sub-
graph of the strong product of k paths is of order
2k.

Exercise 15.3 Let V (Pn) = {0, 1, . . . , n − 1}
and n =

(

k
bk/2c

)

. Set

X = {(t1, . . . , tk) | ti ∈ {0, 1},
k

∑

i=1

ti = bk/2c} ,

and

Y = {(t1 + 1, . . . , tk + 1) | (t1, . . . , tk) ∈ X} .

Then |X| = |Y | =
(

k
bk/2c

)

= n. Consider X
and Y as vertex subsets of the strong prod-
uct of k paths on three vertices and verify that
X∪Y induces an isometric subgraph isomorphic
to K2 2Kn.

For n ≤
(

k
bk/2c

)

, K2 2Kn is an isomet-
ric subgraph of graph K2 2K( k

bk/2c)
and hence

sdim(K2 2Kn) ≤ sdim(K2 2K( k
bk/2c)

) ≤ k.

Exercise 15.4 Hint: In each coordinate of an
isometric embedding of G into the strong prod-
uct of paths, the maximum coordinate and the
minimum coordinate differ by at most d. Cut the
factors accordingly.

Exercise 15.5 Routine.

Exercise 15.6 Suppose G has finite lattice di-
mension. Then G is isometric in some P�,r

n . Be-
cause P�,r

n is in turn isometric in some d-cube,
G is a partial cube.

The converse follows by the easy fact that
Qd lies isometrically in P�,d

n for any n ≥ 2.

Part IV

Chapter 18

Exercise 18.1 Hint: Give an example of arbi-
trarily large graphs G that are not partial cubes,
but where every edge-deleted subgraph is a par-
tial cube.

Exercise 18.2 Hint: Use Proposition 18.2.

Exercise 18.3 Hint: Use the definition of Θ.

Exercise 18.4 Hint: Check Θ for transitivity.

Exercise 18.5 Hint: Use shortest paths from
the root of the BFS-ordering to u and v, and the
fact that no two edges on shortest paths are in
relation Θ.

Exercise 18.6 Hint: Find a counting argu-
ment.

Exercise 18.7 Hint: Compute the connected
components of the subgraph H of G whose edge
set is F and whose vertices are the endpoints of
the edges in F . Select a vertex u in every com-
ponent C. For every edge vw, where v is in C,
remove vw and add uw. Then remove all vertices
of C except u.

Exercise 18.8 Hint: Use Algorithm 17.1.

Exercise 18.9 Hint: Compute Θ∗ in O(mn)
time and then use Exercises 18.7 and 18.8.

Exercise 18.10 Routine.

Exercise 18.11 Hint: Use induction on the di-
ameter of G and the labeling method of Proce-
dure 18.4.

Chapter 19

Exercise 19.1 Routine induction.

Exercise 19.2 Hint: Apply Proposition 5.1.

Exercise 19.3 Apply Exercise 19.2 and in-
duction to obtain W (Qd) = d22(d−1). For
W (Pn 2Pm), show first that W (Pn) =

(

n+1
3

)

.

Exercise 19.4 For the first assertion, note that
any pair of nonadjacent vertices contributes at
least 2 to the Wiener index. For the second as-
sertion, find a construction that, given a tree T
that is not a path, returns another tree with the
same number of edges that looks more similar to
a path than T and has smaller Wiener index.
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Exercise 19.5 W (Lh) =
1
3
(16h3+36h2+26h+

3).

Exercise 19.6 Routine.

Chapter 20

Exercise 20.1 Routine.

Exercise 20.2 Hint: Let G be a graph on n
vertices and m edges. Then a(G) ≥ m/(n − 1),
by Theorem 20.2. To complete the proof, observe
that δn ≤ 2m.

Exercise 20.3 Hint: Apply Theorem 20.2.

Exercise 20.4 Hint: Append a path to K5.

Exercise 20.5 Hint: Use Corollary 13.6.

Exercise 20.6 Hint: Use Exercise 20.5.

Chapter 21

Exercise 21.1 Hint: To how many sets Uab

does a given vertex belong?

Exercise 21.2 Hint: First argue that G is
bipartite. Then assume there are three vertices
x, y, z with no median, and choose them so that
d(x, y) + d(y, z) + d(z, x) is minimized. Use the
same set-up to get a contradiction if x, y, z have
more than one median.

Exercise 21.3 Hint: Treat the cases where G
is connected, resp. disconneted, differently. Ob-
serve that the set of central vertices is invariant
under automorphisms.

Exercise 21.4 Hint: Consider the case G = K2

separately.

Exercise 21.5 Hint: Use the fact that G4 is
a median graph and thus a partial cube.

Chapter 23

Exercise 23.1 Hint: To any two product col-
ors c1, c2 there is a chordless square xyuv in G,

where xy, uv have color c1 and yu, xv color c2.
Can the edges yu and uv be in different σ classes
of G− x?

Exercise 23.2 Hint: Show first that it suffices
to prove the relation when i is the product color
of vu or vw.

Suppose now that the product color of vw is
i. Let vuzw be the unique square containing v,u
and w. Suppose next that uz is in the unit-layer
Gv0

i . Then pi(v) = pi(u), pi(u) > pi(z) because z
is closer to v0 than u, and pi(z) = pi(w). Hence
pi(v) = pi(u) > pi(w). Complete the proof by
induction with respect to the distance of v from
a unit layer.

Exercise 23.3 Hint: Choose two down-edges
of v from different σ-classes; use the result of Ex-
ercise 23.2 and consider an arbitrary third down-
edge (if such an edge exists).

Exercise 23.4 Hint: The unit-layer vertices
are coordinatized by their BFS-numbers. Sup-
pose v is not a unit-layer vertex. By Exercise 23.2
its coordinates can be found with k comparisons
from the coordinates of two down-neighbors u,w,
where vu and vw have different product colors.
Show that such a pair of down-neighbors can be
found in d(v) time.

Exercise 23.5 Let G = G1 2G2, I(u, v)
an interval in G, and R a shortest uv-path.
Set u = (u1, u2) and v = (v1, v2). Clearly
p1(R) is in IG1

(u1, v1), and p2(R) in IG2
(u2, v2).

(Compare Proposition 5.1.) Hence I(u, v) ⊆
IG1

(u1, v1)2 IG2
(u2, v2).

Furthermore, if (x1, x2) ∈ I(u, v), it is easy
to construct a shortest uv-path that contains
(x1, x2) from a shortest u1, v1-path that contains
x1, and a shortest u2, v2-path that contains x2.
Hence I(u, v) = IG1

(u1, v1)2 IG2
(u2, v2). This

implies 〈I(u, v)〉 = 〈IG1
(u1, v1)〉2 〈IG2

(u2, v2)〉.

For arbitrarily many factors, the result fol-
lows by induction.

Part V

Chapter 25

Exercise 25.1 If G is not complete, then the
neighbors of a vertex of the minimum degree of
G form a separating set. Similarly, edges incident
to a vertex form a disconnecting set.

Exercise 25.2 Consider a minimal disconnect-
ing set S of G and let the removal of S partitions

V (G) into X and Y . First consider the easier
case that every vertex of X is adjacent to ev-
ery vertex of Y . Otherwise, select nonadjacent
vertices x ∈ X and y ∈ Y and let Z be the set
consisting of the neighbors of x in Y and the
vertices of X − {x} with neighbors in Y . Then
Z is a separating set of size at most κ′(G).
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Exercise 25.3 Use δ(G2H) = δ(G) + δ(H),
Exercise 25.1, and the fact that if S is a separat-
ing set of G, then S × V (H) is a is a separating
set of G2H .

Exercise 25.4 First show that if G and
H are connected graphs on at least two ver-
tices, then both κ(G)|V (H)| and κ(H)|V (G)| are
not smaller than κ(G) + κ(H). Then use Exer-
cise 25.1 and finally apply Theorem 25.1.

Exercise 25.5 Proceed similarly as in the
solution to Exercise 25.4. For instance, be-
cause κ′(H) ≥ 1 and |V (G)| − 1 ≥ κ′(G),
we get κ′(H)(|V (G)| − 1) ≥ κ′(G) and hence
κ′(H)|V (G)| ≥ κ′(G) + κ′(H).

Exercise 25.6 Hint: Mimic the example of Fig-
ure 25.1.

Exercise 25.7 Hint: Let h be a vertex of H of
degree 1, and let h′ be its neighbor. Let A and A
be sets of vertices of G that demonstrate that G
has property P . Then consider the (separating)
set (A× {h′}) ∪

(

A× {h}
)

.

Exercise 25.8 If a subgraph X of G ◦ H
contains two vertices from different H-layers,
then these two vertices are adjacent and any
other vertex of X is adjacent to at least one
of them. Hence X will be disconnected only
if it is a subgraph of an H-layer. Therefore,
κ(Kn ◦ H) = (n − 1)|V (H)| + κ(H). (In par-
ticular, if H = Km then Kn ◦ Km = Knm and
hence κ(Kn ◦Km) = nm − 1.)

Exercise 25.9 The smallest n for which
|V (G(n, 3))| = n3 ≥ 2κ(G(n, 3)) + 2 holds is
n = 5. Hence the smallest constructed graph
has 2 · 53 + 2 = 252 vertices and connectivity
2κ(G(5, 3)) + 2 = 2 · 60 + 2 = 122.

Exercise 25.10 Use Proposition 25.7 and the
fact that G �Kn = G ◦Kn. (Alternatively, ap-
ply Theorem 25.11 and the fact that complete
graphs have no separating sets.)

Exercise 25.11 The value δ(G�H) is (obvi-
ously) realized with vertices of minimum degree.
The other values are realized with G-towers over
κ′(H)-sets of H and with H-towers over κ′(G)-
sets of G.

Exercise 25.12 Select X ⊂ V (G) such that
G − X is bipartite and |X| = κb(G) and Y ⊂
V (H) such that H − Y is bipartite and |Y | =
κb(H). Then show that (X×V (H))∪(V (G)×Y )
is a separating set of G ×H .

Chapter 26

Exercise 26.1 Hint: Vertices of a complete

subgraph of G×H project to pairwise different
vertices in G and to pairwise different vertices in
H .

Exercise 26.2 Suppose Kn is a retract of
G×Kn. Then, in particular, Kn is a subgraph of
G×Kn, so G must contain a complete subgraph
of size at least n. Conversely, ifG contains a com-
plete subgraph of size at least n, then G × Kn

contains Kn. Hence χ(G ×Kn) = n, which im-
plies that Kn is a retract of G×Kn.

Exercise 26.3 Let χ(G) = n ≥ 2 and suppose
that χ(G � K2) ≤ n + 1. Let c be an (n + 1)-
coloring of G � K2 and V (K2) = {x, y}. For
u ∈ V (G), set f(u) = min{c(g, x), c(g, y)} if
this minimum is smaller than n, otherwise set
f(u) = n− 1. Now verify that f is a proper col-
oring of G, which is a contradiction.

Exercise 26.4 Note χ(C2k+1 �C2n+1) ≥ 5 by
Exercise 26.3. To show that χ(C2k+1�C2n+1) ≤
5, first find a 5-coloring of C5 �C5 and then ex-
tend it to the general case.

Exercise 26.5 Hint: Color G◦Kn and G◦Km

with disjoint sets of colors and combine these
two colorings into a coloring of G ◦Kn+m.

Exercise 26.6 If k = 2, then χ(C2k+1 ◦
C2n+1) = 8. If k > 2, then χ(C2k+1◦C2n+1) = 7.
The lower bound is from Theorem 26.8. Con-
struction of 7- and 8-colorings is left to the
reader.

Exercise 26.7 We have noted (using the
duality theorem of linear programming) that
χf (G) = ωf (G). Assign the weight 1/α(G) to
any vertex of G. Then ωf (G) ≥ |V (G)|/α(G)
and we are done.

Exercise 26.8 Find a (2k + 1, k)-coloring of
C2k+1. Then apply Theorem 26.19 and Exer-
cise 26.7.

Exercise 26.9 Hint: A (k, d)-coloring of G is
just a homomorphism from G to Gd

k.

Exercise 26.10 Hint: Apply Theorems 26.3,
26.17, and 26.19, and the fact that χf (Kn) = n.

Exercise 26.11 Hint: As already observed in
the text, it suffices to prove the result for G =
C2k+1. Then apply Exercisess 26.8 and 26.10.

Exercise 26.12 Hint: Let c be a (k, d)-coloring

of G. Then verify that c′(u) = b d′

d
c(u)c defines

a (k′, d′)-coloring of G.

Exercise 26.13 Assume without loss of gen-
erality that k/d = χc(G) ≥ χc(H). Let f be
a (k, d)-coloring of G. By Exercise 26.12 there
is also a (k, d)-coloring g of H . Then h(a, x) =
f(a)+g(x) (mod k) is a (k, d)-coloring of G2H .
Thus χc(G2H) ≤ max{χc(G), χc(H)}. The
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other inequality follows because G2H contains
G and H as subgraphs.

Exercise 26.14 By the symmetry of Gd
k we

may assume that u = d. Let α > 0 be the small-
est integer such that αd = 1 (mod k). (Such
an α exists because by Exercise 26.12 we may
assume that gcd(k, d) = 1.) Now verify that
c(i) = i − |{0 < t ≤ α | td ≤ i}|, where
i ∈ {0, 1, . . . , k − 1} \ {d} and td is computed
in Zk, is a (k − α, d − (αd − 1)/k)-coloring of
Gd

k − d. Verify finally that k−α
d−(αd−1)/k

< k
d
.

Exercise 26.15 Hint: G × G contains G as a
subgraph.

Exercise 26.16 From Lemma 26.29 (or di-
rectly) we see that for a 3-chromatic graph G,
the 2-coloring graph C2(G) has only one edge
and is hence 2-chromatic. Then apply Theo-
rem 26.27.

Exercise 26.17 Let f : I(G) → [0, 1] be a frac-
tional coloring. Then f ′ : I(G ×H) → [0, 1] de-
fined with f ′(I×V (H)) = f(I) for all I ∈ I(G),
and f ′(J) = 0 for any other independent set of
G×H , is a fractional coloring of G×H with the
same weight.

Chapter 27

Exercise 27.1 Let I be an independent set
of G, and J an independent set of H . Then
I × J is an independent set of G ◦ H . Hence
α(G ◦H) ≥ α(G) · α(H).

For the other direction, let S be an indepen-
dent set of G ◦ H . Then the intersection X of
S with an H-layer is an independent set of H ,
so |X| ≤ α(H). Moreover, if S intersects two
H-layers, then the corresponding vertices of G
are not adjacent. Therefore S intersects at most
α(G) H-layers and α(G ◦H) ≤ α(G) · α(H).

Exercise 27.2 Hint: Only the final inequality
is nontrivial. Use Proposition 27.11 and Theo-
rem 27.17 or mimic their proofs.

Exercise 27.3 Hint: Exclude the possibility
that a largest independent set has two vertices
in some of the layers.

Exercise 27.4 Hint: Verify that α(K2 �G) =
α(G) and deduce that α(C2n � G) = nα(G) =
α(C2n)α(G).

Exercise 27.5 Hint: Apply the fact α(G �

K2) = α(G).

Exercise 27.6 Hint: There are homomor-
phisms from G×,n to G and from G to G×,n.

Exercise 27.7 Let V (Kn) = {0, . . . , n − 1},

and U = {(0, i2, . . . , ik) | 0 ≤ i2, . . . , ik ≤
n − 1}. The set U contains nk−1 different ver-
tices of K×,k

n . To each vertex u = (0, i2, . . . , ik)
of U , we assign the set of vertices Qu defined
by {(0, i2, . . . , ik), (1, i2 +1, . . . , ik +1), . . . , (n−
1, i2 +(n− 1), . . . , ik +(n− 1))}, where addition
is modulo n. Then {Qu | u ∈ U} is a parti-
tion of V (K×,k

n ). Moreover, every Qu induces
a complete subgraph on n vertices. Therefore
α(K×,k

n ) ≤ nk−1. On the other hand, the set
U is independent, and so α(K×,k

n ) ≥ nk−1.

Exercise 27.8 Let the state of a given switch
be described with an element of Z3. Then the
system can be represented with the graph whose
vertices are vectors from Zn

3 (thus representing
the states of the system), two vertices being ad-
jacent if the traffic light changes from one state
to the other. Then this graph is isomorphic to
K×,n

3 . It has chromatic number 3, and as we
know from this chapter, any color class in any
3-coloring is a canonical independent set. Hence
the traffic light is controlled by the correspond-
ing switch.

Exercise 27.9 Hint: Consider the subproduct
of G×H whose projections are largest complete
subgraphs of G and H .

Exercise 27.10 The result for K×,2
m,m follows

easily by the structure of the graph. For K×,n
m,m,

n ≥ 3, let X be one of the bipartite sets of
Km,m and let I to be the set of those ver-
tices (v1, v2, . . . , vn) of K×,n

m,m for which at least
two of v1, v2, v3 belong to X. Verify that I is
a maximum independent set. It is clearly non-
canonical.

Exercise 27.11 Let I be a maximum indepen-
dent set of G × H . Summing the degrees of all
vertices of I , we get

|E(G×H)| ≥
∑

v∈I

dG×H(v)

≥ δ(G) δ(H)α(G×H) .

Because on the other hand |E(G × H)| =
2 |E(G)| |E(H)| we infer

|E(G×H)| = 2 |E(G)| |E(H)|

≥ δ(G) δ(H)α(G×H) ,

which completes the argument.

Exercise 27.12 Apply Exercise 27.11.

Exercise 27.13 Hint: Apply Theorem 27.13.

Exercise 27.14 Partition V (H) into one-
element sets.

Exercise 27.15 Hint: Partition V (G) into
τ (H) two-elements sets and |V (H)|−2τ (H) one-
element sets and apply Theorem 27.19.
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Exercise 27.16 Because χf (G) = χc(G) = 2
holds for a bipartite graph G with at least one
edge, the assertion follows from Theorem 27.21.

Alternatively, because G has at least one
edge, there is a homomorphism G → K2. Thus
by Theorem 27.20, I�(G) ≥ I�(K2); and be-
cause K2 is a subgraph of G, I�(G) ≤ I�(K2).
Clearly, I�(K2) = 2.

Chapter 28

Exercise 28.1 For a dominating set D of
G2H , let a be a vertex of G, and consider
N [a]2H . Then the vertices {a} × V (H) are
dominated by the vertices from D ∩ (N [a]2H).
It follows that |D ∩ (N [a]2H)| ≥ γ(H).

Exercise 28.2 Let |V (H)| = n and let D be
a minimum dominating set of G2H . Let Di,
1 ≤ i ≤ n, be the intersection of D with the
respective G-layers and let Si be the vertices of
the ith G-layer that are not dominated within
the G-layer. Then |Di|+ |Si| ≥ γ(G). Hence

|D| =

n
∑

i=1

|Di| ≥
n
∑

i=1

(γ(G)− |Si|)

= nγ(G)−
n
∑

i=1

|Si| ≥ nγ(G)−∆(H)|D|

and the conclusion follows immediately.

Exercise 28.3 Hint: Add edges to Cn such
that the vertex set of the obtained graph is cov-
ered by an according number of K3’s and K2’s.

Exercise 28.4 Let D be a minimum dominat-
ing set of G and let s ∈ S. Then |D ∩N [s]| ≥ 1.
Consequently, |D| = γ(G) ≥ |S|. On the other
hand, S is a dominating set.

Exercise 28.5 It is not difficult to find a dom-
inating set of size d(n+ 1)/2e. To show that no
smaller dominating set exists, prove first that
there exists a minimum dominating set D of
P2 2Pn such that D intersects each P2-layer in
at most one vertex. Then every second P2-layer
must contain a vertex of D.

Exercise 28.6 Hint: Construct a dominat-
ing set of size n − bn/4c by selecting one and
two vertices in every second C3-layer, respec-
tively. For n ≡ 2 (mod 4), select one additional
vertex in the last C3-layer. To show that this
is optimal, prove first that there exists a min-
imum dominating set D that intersects each
C3-layer in at most two vertices. Let s be the
number of C3-layers with no vertex from D.
Because no two such layers can be adjacent,

s ≤ bn/2c. An empty C3-layer is dominated
by two other layers, hence there are at least
ds/2e C3-layers with two vertices from D. Thus
|D| ≥ 2ds/2e+(n−ds/2e−s) = n− (s−ds/2e).
Now write n = 4k + t and use the fact that
s− ds/2e is maximal when s = 2k + bt/2c.

Exercise 28.7 Let the vertices of Gn be the
n-subsets of Nn2 = {1, 2, . . . , n2}. Then two
such subsets I and J are adjacent if and only
if I ∩ J 6= ∅. Hence an independent set of Gn

consists of at most n pairwise disjoint subsets.
It follows easily that γi(Gn) = 1.

Let X ⊂ V (Gn), |X| ≤ n − 1. Then |Nn2 \
(∪I∈XI)| ≥ n. Thus X cannot be a dominat-
ing set. Now find (a canonical) dominating set
of size n.

Exercise 28.8 Set V (Kk) = {1, . . . , k} and
verify that {(1, 1), (2, 2), (3, 3)} is a dominating
set of Kn ×Km. Moreover, no two vertices (i, j)
and (k, l) dominate Kn × Km. Indeed, assume
without loss of generality that i 6= k. Then (i, l)
is adjacent to neither (i, j) nor (k, l).

Exercise 28.9 Hint: G is symmetric and hence
so is G×G. Thus select an arbitrary first vertex
to be in a dominating set.

Exercise 28.10 Let V (Kn) = {1, . . . , n}.
Then (1,. . . ,1),(2,. . . ,2),. . . , (r + 1, . . . , r + 1)
form a dominating set of G.

Exercise 28.11 Hint: Consider a couple of
cases depending in which layers a vertex of G×H
lies.

Exercise 28.12 Hint: If D is a minimum dom-
inating set of G ◦ H , then D intersects a given
H-layer in at most one vertex.

Chapter 29

Exercise 29.1 Hints: For each edge xy, we
note that δ(xy) = x+y is a sum of two vertices in
the same component of G. As vertices cancel in
pairs, it follows that δ(M) =

∑

xy∈M(x+ y) has
an even number of vertices in each component
of G, for any element M of the edge space. Con-
versely, suppose X ⊆ V (G) has an even num-
ber of vertices in each component. List the ver-
tices of X that are in a particular component as
x1, x2, . . . , x2k. For each 1 ≤ i ≤ 2k − 1, let Pi be
a path in G from xi to x2k. Then δ(

∑2k−1
i=1 Pi) =

{x1, x2, . . . , x2k}. Extend this to multiple com-
ponents in the obvious way.

To prove the statement about the dimension,
suppose a given component of G has vertex set
{x1, x2, . . . , x`}. Then the ` − 1 sets {x1, x2},
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{x1, x3}, {x1, x4}, . . ., {x1, x`} are clearly in-
dependent. Repeat this construction for each
component to get a basis for V consisting of
V (G)− c(G) elements.

Exercise 29.2 C(K4) consists of four triangles,
three squares, and the empty set. C(K5) con-
tains the empty set and the whole graph, ten tri-
angles, fifteen squares, and twelve 5-cycles. Be-
cause β(K5) = 6, |C(K5)| = 26 = 64, hence there
are 25 more subgraphs in C(K5). Find them!

Exercise 29.3 Hint: This is a straightforward
application of Equation (29.1). Note that We-
ichsel’s theorem must play a role in the case of
β(G×H), as bipartiteness can influence connect-
edness.

Exercise 29.4 Suppose B is an MCB, but
there is a cycle C =

∑β(G)
k=1 bkBk (each bk is

in GL(2)) and |C| < |Bk| for some k with
bk 6= 0. Then we can exchange basis element
Bk for C and obtain a basis with smaller total
length than B, contradicting minimality. Con-
versely, suppose B is not an MCB. Assume that
the elements B1, B2, . . . are arranged in order
of increasing length. Because the Greedy Al-
gorithm cannot terminate with basis B, there
must be an element Bp for which the set
{B1, B2, . . . , Bp−1} can be extended to an in-
dependent set {B1, B2, . . . , Bp−1, C} with |C| <

|Bp|. Necessarily then, C =
∑β(G)

k=1 bkBk with
bi 6= 0, for some p ≤ i ≤ β(G), and |C| < |Bi|.

Exercise 29.5 Hint: For each of the mn lay-
ers, take a cycle basis of triangles for that layer,
and form the union of all triangles in these bases.
Next append to this set the squares in the grid
Pm 2Pn ⊆ Km 2Kn.

Exercise 29.6 Hint: Note that if a cycle basis
consists of a maximal set of independent trian-
gles, plus some squares, then it is an MCB. Show
that the graphs in question can be embedded
on a torus in such a way that all their triangles
bound regions. Use this embedding as an aid in
determining the dependencies among cycles.

Exercise 29.7 Let Z be as stated. The ho-
momorphism π∗

Cp
: C(Cp × Cq) → C(Cp) =

{0, Cp} must send Z to a subgraph with an even
number of edges, so π∗

Cp
(Z) = 0. Then for any

edge e = ab ∈ E(Cp), cycle Z must have an
even number me of edges of form (a, x)(b, y)
for which πCp((a, x)(b, y)) = ab. Because 2p >
|Z| =

∑

e∈E(Cp)
me, it follows that me = 0

for some e ∈ E(Cp). Hence Z is a subgraph of
(Cp − e) × Cq . By applying the same argument
to the factor Cq (and using p ≤ q), we see that

Cq must have some edge f for which Z is a cy-
cle in the product (Cp − e)× (Cq − f) of paths.
A product of paths has two planar components
that can be embedded in the plane so that the
boundaries of all interior regions are diamonds.
These diamonds span the cycle space, so Z is a
sum of diamonds.

Exercise 29.8 Hint: The graph G has no tri-
angles. Hence an MCB will consist of a maximal
independent set of squares, plus some longer cy-
cles. Consider embedding G in a torus in such a
way that all its squares are faces, and argue as
in the proof of Proposition 29.7.

Exercise 29.9 Hint: Use the approach of Ex-
ercise 29.8, but note that the graph has two com-
ponents, so the embedding should be in the dis-
joint union of two tori.

Chapter 30

Exercise 30.1 Routine.

Exercise 30.2 A bridge of G gives rise to a
separating set S in G2C3 of size 3. Every one-
factor of G2C3 must contain at least one edge
of S. But G2C3 is 5-regular, so there is no one-
factorization.

Exercise 30.3 If n and m are both odd,
|V (Cn ◦ Dm)| is odd, so Cn ◦ Dm clearly has
no one-factorization.

To show that Cn◦Dm has a one-factorization
if one of n and m is even, we need to find
an edge-coloring with 2m colors. Let V (Cn) =
{u0, u1, . . . , un−1} and V (Dm) = {0, 1, . . . ,m −
1}.

Suppose n is even. Define an edge-coloring c
of Cn◦Dm as follows. To color the edges between
the “first” two Dm-layers, set c((u0, i)(u1, j)) =
i+ j (mod m). Next set c((u1, i)(u2, j)) = (i+ j
(mod m)) + m to color the edges between the
subsequent two Dm-layers. Because n is even,
repeating this double pattern gives a 2m-edge-
coloring.

Supposem is even. The idea to find a desired
coloring goes as follows. Construct four disjoint
m/2×m/2 Latin squares. (For this we have used
2m disjoint symbols.) Let these Latin squares be
blocks of anm×mmatrix A. Then color the edge
(u0, i)(u1, j) with the (i, j)th element of A. Ex-
tend the coloring to the edges between the other
Dm-layers by carefully permuting the blocks of
the coloring matrix A.

Exercise 30.4 Routine.

Exercise 30.5 Hint: If both m and n are odd,
then Pm 2Pn is a bipartite graph of odd order.
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Exercise 30.6 Consider the cases based on the
parities of the factors.

Exercise 30.7 If m is even, Cm×T consists of
two connected components. Let m be odd. Then
Cm × K2 = C2m. To show that Cm × T is not
Hamiltonian in all the other cases, consider a
Cm-layer corresponding to a pendant vertex of
T and note that Cm × T contains exactly one
cycle that contains all vertices of the layer. As
this cycle is of length 2m, the conclusion follows.

Exercise 30.8 Let C be a longest cycle of
Cm×T . Then, using the last argument from the
solution to Exercise 30.7, C misses at least one
vertex of each Cm-layer corresponding to a pen-
dant vertex of T .

Exercise 30.9 The upper bounds follow be-
cause Pm 2Pn is planar and P2 2Pn is outer-
planar. It remains to find K4 and K3 minors.

Exercise 30.10 Routine.

Exercise 30.11 Set t = η(Km 2Kn) and use
the fact that

(

t
2

)

≤ |E(Km 2Kn)|.

Exercise 30.12 For the nontrivial implication,
we have the following chain:

χ(G2H) = χ(G) = χ(G2K2)

≤ η(G2K2) ≤ η(G2H) .

Explain each of the (in)equalities above!

Exercise 30.13 Hint: Use Exercise 5.17.

Exercise 30.14 The two-vertex deleted sub-
graphs are isomorphic to P3 2P3 with a pendant
vertex attached.

Exercise 30.15 Let G1 2G2 2 · · · 2Gk be the
prime factorization of the nontrivial Cartesian
product G where G − v contains no product
square. This implies that all product squares of
G must contain v. Set G∗

1 = G2 2 · · · 2Gk. If
G1 or G∗

1 contains a cycle or a path of length
3, then v cannot meet all product squares of G.
Hence both G1 and G∗

1 must be stars.

Part VI

Chapter 31

Exercise 31.1 Hint: Use Zorn’s lemma to show
that every infinite graph has a spanning forest.
For the converse, let Sι, ι ∈ I be an arbitrary col-
lection of sets. Define a multigraph G whose ver-
tex set consists the empty set ∅ and the sets Sι,
ι ∈ I , and whose edge set is

⋃

ι∈I Sι, where the
endpoints of every e ∈ Sι are ∅ and Sι. Choose
a spanning forest F of G, that is, a maximal
acyclic subgraph of G. Observe that it must be
a tree. Use it to construct a system of represen-
tatives of the sets Sι, ι ∈ I .

To avoid multigraphs, subdivide every edge
by a single vertex, see Imrich (1977).

Exercise 31.2 Hint: Choose another base
point u and use the fact that to every k ∈ N
there are numbers m,n ∈ N such that Nk(v) ⊆
Nm(u) ⊆ Nn(v).

Exercise 31.3 Hint: Prove that every triple of
vertices has a unique median.

Exercise 31.4 Routine.

Exercise 31.5 Routine.

Exercise 31.6 Routine.

Exercise 31.7 Routine.

Exercise 31.8 Hint: Find a basis of open sets

in this space and use the definition of compact
spaces.

Exercise 31.9 Hint: Distinguish the cases
where α stabilizes a finite subset of V (T ) and
the one where this does not hold.

The first case is routine. In the second, con-
sider the orbit of a vertex v ∈ T under the action
of α. Choose a v such that d(v, α(v)) is minimal
and construct PZ .

Exercise 31.10 Hint: Think of the construc-
tion of G4 in Section 21.3.

Exercise 31.11 Routine.

Exercise 31.12 Hint: Observe that the ver-
tices of G can be considered as 0-1 sequences.

Exercise 31.13 Hint: Show first that all con-
nected components of G are isomorphic. Then
use the fact that a connected factor of a Carte-
sian product must factor every component of the
product.

Exercise 31.14 Hint: Make use of the infor-
mation in the text just before the statement of
the exercise.

Exercise 31.15 Hint: Extend the method of
the Exercise 31.14.

Exercise 31.16 Hint: Notice that the product
must be disconnected and that all components
must be isomorphic.
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Exercise 31.17 Routine.

Exercise 31.18 Hint: Suppose there is a prime
factorization that is different from the given one.
Show that there are two decompositions A× B
and C×D of G with a common refinement that
decomposes a factor Gι into a nontrivial direct
product.

Exercise 31.19 Hint: Because any factoriza-
tion of S(G) is compatible with the given pre-
sentation of G as a direct product, S(G) must
have infinitely many prime factors.

Exercise 31.20 Hint: Use the fact that
L(D2) × K3 and K2 × K3 are nonisomorphic
graphs in Γ and show that (L(D2)×K3)×G ∼=
(K2 ×K3)×G.

Chapter 32

Exercise 32.1 Hint: All components are iso-
morphic.

Exercise 32.2 Hint: The projections are weak
homomorphisms.

Exercise 32.3 Hint: The first projection is a
weak homomorphism. Note also that nontrivial-
ity is essential.

Exercise 32.4 Suppose G = G1 2 · · · 2Gk

is unilaterally connected. Because each projec-
tion is a weak homomorphism, it follows readily
that each factor is unilaterally connected. We
now show that at most one factor is not strongly
connected. Suppose two factors, say G1 and G2,
are not strongly connected. Let x1, y1 ∈ V (G1)
be such that G1 has a directed walk from x1

to y1, but not from y1 to x1. Choose x2, y2 ∈
V (G2) similarly. Now consider two vertices of
form (y1, x2, . . .) and (x1, y2, . . .) in G. Because
G is unilateral there is a directed walk from one
to the other. But the projection of this yields a
directed walk either from y1 to x1 or from y2 to
x2, a contradiction.

Conversely suppose each factor Gi is uni-
laterally connected and all but one, say G1,
are strongly connected. Take any two vertices
x = (x1, x2, . . . , xk) and y = (y1, y2, . . . , yk) in
G. Without loss of generality, assume G1 has a
directed walk from x1 to y1 (as opposed to y1 to
x1.) Then each Gi has a directed walk from xi

to yi, and it is straightforward to assemble these
into a directed walk in G from x to y.

The same argument works for the strong
product.

Exercise 32.5 By associativity, it suffices to
prove this for two factors G and H .

Suppose G ◦H is unilaterally connected but
not strongly connected. By Proposition 32.2, G
is not strongly connected. That G is unilater-
ally connected follows immediately from the fact
that projection to the first factor is a homomor-
phism. It follows that G has two vertices x and y
for which there is a directed walk from x to y but
not from y to x. Thus G has no nontrivial closed
directed walk through x. Take u, v ∈ V (H). Be-
cause G is unilaterally connected, there is a di-
rected walk from (x, u) to (x, v) (or the other
way round). This walk cannot go outside the
layer Hx, for otherwise it projects to a closed
directed walk through x in G. Because Hx ∼= H ,
we have a directed walk between u and v in H .
Thus H is unilaterally connected.

Conversely, suppose both G and H are uni-
laterally connected and G is not strongly con-
nected. Then G ◦ H is not strongly connected
by Proposition 32.2. Consider two vertices (x, y)
and (u, v) of G ◦ H . If x = u, use the fact that
Hx is unilaterally connected to get a directed
walk between (x, y) and (u, v). Otherwise, say G
has a directed walk from x to u. By definition of
the lexicographic product, it is straightforward
to extend this to a directed walk from (x, y) to
(u, v).

Exercise 32.6 Routine.

Exercise 32.7 Routine.

Exercise 32.8 Suppose (λ)(µ) ∈ A(G!). It suf-
fices to show that Gλ ∼= Gµ. Observe that

xy ∈ A(Gµ) ⇐⇒ xµ−1(y) ∈ A(G)

⇐⇒ λ(x)µµ−1(y) ∈ A(G)

⇐⇒ λ(x)y ∈ A(G)

⇐⇒ λ(x)λ(y) ∈ A(Gλ) .

Thus λ : Gµ → Gλ is an isomorphism.

Exercise 32.9 Hint: A key ingredient is the
fact that Theorem 9.11 holds for digraphs.

Exercise 32.10 Hint: Use Theorem 9.11 and
Proposition 9.9. Both results hold for digraphs.

Chapter 33

Exercise 33.1 There are three. One is
K3 2K3. In the other two, the nondegenerate
edges induce C9, and the disjoint union C6+C3,
respectively.

Exercise 33.2 Consider the nontrivial direct
bundle with base C5 and fiber K2.

Exercise 33.3 Hint: A product coloring will
do.
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464 Hints and Solutions to Exercises

Exercise 33.4 Hint: Consider products of
dominating sets.

Exercise 33.5 Hint: See Figure 33.1.

Exercise 33.6 Estimate in how many ways a
graph H of distance ≤ k from G can be con-

structed from G. Begin with H = G. Add 2k
isolated vertices to V (G). There are (n+ k)(n+
k − 1)/2 = O(n2) ways to select a pair of ver-
tices in V (H). If this pair is an edge in G, delete
it from H ; otherwise we add it to H . Do this
k-times.
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Bonnington, C. P., Klavžar, S., and Lipovec, A. (2003). On cubic and edge-critical isometric
subgraphs of hypercubes. Australas. J. Combin., 28, 217–224.

Bonnington, C. P. and Pisanski, T. (2004). On the orientable genus of the Cartesian product
of a complete regular tripartite graph with an even cycle. Ars Combin., 70, 301–307.

Borowiecki, M. (1972). Hamiltonian cycles in conjunction of two graphs. Prace NIMFTP
Wroc lawskiej Ser. Stud. Materia ly, 6, 19–26.

Borowiecki, M. and Szelecka, A. (1993). One-factorizations of the generalized Cartesian
product and the X-join of regular graphs. Discuss. Math., 13, 15–19.

© 2011 by Taylor & Francis Group, LLC



470 Bibliography

Bottreau, A. and Métivier, Y. (1998). Some remarks on the Kronecker product of graphs.
Inform. Process. Lett., 68, 55–61.

Bradshaw, Z. and Hammack, R. H. (2009). Minimum cycle bases of direct products of
graphs with cycles. Ars Math. Contemp., 2, 101–119.

Bradshaw, Z. and Jaradat, M. M. M. (2009). Minimum cycle bases for direct products of
K2 with complete graphs. Australas. J. Combin., 43, 127–131.

Brandstädt, A., Le, V. B., and Spinrad, J. P. (1999). Graph Classes. SIAM Monographs
on Discrete Mathematics and Applications. SIAM, Philadelphia.
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biclique coverings, and Sperner’s theorem. Combin. Probab. Comput., 16, 271–275.

Frucht, R. (1938). Herstellung von Graphen mit vorgegebener abstrakter Gruppe. Compo-
sitio Math., 6, 239–250.

Gao, G. and Zhu, X. (1996). Star-extremal graphs and the lexicographic product. Discrete
Math., 152, 147–156.

Gedeonova, E. (1990). Constructions of S-lattices. Order, 7, 249–266.

Geller, D. (1976). r-tuple colorings of uniquely colorable graphs. Discrete Math., 16, 9–12.

Geller, D. and Stahl, S. (1975). The chromatic number and other functions of the lexico-
graphic product. J. Combin. Theory Ser. B, 19, 87–95.

Goddard, W. and Henning, M. A. (2001). Pancyclicity of the prism. Discrete Math., 234,
139–142.

Godsil, C. and Royle, G. (2001). Algebraic Graph Theory, volume 207 of Graduate Texts in
Mathematics. Springer-Verlag, New York.

Godsil, C. D. (1981). GRRs for nonsolvable groups. In Algebraic Methods in Graph Theory,
Vol. I, II (Szeged, 1978), volume 25 of Colloq. Math. Soc. János Bolyai (pp. 221–239).
North-Holland, Amsterdam.

Goldberg, F. (2009). On the Colin de Verdière numbers of Cartesian graph products. Linear
Algebra Appl., 431, 2285–2290.

Golumbic, M. C. (1980). Algorithmic Graph Theory and Perfect Graphs. Academic Press,
New York.

Graham, R. L. (1970). On primitive graphs and optimal vertex assignments. In International
Conference on Combinatorial Mathematics (1970), volume 175 of Ann. New York Acad.
Sci., (pp. 170–186). New York Acad. Sci., New York.

Graham, R. L. (1988). Isometric embeddings of graphs. In Beineke, L. and Wilson, R.
(Eds.), Selected Topics in Graph Theory III, (pp. 133–150). Academic Press, San Diego,
CA.

Graham, R. L. and Pollak, H. O. (1971). On the addressing problem for loop switching.
Bell System Tech. J., 50, 2495–2519.

© 2011 by Taylor & Francis Group, LLC



Bibliography 477

Graham, R. L. and Pollak, H. O. (1972). On embedding graphs in squashed cubes. In
Graph Theory and Applications (Proc. Conf., Western Michigan Univ., Kalamazoo, 1972;
dedicated to the memory of J. W. T. Youngs), volume 303 of Lecture Notes in Math., (pp.
99–110). Springer, Berlin.

Graham, R. L. and Winkler, P. M. (1985). On isometric embeddings of graphs. Trans.
Amer. Math. Soc., 288, 527–536.

Graovac, A. and Pisanski, T. (1991). On the Wiener index of a graph. J. Math. Chem., 8,
53–62.

Gravier, S. (1997). Hamiltonicity of the cross product of two Hamiltonian graphs. Discrete
Math., 170, 253–257.

Gravier, S. and Khelladi, A. (1995). On the domination number of cross products of graphs.
Discrete Math., 145, 273–277.

Gravier, S. and Mollard, M. (1997). On domination numbers of Cartesian products of paths.
Discrete Appl. Math., 80, 247–250.

Greenwell, D. and Lovász, L. (1974). Applications of product colouring. Acta Math. Acad.
Sci. Hungar., 25, 335–340.

Gromov, M. (1981). Groups of polynomial growth and expanding maps. Appendix by
Jacques Tits. Inst. Hautes Etudes Sci. Publ. Math., 53, 53–78.

Gross, J. L. and Yellen, J. (Eds.). (2004). Handbook of Graph Theory. Discrete Mathematics
and its Applications (Boca Raton). Boca Raton, FL: CRC Press.

Gross, J. L. and Yellen, J. (2006). Graph Theory and its Applications. Discrete Mathematics
and its Applications (Boca Raton). Chapman & Hall/CRC, Boca Raton, FL.
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Hagauer, J., Imrich, W., and Klavžar, S. (1999). Recognizing median graphs in subquadratic
time. Theoret. Comput. Sci., 215, 123–136.
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Imrich, W. and Žerovnik, J. (1994). Factoring Cartesian-product graphs. J. Graph Theory,
18, 557–567.
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Žerovnik, J. (2000). On recognition of strong graph bundles. Math. Slovaca, 50, 289–301.

Zhang, H. (2010). Independent sets in direct products of vertex-transitive graphs.
Manuscript, arXiv:1007.0797v1 [math.CO].

Zhang, H. (2011). Primitivity and independent sets in direct products of vertex-transitive
graphs. To appear in J. Graph Theory, DOI: 10.1002/jgt.20526.

Zhang, Z., Zheng, Y., and Mamut, A. (2007). Nowhere-zero flows in tensor product of
graphs. J. Graph Theory, 54, 284–292.

Zheng, Y., Zhang, Z., and Mamut, A. (2009). Nowhere-zero flows in lexicographic product
of graphs. J. Math. Study, 42, 30–35.

Zhou, H. (1991a). Multiplicativity. I. Variations, multiplicative graphs, and digraphs. J.
Graph Theory, 15, 469–488.

Zhou, H. (1991b). Multiplicativity. II. Nonmultiplicative digraphs and characterization of
oriented paths. J. Graph Theory, 15, 489–509.

Zhou, H. and Zhu, X. (1997). Multiplicativity of acyclic local tournaments. Combinatorica,
17, 135–145.

Zhou, M. (1989). Decomposition of some product graphs into 1-factors and Hamiltonian
cycles. Ars Combin., 28, 258–268.

Zhu, X. (1992a). A simple proof of the multiplicativity of directed cycles of prime power
length. Discrete Appl. Math., 36, 313–316.

Zhu, X. (1992b). Star chromatic numbers and products of graphs. J. Graph Theory, 16,
557–569.

Zhu, X. (1996). On the bounds for the ultimate independence ratio of a graph. Discrete
Math., 156, 229–236.

Zhu, X. (1998). A survey on Hedetniemi’s conjecture. Taiwanese J. Math., 2, 1–24.

Zhu, X. (1999). Construction of uniquely H-colorable graphs. J. Graph Theory, 30, 1–6.

Zhu, X. (2001). Circular chromatic number: A survey. Discrete Math., 229, 371–410.
Combinatorics, graph theory, algorithms and applications.

Zhu, X. (2002). The fractional chromatic number of the direct product of graphs. Glasg.
Math. J., 44, 103–115.

Zhu, X. (2011). Fractional Hedetniemi’s conjecture is true. To appear in European J.
Combin., DOI: 10.1016/j.ejc.2011.03.004.

Ziegler, G. M. (1995). Lectures on Polytopes, volume 152 of Graduate Texts in Mathematics.
Springer-Verlag, New York.

© 2011 by Taylor & Francis Group, LLC



498 Bibliography
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`-κ-critical graph, 311
`1-graph, 143
L-set, 176
Laplacian, 437
lattice dimension, 190
layer, 40
left-distributive law, 116
length of a path, 8
lexicographic

power, 116
product, 43, 115

linear
algorithm, 207
chain, 237
growth, 400
quasi-, 297, 435

locally complete graph, 308
locally finite graph, 399
loop, 6
Lovász’s ϑ-function, 344

majority function, 201
majority rule, 172
map

even, 334
odd, 334

mapping
nonexpansive, 33

matching, 22
perfect, 22, 105, 348, 365, 378

matrix
adjacency, 56, 215
distance, 213
independence, 324

neighborhood, 360
MCB, 368
median, 30

-closed subgraph, 172
function, 195
function-closed subgraph, 197
graph, 31, 172
network, 156

merge, 279
metric, 9
middle-levels problem, 382
minimum cycle basis, 368
minimum dominating set, 23
minor, 385
MIS-normal graph, 348
mitochondrial DNA, 156
modular product, 45
module, 117
multichromatic number, 324
multigraph, 239

dense, 241
multiple edges, 239
multiplicative graph, 333
Mycielski graph, 361

n-coloring, 21
neighbor, 5
neighborhood, 6

closed, 6, 308, 338
matrix, 360
open, 6

No-Homomorphism Lemma, 23, 353
nonexpansive map, 33, 155, 174, 188, 200

weakly, 193
nontrivial graph, 5
nontrivial subgraph, 74
nowhere-zero flow, 389
nth chromatic number, 319
number

2-packing, 357
chromatic, 21, 317
circular chromatic, 326
clique, 22
Colin de Verdière, 387
cop-, 186
distinguishing, 70, 414
domination, 22
fractional chromatic, 324
fractional clique, 325
fractional domination, 360
independence, 22, 341
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intersection, 393
multichromatic, 324
nth chromatic, 319
set-chromatic, 324
star chromatic, 326
total domination, 364
ultimate chromatic, 324

odd girth, 73
odd graph, 383
odd map, 334
one-factor, 22, 378
one-factorization, 378
open neighborhood, 6
opposite clique, 179
order of a graph, 5
orientation, 389
oriented graph, 6
orthogonal product, 403
orthonormal representation, 344
outerplanar graph, 59

packing
2-, 357

pancyclic graph, 383
parallel clique, 179
Pareto distribution, 391
parity of a component, 335
partial

cube, 30, 172, 223
cubic, 140

Hamming graph, 168, 269
path

k-coloring, 75
clean, 387
endpoints, 8
two-sided infinite, 399
well-colored, 75

pendant vertex, 17
perfect code, 59, 357
perfect matching, 22, 105, 348, 365, 378
peripheral subgraph, 151
permutahedron, 142
persistent graph, 333
Petersen graph, 22, 128, 378
planar graph, 11
plane

drawing, 11
graph, 11

plotting of graph, 74
polynomial growth, 400

power
Cartesian, 39
direct, 39, 114
lexicographic, 116
strong, 39

power law distribution, 391
prime

S-, 74
prime factorization, 67, 425
prime graph, 65
primitive automorphism group, 103
probabilistic proof, 24, 343, 348
product

cardinal, 36
Cartesian, 35
categorical, 36
coloring, 162
comb, 403
complementary, 44
cross, 36
dot, 392
free, 401
generalized Cartesian, 378
generalized free, 402
Kronecker, 36
lexicographic, 43, 115
modular, 45
orthogonal, 403
random dot, 392
relation, 275
relational, 36
replacement, 440
representation, 162
self-complementary, 116
star, 403
strong direct, 36
subdirect, 104
tensor, 36
weak Cartesian, 411
weak direct, 36
wreath, 125
zig-zag, 439

productivity, 334
projection, 40
proof

probabilistic, 24, 343, 348
property P, 308
pseudo-median graph, 174

quadrangle property, 171
quasi-linear, 297, 435
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quasi-median, 173
graph, 173, 271

quotient graph, 159, 239

r-cube, 27, 217
R-thin, 91
R+-thin, 426
radius, 261
RAM model, 208
random dot product, 392
random dot product graph, 393
random graph, 166, 390, 393, 455

countable, 414
random variable, 24
ray, 400
reconstructible graph, 387
reconstruction

weak, 388
Reconstruction conjecture, 387
refinement property, 413
Refinement theorem, 415
regular

automorphism group, 19, 87, 126
graph, 7, 378

relation
R, 91
S, 80, 388
T , 271
Σ, 271
Θ, 221
Θ1, 221, 269, 278, 279
δ, 245, 432
σ, 276
τ , 246, 275
convex, 278
product-, 275

relational product, 36
relatively prime graphs, 70
replacement product, 440
request sequence, 169
retract, 32, 152, 187, 323

weak, 32, 176, 187, 188, 194, 200
retraction, 32

elementary, 178
weak, 32

right-distributive law, 116
root of ψ, 241

s-gated subgraph, 270
S-prime, 74
S-thin, 79, 81, 388

satisfiability
2-, 153

scale embedding, 143
Schläfli graph, 345
self-complementarity, 116
semi-median graph, 247, 252
semidirect product of groups, 441
separating set, 8, 307
set

disconnecting, 307
set colorings, 319
set-chromatic number, 324
Shannon capacity, 341, 342
sharply transitive automorphism group,

19
simple graph, 5
simplex

2-, 259
size of a graph, 5
skeleton, 270

Cartesian, 95
space

principal homogeneous, 21
space complexity, 207
spanning

subgraph, 6
tree, 11, 77

sparse graph, 28
spectrum of a graph, 436
square, 9, 239

property, 66, 276
squashed cube conjecture, 168
stabilized set, 17
stabilizer, 19
star chromatic number, 326
star product, 403
state

initial, 169
of a system, 169
sequence, 169

static graph properties, 390
stochastic Kronecker graph, 392
strong direct product, 36
strong graph bundle, 431
strong isometric dimension, 184
strong power, 39
strongly (2k + 1)-angulated, 73
strongly connected, 422
strongly persistent graph, 333
subdirect product, 104
subdirectly irreducible, 104
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subdivided Kn, 323
subdivision, 12
subgraph, 6

2-convex, 258
convex, 67, 137
edge-deleted, 6
externally related, 117
gated, 147, 173, 179, 194
imprint-closed, 173
induced, 6
irredundant, 162
isometric, 29, 146, 168, 188, 197
median function-closed, 197
median-closed, 172
nontrivial, 74
peripheral, 151
s-gated, 270
spanning, 6
vertex-deleted, 6

substitution, 56
super-connected graph, 308, 312
support, 176
symmetric composition, 36
system of imprimitivity, 126

temporal graph properties, 390
tensor product, 36

of vectors, 344
thin

R-, 91
R+-, 426
S-, 81

time complexity, 207
tolerance, 195
torsor, 21
total dominating set, 364
totally disconnected graph, 8
tournament, 45, 423
tower over a subgraph, 83, 307
transitive

automorphism group, 18, 87, 126
closure, 135, 245, 271

transposition
of Dp or Kp, 123
of isomorphic factors, 69

tree, 10, 162
3-, 234
BFS-, 214, 223
graph, 77
spanning, 11, 77

triangle, 7, 239

-free graph, 77, 174, 216
property, 171

trivial graph, 7
tuple coloring, 319
two-sided infinite path, 399

ultimate Cartesian Hall-ratio, 353
ultimate Cartesian independence ratio,

353
ultimate chromatic number, 324
ultimate direct independence ratio, 350
uniform distribution, 24
unilaterally connected, 422
uniquely colorable graph, 21, 319
universal graph, 342
up

-degree, 213
-edge, 213, 253

utility graph, 7

value of orthonormal representation, 344
variable

random, 24
vertex, 5

central, 261
fixed, 334
incident, 5
isolated, 7, 336
neighboring, 5
pendant, 17

vertex degree, 7
vertex space, 367
vertex-deleted subgraph, 6
vertex-transitive graph, 18, 348, 401
Vizing’s conjecture, 355
voltages, 430

walk, 8
closed, 8

weak
Cartesian product, 411
direct product, 36
homomorphism, 32
reconstruction, 388
retract, 32, 176, 187, 188, 194, 200
retraction, 32

weakly
median graph, 174
modular graph, 171, 175
nonexpansive map, 193

Weichsel’s theorem, 55
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weight of fractional coloring, 325
weighted graph, 234
well-colored path, 75
Wiener index, 232
windex, 169, 273
window index, 169
wreath product, 125

X-join, 128, 379

zero divisor, 426
Zhu’s conjecture, 337
zig-zag product, 439
zone graph, 151
Zorn’s lemma, 11, 462
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ℵ0 - smallest infinite cardinal, 401
0n - vector containing n zeros, 324
1n - vector containing n ones, 324
α(G) - independence number of G, 22
β(G) - Betti number of G, 368
Γ - finite simple graphs, 5
Γ0 - finite simple graphs, loops admitted,

6
Γv - stabilizer of v, subgroup of Γ fixing

v, 19
γ(G) - domination number of G, 22
γt(G) - total domination number ofG, 364
γf (G) - fractional domination number of

G, 360
Θ(G) - Shannon capacity of G, 342
ϑ(G) - Lovász’s ϑ-function, 344
κ′(G) - edge connectivity, 307
κ(G) - connectivity, 307
χ(G) - chromatic number of G, 21
χc(G) - circular chromatic number of G,

326
χf (G) - fractional chromatic number ofG,

324
χn(G) - nth chromatic number of G, 319
ω - exponent of matrix multiplication,

216, 259
ω(G) - clique number of G, 22
ωf (G) - fractional clique number of G, 325

A(G) - adjacency matrix of G, 215
a(G) - arboricity of G, 11
A! - factorial of a graph A, 112
Ant(A) - set of anti-automorphism of A,

110
Aut(G) - automorphism group of G, 16
AoB - semidirect product of groups, 441

C(G) - cycle space of G, 367
Cn(G) - n-coloring graph of G, 330

∂H - boundary of a subgraph H , 138
dG - distance function of G, 8

Dn - totally disconnected graph, 8
d(u, v) - distance between u and v, 8
d(v) - degree of v, 7
d(v,H) - distance of a vertex from a sub-

graph, 147
ddim(G) - direct dimension of G, 191
diam(G) - diameter of G, 9

E(G) - edge set of G, 5
e(v) - eccentricity of v, 183

Fab - set of edges in relation Θ to ab, 139
fx - layer-coloring, 331

G− e - edge-deleted subgraph, 6
G− v - vertex-deleted subgraph, 6
G ∼= H - G and H are isomorphic, 7
G2H - Cartesian product, 35
G×H - direct product, 36
G�H - strong product, 36
G⊕H - join of G and H , 116
G ◦H - lexicographic product, 115
G♦H - modular product, 45
G∇H - weak modular product, 47
G ∗H - free product, 401
G+H - disjoint union of graphs, 9
G R©H - replacement product, 440
G z©H - zig-zag product, 439
G/Π - quotient graph, 159
G - complement of G, 16
G◦,k - lexicographic kth power of G, 116
G�,k - Cartesian kth power of G, 39
G�,k - strong kth power of G, 39
G×,k - direct kth power of G, 39
Ga

i - layer of a product, 40
Gs - skeleton of G relative to s, 270
G4 - 2-simplex graph of G, 259
Gd

k - base graphs for the circular chro-
matic number, 327

Gs - Boolean square, 94

hom(X,A) - number of homomorphisms
X → A, 107

517
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homw(X,A) - number of weak homomor-
phisms X → A, 107

I(G) - independence matrix of G, 324
I�(G) - ultimate Cartesian independence

ratio of G, 353
I×(G) - ultimate direct independence ra-

tio of G, 350
I(G) - independent sets of G, 324
I(u, v) - interval between vertices u and

v, 9
id - identity mapping, 15
idim(G) - isometric dimension of G, 190
i(G) - independence ratio, 349
inj(X,A) - number of injective homomor-

phisms X → A, 108

K4 − e - edge deleted K4, 30
Km,n - complete bipartite graph, 7
Kn - complete graph, 7
Kn×2 - cocktail-party graph, 143
K(n, k) - Kneser graph, 22
kH(v) - gate of v in H , 179
Ks

p - complete graph with loops, 89

L(G) - graph G with loops added, 104
ldim(G) - lattice dimension of G, 190
L(u, i; v, j) - L-set, 176

N [A] - closed neighborhood of a set A,
338

N(G) - neighborhood matrix of G, 360
Nr(u) - ball of radius r and center u, 188
N(v) - neighborhood of a vertex v, 6
N [v] - closed neighborhood of a vertex v,

6

O - big O, 207

|P | - length of path P , 8
P2(G) - 2-packing number of G, 357
pi - projection map, 40
PZ - two-sided infinite path, 399

Q−
3 - vertex-deleted Q3, 30

Qr - r-cube, 27

r(G) - radius of G, 261

�S� - smallest gated set containing S,
194

S(G) - Cartesian skeleton, 95
S[G] - closed Cartesian skeleton, 293

〈S〉G - subgraph induced by a subset S of
V (G), 6

sdim(G) - strong isometric dimension of
G, 184

Uuv - set of vertices of Wuv that have a
neighbor in Wvu, 145

(u, v) - ordered pair or directed edge, 6
[u, v] - unordered pair or undirected edge,

6

V (G) - vertex set of G, 5
v ⊗ u - tensor product of vectors, 344
V ⊗ U - Kronecker product of matrices,

56

Wab - set of vertices closer to a than to b,
138

W (G) - Wiener index of G, 232
WX(G) - windex of G, 169

X-join - generalization of the lexico-
graphic product, 128
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